GRK Ring Lecture:
 Brauer groups and obstructions, Part I

Prof. Stefan Schröer
Mathematisches Institut
Heinrich-Heine-Universität

15 April 2021

Eminent mathematicians

Who are these eminent mathematicians?

Émile Picard
(1856-1941)

Richard Brauer (1901-1977)

Picard group and Brauer group

Picard group and the Brauer group are named after them, two extremely important constructions. I give a somewhat unusual definition, for rings R :

The group $\operatorname{Pic}(R)$ comprises isomorphism classes of R-modules L such that $L \otimes R^{\prime} \simeq R^{\prime}$ for some faithfully flat $R \subset R^{\prime}$. Such L are called invertible modules.

The group $\operatorname{Br}(R)$ comprises equivalence classes of R-algebras A such that $A \otimes R^{\prime} \simeq \operatorname{Mat}_{n}\left(R^{\prime}\right)$ with $n \geq 1$ and some faithfully flat $R \subset R^{\prime}$. Such A are called Azumaya algebras.

In both cases, group structure comes from \otimes.

Examples for invertible modules

Examples for invertible modules over rings R :

Fields, local rings, principal ideal domains?
Factorial rings?
Dedekind domains?

More examples

Coordinate rings $R=\Gamma\left(C \backslash\{z\}, \mathscr{O}_{C}\right)$ for projective curve C.
The point $z \in C$ yields invertible sheaf $\mathscr{L}=\mathscr{O}_{C}(z)$. Then

$$
\operatorname{Pic}(R)=\operatorname{Pic}(C) / \mathbb{Z} \mathscr{L} .
$$

Projective line $C=\mathbb{P}^{1}$ gives $\operatorname{Pic}(R)=\mathbb{Z} / d \mathbb{Z}$, with $d=[\kappa(z): k]$.
For elliptic curve $C: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ one gets $\operatorname{Pic}(R)=C(k)$, when z is the origin.

Examples of Azumaya algebras

Examples of Azumaya algebras: The quaternion algebra

$$
\mathbb{H}=\{a E+b I+c J+d K \mid a, b, c, d \in \mathbb{R}\}
$$

generated by the complex matrices

$$
I=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

Clearly $\mathbb{H} \otimes \mathbb{C}=$ Mat $_{2}(\mathbb{C}) . \quad$ Surprising formula:

$$
(a E+\ldots+d K) \cdot(a E-\ldots-d K)=a^{2}+\ldots+d^{2} \in \mathbb{R}_{\geq 0}
$$

So non-zero quaternions are invertible, hence $\mathbb{H} \neq \operatorname{Mat}_{2}(\mathbb{R})$.

Cohomology

Usually it is almost impossible to compute $\operatorname{Pic}(R)$ and $\operatorname{Br}(R)$ from definitions. But can be expressed in terms of cohomology!

Invertible modules L are twisted forms of R. Such correspond to first cohomology with coefficients in $\underline{\operatorname{Aut}}(R)=\mathbb{G}_{m}$, so

$$
\operatorname{Pic}(R)=H^{1}\left(R, \mathbb{G}_{m}\right) .
$$

Interpretation via cocycles: Choose basis $e_{1} \in L \otimes R^{\prime}$. Then write $\left(e_{1} \otimes 1\right)=\lambda \cdot\left(1 \otimes e_{1}\right)$ for some $\lambda \in\left(R^{\prime} \otimes R^{\prime}\right)^{\times}$. Satisfies cocycle condition, yields cohomology class

$$
[\lambda]=[L] \in H^{1}\left(R, \mathbb{G}_{m}\right) .
$$

Exponential Sequence

This works not only for rings, but for ringed spaces, or ringed topoi. Cohomological interpretation relates $\operatorname{Pic}(X)$ to other groups:
Let X be a complex space. Have exponential sequence

$$
0 \longrightarrow \mathbb{Z}_{X} \xrightarrow{2 \pi i} \mathscr{O}_{X} \xrightarrow{\exp } \mathscr{O}_{X}^{\times} \longrightarrow 1
$$

Gives long exact sequence

$$
H^{1}(X, \mathbb{Z}) \longrightarrow H^{1}\left(X, \mathscr{O}_{X}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow H^{2}(X, \mathbb{Z})
$$

For $\alpha \in H^{1}\left(X, \mathscr{O}_{X}\right)$, the resulting sheaf \mathscr{L} is obstruction to make α integral.

The coboundary defines first Chern class $c_{1}(\mathscr{L}) \in H^{2}(X, \mathbb{Z})$.

Divisor sequence

Let X be an integral scheme. Have divisor sequence

$$
1 \longrightarrow \mathscr{O}_{X}^{\times} \longrightarrow \mathscr{R}_{X}^{\times} \longrightarrow \underline{\operatorname{Div}}_{X} \longrightarrow 0
$$

Yields long exact sequence

$$
\Gamma\left(X, \mathscr{R}_{X}^{\times}\right) \longrightarrow \operatorname{Div}(X) \longrightarrow \operatorname{Pic}(X) \longrightarrow H^{1}\left(X, \mathscr{R}_{X}^{\times}\right)
$$

Term on the right vanishes, because coefficients are constant and X is irreducible: No obstructions!

So each invertible sheaf \mathscr{L} is of the form $\mathscr{O}_{X}(D)$ for some Cartier divisor $D \in \operatorname{Div}(X)$.

Azumaya algebras

Now back to Brauer group $\operatorname{Br}(R)$ and Azumaya algebras A. These are twisted forms of matrix algebras $\operatorname{Mat}_{n}(R)$.

By Skolem-Noether, each automorphism of $\operatorname{Mat}_{n}(R)$ is locally given by conjugacy, so we get class

$$
[A] \in H^{1}\left(R, \mathrm{PGL}_{n}\right)
$$

However, elements in $\operatorname{Br}(R)$ are equivalence classes, modulo

$$
A \sim A^{\prime} \Longleftrightarrow A \otimes \operatorname{Mat}_{r}(R) \simeq A^{\prime} \otimes \operatorname{Mat}_{s}(R)
$$

Gives inverses, via identification $A \otimes A^{\mathrm{op}}=\operatorname{End}_{R}(A) \simeq \operatorname{Mat}_{n}(R)$.

Cocycle construction

Cocycle construction: Choose $\varphi: A \otimes R^{\prime} \rightarrow \operatorname{Mat}_{n}\left(R^{\prime}\right)$.
Write $(\varphi \otimes 1)=\psi \circ(1 \otimes \varphi)$ for some $\psi \in \mathrm{PGL}_{n}\left(R^{\prime} \otimes R^{\prime}\right)$.
Choose lift $\tilde{\psi} \in \mathrm{GL}_{n}\left(R^{\prime} \otimes R^{\prime}\right)$, after refining R^{\prime}.
Cocycle condition usually fails for lift; obstruction is 2-cochain

$$
\alpha=\tilde{\psi}_{12} \cdot \tilde{\psi}_{02}^{-1} \cdot \tilde{\psi}_{01} \in \mathbb{G}_{m}\left(R^{\prime} \otimes R^{\prime} \otimes R^{\prime}\right)
$$

Now cocycle conditions holds, gives $[\alpha]=[A] \in H^{2}\left(R, \mathbb{G}_{m}\right)$.

Grothendieck's interpretation

Works for any ring, or ringed space, or ringed topos. Gives Grothendieck's cohomological interpretation

$$
\operatorname{Br}(X) \subset H^{2}\left(X, \mathbb{G}_{m}\right)
$$

Using liftings to $S L_{n}$ instead of GL_{n}, one sees that Brauer group is torsion.

But cohomology is not torsion, in general: Exponential sequence for complex spaces gives

$$
H^{2}(X, \mathbb{Z}) \longrightarrow H^{2}\left(X, \mathscr{O}_{X}\right) \longrightarrow H^{2}\left(X, \mathscr{O}_{X}^{\times}\right) \longrightarrow H^{3}(X, \mathbb{Z})
$$

Projective representations

Application in group theory: Let G be an finite group, and $\rho: G \rightarrow \mathrm{PGL}_{n}(\mathbb{C})$ be a projective representation. Can one lift it to a linear representation?

For each $g \in G$ choose lift $A_{g} \in \mathrm{GL}_{n}(\mathbb{C})$ of the class $\rho(g)$. Write

$$
A_{g} \cdot A_{h}=\alpha_{g, h} A_{g h}
$$

for some $\alpha_{g, h} \in \mathbb{C}^{\times}$. Satisfies cocycle relation, gives group cohomology class $[\alpha] \in H^{2}\left(G, \mathbb{C}^{\times}\right)$. Classically called Schur multiplier. Can be viewed as Brauer group of classifying space $X=B G$.

Cup products

Set $\mu_{n}=\mathbb{G}_{m}[n]$. Canonical pairing $\mathbb{Z} / n \mathbb{Z} \times \mu_{n} \rightarrow \mathbb{G}_{m}$, induces cup product

$$
\cup: H^{1}(k, \mathbb{Z} / n \mathbb{Z}) \times H^{1}\left(k, \mu_{n}\right) \longrightarrow H^{2}\left(k, \mathbb{G}_{m}\right)=\operatorname{Br}(k)
$$

Let $k \subset K$ be a Galois extension with group $\mathbb{Z} / n \mathbb{Z}=<\sigma>$, and $\beta \in k^{\times}$. Then

$$
A=K[T] /\left(t^{n}-\beta, \lambda T-T \sigma(\lambda)\right)
$$

is Azumaya algebra, satisfy $[A]=[K] \cup[\beta]$.

These are called cyclic algebras, generalize quaternion algebras \mathbb{H}.

Brauer-Severi varieties

Let k be a ground field. A scheme X is called Brauer-Severi variety if

$$
X \otimes k^{\prime} \simeq \mathbb{P}^{n} \otimes k^{\prime}
$$

for some field extension $k \subset k^{\prime}$. In other words, X is a twisted form of \mathbb{P}^{n}.

Example: quadric curves $X \subset \mathbb{P}^{2}$. Indeed:

$$
X: T_{0}^{2}+T_{1}^{2}+T_{2}^{2}=0
$$

has no rational point over $k=\mathbb{R}$, but becomes \mathbb{P}^{1} over $k^{\prime}=\mathbb{C}$.

Cohomology classes

Using the universal property of \mathbb{P}^{n}, one sees that

$$
\underline{\operatorname{Aut}}\left(\mathbb{P}^{n}\right)=P G L_{n+1} .
$$

So Brauer-Severi varieties give rise to classes $[X] \in \operatorname{Br}(k)$, as do Azumaya algebras.

In fact, the categories of twisted forms of $\operatorname{Mat}_{n+1}(k)$ and twisted forms of \mathbb{P}^{n} are equivalent.

Obstruction against rational points

Theorem: Let X be a Brauer-Severi variety. The cohomology class

$$
[X] \in H^{2}\left(k, \mathbb{G}_{m}\right)
$$

is the obstruction against the existence of a rational point $a \in X$.
The proof relies on an interpretation of \mathbb{P}^{n} as a moduli space, serves as baby example for moduli problems of second lecture.

Preliminary considerations

Preliminary considerations:
Write $P=\mathbb{P}^{n}=\mathbb{P}(E)$, and consider the dual projective space $P^{*}=\mathbb{P}\left(E^{*}\right)$.

The rational points $a \in P$ correspond to hyperplanes $H \subset P^{*}$.
The resulting invertible sheaf $\mathscr{L}=\mathscr{O}_{P^{*}}(H)$ is very ample, with $h^{0}(\mathscr{L})=n+1$, and defines an isomorphism $P^{*} \rightarrow \mathbb{P}(V)$, for the linear system $V=H^{0}(P, \mathscr{L})$.

Likewise, Brauer-Severi variety X comes with a dual variety X^{*}.

Proof of Theorem

Proof for the Theorem:

Suppose there is a rational point $a \in X$. Corresponds to hyperplane $H \subset X^{*}$, yields invertible sheaf $\mathscr{L}=\mathscr{O}_{X *}(H)$ and isomorphism $X^{*} \rightarrow \mathbb{P}(V)$ as above. Biduality $X=X^{* *}$ gives $X \simeq \mathbb{P}^{n}$, hence $[X]=0$.

Conversely, suppose $[X] \in H^{2}\left(k, \mathbb{G}_{m}\right)$ is trivial. Then Brauer-Severi variety comes from some $H^{1}\left(k, G L_{n+1}\right)$. But this group is trivial by Hilbert 90. Thus $X \simeq \mathbb{P}^{n}$, which contains rational points.

Thank you very much for the attention!

