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Picard and Brauer groups

Let X be a scheme. Recapitulation:

The Picard group consists of isomorphism classes of invertible
sheaves L . Can be seen as twisted forms of OX . Gives

Pic(X ) = H1(X ,Gm).

The Brauer group comprises equivalence classes of Azumaya
algebras A . These are twisted forms for Matn(OX ). Gives

Br(X ) ⊂ H2(X ,Gm).
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Cohomological interpretation

Recall Grothendieck’s cohomological interpretation for
Azumaya algebras A :

Choose isomorphism ϕ : A |U → Matn(OX )|U on some flat
surjective U → X .

Write (ϕ⊗ 1) = ψ ◦ (1⊗ ϕ) for some ψ ∈ Γ(U2,PGLn).

Choose lift ψ̃ ∈ Γ(U2,GLn), after refining U → X .

Gives 2-cocycle α = ψ̃12 · ψ̃−102 · ψ̃01 ∈ Γ(U3,Gm). Via Čech
cohomology get desired class [α] = [A ] ∈ H2(X ,Gm).
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Projective schemes

Let k be a ground field, of characteristic p ≥ 0. In algebraic
geometry, it is very easy to write down objects:

Any system of homogeneous polynomial equations

fi (T0, . . . ,Tn) = 0, 1 ≤ i ≤ m

defines a closed subscheme X ⊂ Pn.

If such a description is possible, one says X is projective.

Any projective scheme is proper. By Chow’s Lemma, any proper
scheme can be modified to a projective scheme.
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Morphisms?

But it is very difficult to specify morphisms with a fixed domain
X . Basically, there are only two methods, involving either groups or
invertible sheaves:

First method: Given a finite subgroup G ⊂ Aut(X ), form the
quotient, together with quotient map

q : X −→ X/G = Y .

If X is projective, this actually exists as a projective scheme.

Note: this does not hold true for proper schemes.
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Examples

Example: Let X be a curve. The function field F = k(X ) can be
written as finite extension of k(t).

Any Galois group G ⊂ Aut(F/k) extends to Aut(X ). Quotient
Y = X/G has function field k(Y ) = FG .

Specialize further: Suppose X ⊂ P2 is an elliptic curve, for
Weierstraß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

In coordinates, the sign involution is given by

(x , y) 7−→ (x ,−(y + a1x + a3))

This indeed yields X/{±1} = P1.
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Second method: invertible sheaves

Second method: Let L be an invertible sheaf on X . Suppose it is
globally generated, with with V = H0(X ,L ) of dimension n + 1.

Gives unique morphism

r : X −→ Pn with L = r∗(OPn(1)).

Factors over image Y ⊂ Pn, comes with Stein factorization

X −→ Y ′ −→ Y ⊂ Pn.

Consequently, in algebraic geometry a lot of effort goes into
understanding invertible sheaves and their global sections.
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Example: elliptic curves

Example: Suppose X is an elliptic curve. Let L be invertible of
degree d ≥ 1.

If d = 1 then h1(L ) = h0(L ∨) = 0 by Serre Duality, thus

h0(L ) = χ(L ) = deg(L ) + χ(OX ) = 1

from Riemann–Roch. So L is not globally generated, only have
X 99K P0.

If d = 2 then h0(L ) = 2. Now L is globally generated, get double
covering r : X → P1.

For d = 3 we get h0(L ) = 3, and r : X → P2 becomes an
embedding.
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Picard scheme

Given proper scheme X , it is very desirable to know all possible
invertible sheaves L , say up to isomorphism.

Turns out that isomorphism classes [L ] can be seen as points on
another scheme, the Picard scheme PicX/k , cum grano salis. But
how to define and construct it?

Grothendieck’s insight: Regard PicX/k as something that trivially
exists. Then prove that this something has the property of being a
scheme.
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The functor

As a scheme, PicX/k would be describable by polynomial equations,
and therefore it makes sense to speak of R-valued solutions.

These solution sets should be

PicX/k(R) = Pic(X ⊗ R),

where R runs through all k-algebras. This is functorial in R.

So we regard PicX/k as a contravariant functor on (Aff/k); have
to prove that it is representable by a scheme. By Yoneda, this
indeed defines the desired scheme.
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Counterexample

But it fails: The functor R 7→ Pic(X ⊗ R) is not representable!

Counterexample: Consider the quadric curve

X : T 2
0 + T 2

1 + T 2
2 = 0

in P2 over the field k = R. This is a Brauer–Severi curve. Have
Pic(X ⊗ C) = Z, with canonical element [O(1)].

If R 7→ Pic(X ⊗ R) would be describable by polynomials equations
over k = R, the canonical complex solution [O(1)] must be Galois
invariant. Therefore produces a real solution, contradiction!
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Sheafification

All in vain? No, one has to analyse the problem!

The counterexample exploits that the contravariant functor
R 7→ Pic(X ⊗ R) does not satsify the sheaf axiom.

So let’s replace the presheaf by its sheafification...
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Representability

Theorem. (Grothendieck, Murre, Artin) The sheafification of
R 7→ Pic(X ⊗ R) is representable by a group scheme PicX/k . Its

connected component Pic0X/k is of finite type, and the quotient
NSX/k is étale, with finitely generated stalk.

Alexander
Grothendieck
(1928–2014)

Jakob Murre
(*1929)

Michael Artin
(*1934)
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But what did it become?

So we have something representable, but we are not sure anymore
about what it represents precisely... What happens upon
sheafification?

Recall that for each continuous map f : Y → Z of toplogical
spaces and each abelian sheaf F on Y , the higher direct images
R i f∗(F ) are the sheafification of V 7→ H i (f −1(V ),F ).

We have Pic(X ⊗ R) = H1(X ⊗ R,Gm). Let f : X → Spec(k) be
the structure morphism.

Idea: Reinterpret as continuous functor f : (Aff/X )→ (Aff/k), so
sheafification of above gives first direct image R1f∗(Gm).
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Leray–Serre spectral sequence

Now recall that continuous maps f : Y → Z come with the
Leray–Serre spectral sequence

E rs
2 = H r (Z ,Rs f∗(F )) =⇒ H r+s(Y ,F ).

On the left is the E2-page, on the right the abutment.

From this we get the five-term exact sequence:

0→ H1(Z , f∗F )→ H1(Y ,F )→ H0(Z ,R1f∗F )→ H2(Z , f∗F )→ H2(Y ,F )
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The five-term sequence

Apply this to the structure morphism f : X → Spec(k) and the
sheaf F = Gm. Get exact sequence:

0→ H1(k,Gm)→ H1(X ,Gm)→ H0(k ,R1f∗Gm)→ H2(k ,Gm)→ H2(X ,Gm)

Interpret first and second cohomology as Picard and Brauer group;
above yields

0 −→ Pic(X ) −→ PicX/k(k) −→ Br(k) −→ Br(X ).

The term in the middle is the group of rational points on the
Picard scheme!
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Obstructions

From this exact sequence

0 −→ Pic(X ) −→ PicX/k(k) −→ Br(k) −→ Br(X )

we see:

Theorem. For a rational point l ∈ PicX/k , the obstruction to
come from an invertible sheaf L lies in the Brauer group Br(k).
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Some corollaries

Corollary 1. If the Brauer group Br(k) vanishes, we have an
identification Pic(X ) = PicX/k(k).

The induced mapping f ∗ : Br(k)→ Br(X ) admits a retraction,
provided that f : X → Spec(k) has a section. Thus:

Corollary 2. If X contains a rational point, we have an
identification Pic(X ) = PicX/k(k).

In any case, Brauer groups for fields are torsion. This gives:

Corollary 3. For a rational point l ∈ PicX/k , some positive
multiple ml comes from an invertible sheaf M .
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Othter moduli spaces

Similar principals hold for many other moduli problems:

Instead of invertible sheaves L , one may consider locally free
sheaves E of fixed rank r ≥ 0.

To get representable functors, one has to restrict to sheaves
without undue or excessive automorphisms.

Depending on context, one restricts attention to sheaves that are
simple/stable/semi-stable...

18 / 20



Poincaré sheaves

Leads to the moduli space MX ,r ,ξ of simple sheaves E , with fixed
rank r . Also likes to fix determinant ξ ∈ Pic(X ).

But there is always scalar multiplication, giving Aut(E ) = k×. So
we never have a fine moduli space—there cannot be a universal
object P on MX ,r ,d × X .

Though the universal P does not exist, its projectivization

P(P) = Proj(Sym(P))

does, because there scalar multiplications become identities! This
is a family of Brauer–Severi varieties over MX ,r ,ξ.
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Poincaré classes

From the moduli problem, we thus get a canonical element

[P(P)] ∈ Br(MX ,r ,d).

Like to call it Poincaré class.

Theorem. (Balaji, Biswas, Gabber, Nagaraj) If X is a smooth
projective curve, the group Br(MX ,r ,ξ) is generated by the Poincaré
class.

Theorem. (Reineke, S) Similar results hold for moduli spaces
MQ,d of representations of certain quivers Q with dimension vector
d .
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Thank you very much for the attention!


