GRK Ring Lecture: Brauer groups and obstructions, Part II

Stefan Schröer Mathematisches Institut Heinrich-Heine-Universität

22 April 2021

Let X be a scheme. Recapitulation:

The **Picard group** consists of isomorphism classes of invertible sheaves \mathscr{L} . Can be seen as twisted forms of \mathscr{O}_X . Gives

$$\operatorname{Pic}(X) = H^1(X, \mathbb{G}_m).$$

The **Brauer group** comprises equivalence classes of Azumaya algebras \mathscr{A} . These are twisted forms for $Mat_n(\mathscr{O}_X)$. Gives

$$\mathsf{Br}(X) \subset H^2(X,\mathbb{G}_m).$$

Recall **Grothendieck's cohomological interpretation** for Azumaya algebras \mathscr{A} :

Choose isomorphism $\varphi : \mathscr{A} | U \to \operatorname{Mat}_n(\mathscr{O}_X) | U$ on some flat surjective $U \to X$.

Write
$$(\varphi \otimes 1) = \psi \circ (1 \otimes \varphi)$$
 for some $\psi \in \Gamma(U^2, \mathsf{PGL}_n)$.

Choose lift $\tilde{\psi} \in \Gamma(U^2, \operatorname{GL}_n)$, after refining $U \to X$.

Gives 2-cocycle $\alpha = \tilde{\psi}_{12} \cdot \tilde{\psi}_{02}^{-1} \cdot \tilde{\psi}_{01} \in \Gamma(U^3, \mathbb{G}_m)$. Via Čech cohomology get desired class $[\alpha] = [\mathscr{A}] \in H^2(X, \mathbb{G}_m)$.

Let k be a ground field, of characteristic $p \ge 0$. In algebraic geometry, it is very easy to write down objects:

Any system of homogeneous polynomial equations

$$f_i(T_0,\ldots,T_n)=0, \quad 1\leq i\leq m$$

defines a closed subscheme $X \subset \mathbb{P}^n$.

If such a description is possible, one says X is projective.

Any projective scheme is proper. By Chow's Lemma, any proper scheme can be modified to a projective scheme.

But it is **very difficult to specify morphisms** with a fixed domain X. Basically, there are only two methods, involving either groups or invertible sheaves:

First method: Given a finite subgroup $G \subset Aut(X)$, form the quotient, together with quotient map

$$q: X \longrightarrow X/G = Y.$$

If X is projective, this actually exists as a projective scheme.

Note: this does not hold true for proper schemes.

Example: Let X be a curve. The function field F = k(X) can be written as finite extension of k(t).

Any Galois group $G \subset \operatorname{Aut}(F/k)$ extends to $\operatorname{Aut}(X)$. Quotient Y = X/G has function field $k(Y) = F^G$.

Specialize further: Suppose $X \subset \mathbb{P}^2$ is an elliptic curve, for Weierstraß equation

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

In coordinates, the sign involution is given by

$$(x, y) \longmapsto (x, -(y + a_1x + a_3))$$

This indeed yields $X / \{\pm 1\} = \mathbb{P}^1$.

Second method: invertible sheaves

Second method: Let \mathscr{L} be an invertible sheaf on X. Suppose it is globally generated, with with $V = H^0(X, \mathscr{L})$ of dimension n + 1.

Gives unique morphism

$$r:X\longrightarrow \mathbb{P}^n \quad ext{with } \mathscr{L}=r^*(\mathscr{O}_{\mathbb{P}^n}(1)).$$

Factors over image $Y \subset \mathbb{P}^n$, comes with Stein factorization

$$X \longrightarrow Y' \longrightarrow Y \subset \mathbb{P}^n.$$

Consequently, in algebraic geometry a lot of effort goes into understanding invertible sheaves and their global sections. Example: Suppose X is an elliptic curve. Let \mathscr{L} be invertible of degree $d \ge 1$.

If d = 1 then $h^1(\mathscr{L}) = h^0(\mathscr{L}^{\vee}) = 0$ by Serre Duality, thus $h^0(\mathscr{L}) = \chi(\mathscr{L}) = \deg(\mathscr{L}) + \chi(\mathscr{O}_X) = 1$

from Riemann–Roch. So \mathscr{L} is not globally generated, only have $X \dashrightarrow \mathbb{P}^0$.

If d = 2 then $h^0(\mathscr{L}) = 2$. Now \mathscr{L} is globally generated, get double covering $r: X \to \mathbb{P}^1$.

For d = 3 we get $h^0(\mathscr{L}) = 3$, and $r : X \to \mathbb{P}^2$ becomes an embedding.

Given proper scheme X, it is very desirable to know all possible invertible sheaves \mathscr{L} , say up to isomorphism.

Turns out that isomorphism classes $[\mathscr{L}]$ can be seen as points on another scheme, the **Picard scheme** $\operatorname{Pic}_{X/k}$, cum grano salis. But how to define and construct it?

Grothendieck's insight: Regard $\operatorname{Pic}_{X/k}$ as **something** that trivially exists. Then prove that this something has the **property** of being a scheme.

As a scheme, $Pic_{X/k}$ would be describable by polynomial equations, and therefore it makes sense to speak of *R*-valued solutions.

These solution sets should be

$$\operatorname{Pic}_{X/k}(R) = \operatorname{Pic}(X \otimes R),$$

where R runs through all k-algebras. This is functorial in R.

So we regard $\operatorname{Pic}_{X/k}$ as a **contravariant functor** on (Aff/k) ; have to prove that it is **representable by a scheme**. By Yoneda, this indeed defines the desired scheme.

But it fails: The functor $R \mapsto Pic(X \otimes R)$ is not representable!

Counterexample: Consider the quadric curve

$$X: \quad T_0^2 + T_1^2 + T_2^2 = 0$$

in \mathbb{P}^2 over the field $k = \mathbb{R}$. This is a Brauer–Severi curve. Have $Pic(X \otimes \mathbb{C}) = \mathbb{Z}$, with canonical element $[\mathscr{O}(1)]$.

If $R \mapsto \operatorname{Pic}(X \otimes R)$ would be describable by polynomials equations over $k = \mathbb{R}$, the canonical complex solution $[\mathscr{O}(1)]$ must be Galois invariant. Therefore produces a real solution, contradiction!

- All in vain? No, one has to analyse the problem!
- The counterexample exploits that the contravariant functor $R \mapsto \text{Pic}(X \otimes R)$ does not satsify the sheaf axiom.

So let's replace the presheaf by its sheafification...

Representability

Theorem. (Grothendieck, Murre, Artin) The sheafification of $R \mapsto \operatorname{Pic}(X \otimes R)$ is representable by a group scheme $\operatorname{Pic}_{X/k}$. Its connected component $\operatorname{Pic}_{X/k}^0$ is of finite type, and the quotient $\operatorname{NS}_{X/k}$ is étale, with finitely generated stalk.

Alexander Grothendieck (1928–2014)

Jakob Murre (*1929)

Michael Artin (*1934)

So we have something representable, but we are not sure anymore about what it represents precisely... What happens upon sheafification?

Recall that for each continuous map $f : Y \to Z$ of toplogical spaces and each abelian sheaf F on Y, the higher direct images $R^i f_*(F)$ are the sheafification of $V \mapsto H^i(f^{-1}(V), F)$.

We have $Pic(X \otimes R) = H^1(X \otimes R, \mathbb{G}_m)$. Let $f : X \to Spec(k)$ be the structure morphism.

Idea: Reinterpret as continuous functor $f : (Aff/X) \to (Aff/k)$, so sheafification of above gives first direct image $R^1 f_*(\mathbb{G}_m)$.

Now recall that continuous maps $f : Y \rightarrow Z$ come with the **Leray–Serre spectral sequence**

$$E_2^{rs} = H^r(Z, R^s f_*(F)) \Longrightarrow H^{r+s}(Y, F).$$

On the left is the E_2 -page, on the right the abutment.

From this we get the **five-term exact sequence**:

 $0 \rightarrow H^1(Z, f_*F) \rightarrow H^1(Y, F) \rightarrow H^0(Z, R^1f_*F) \rightarrow H^2(Z, f_*F) \rightarrow H^2(Y, F)$

Apply this to the structure morphism $f : X \to \text{Spec}(k)$ and the sheaf $F = \mathbb{G}_m$. Get exact sequence:

 $0 \to H^1(k, \mathbb{G}_m) \to H^1(X, \mathbb{G}_m) \to H^0(k, R^1f_*\mathbb{G}_m) \to H^2(k, \mathbb{G}_m) \to H^2(X, \mathbb{G}_m)$

Interpret first and second cohomology as Picard and Brauer group; above yields

$$0 \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}_{X/k}(k) \longrightarrow \operatorname{Br}(k) \longrightarrow \operatorname{Br}(X).$$

The term in the middle is the group of rational points on the **Picard scheme**!

From this exact sequence

$$0 \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}_{X/k}(k) \longrightarrow \operatorname{Br}(k) \longrightarrow \operatorname{Br}(X)$$

we see:

Theorem. For a rational point $l \in \text{Pic}_{X/k}$, the obstruction to come from an invertible sheaf \mathscr{L} lies in the Brauer group Br(k).

Corollary 1. If the Brauer group Br(k) vanishes, we have an identification $Pic(X) = Pic_{X/k}(k)$.

The induced mapping $f^* : Br(k) \to Br(X)$ admits a retraction, provided that $f : X \to Spec(k)$ has a section. Thus:

Corollary 2. If X contains a rational point, we have an identification $Pic(X) = Pic_{X/k}(k)$.

In any case, Brauer groups for fields are torsion. This gives:

Corollary 3. For a rational point $I \in \text{Pic}_{X/k}$, some positive multiple ml comes from an invertible sheaf \mathcal{M} .

Similar principals hold for many other moduli problems:

Instead of invertible sheaves \mathscr{L} , one may consider locally free sheaves \mathscr{E} of fixed rank $r \geq 0$.

To get representable functors, one has to restrict to sheaves without undue or excessive automorphisms.

Depending on context, one restricts attention to sheaves that are simple/stable/semi-stable...

Leads to the moduli space $M_{X,r,\xi}$ of simple sheaves \mathscr{E} , with fixed rank r. Also likes to fix determinant $\xi \in \text{Pic}(X)$.

But there is always scalar multiplication, giving $Aut(\mathscr{E}) = k^{\times}$. So we **never** have a fine moduli space—there **cannot be a universal object** \mathscr{P} on $M_{X,r,d} \times X$.

Though the universal \mathscr{P} does not exist, its projectivization

$$\mathbb{P}(\mathscr{P}) = \mathsf{Proj}(\mathsf{Sym}(\mathscr{P}))$$

does, because there scalar multiplications become identities! This is a family of Brauer–Severi varieties over $M_{X,r,\xi}$.

From the moduli problem, we thus get a canonical element

$$[\mathbb{P}(\mathscr{P})] \in \mathsf{Br}(M_{X,r,d}).$$

Like to call it **Poincaré class**.

Theorem. (Balaji, Biswas, Gabber, Nagaraj) If X is a smooth projective curve, the group $Br(M_{X,r,\xi})$ is generated by the Poincaré class.

Theorem. (Reineke, S) Similar results hold for moduli spaces $M_{Q,d}$ of representations of certain quivers Q with dimension vector d.

Thank you very much for the attention!