GRK Ring Lecture:
Deformation Theory, Part |l

Prof. Stefan Schroer
Mathematisches Institut
Heinrich-Heine-Universitat

29 October 2020

Heinrich Heine
Universitat
Diisseldorf [



Set up:

Throughout:
> Let k be a field,
> Xo a k-scheme of finite type,

» R a local noetherian ring with residue field R/mg = k.

We seek to understand deformations of Xy over the ring R.

This are pairs (X, ) where X is a flat R-scheme of finite type,

and ¢ : Xog — X ®g k is an isomorphism.
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Too difficult

If R is a discrete valuation ring, like R = k|[[t]], it looks so:

B Suelr)
T v
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Too difficult

If R is a discrete valuation ring, like R = k|[[t]], it looks so:

—'——5_ Spc(l)
T v

That is far too difficult for us, at least at the moment! What is a
simpler choice for the ring R?

2/21



The ring of dual numbers

We work over the ring of dual numbers R = k[e|, where € is a
formal symbol subject to €2 = 0.

This is a local Artin ring with residue field k. It also has a
k-algebra structure. The spectrum is a singleton {o}, with a
tangent vector attached.

- —"
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Deformations of Xy over the ring R = k|e] are called first-order
deformations.
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Deformations over dual numbers

Let (X, ) be a deformation over the dual numbers R = kle]. It
sits in a cartesian square

)(b E— X
Spec(k) — Spec(R).

Hence the inclusion Xy C X is a homeomorphism, so there is no
topology left in our problem!
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Deformations over dual numbers

Flatness ensures that in the exact sequence
00— — Ox — Ox, — 0,
the ideal is ¥ = ke ®y Ox, = €0Xx,.

In particular Ox is an extension of Ox, by .¥ = e0,, viewed as
coherent sheaves on X.
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Deformations over dual numbers

Flatness ensures that in the exact sequence
00— — Ox — Ox, — 0,
the ideal is ¥ = ke ®y Ox, = €0Xx,.

In particular Ox is an extension of Ox, by .¥ = e0,, viewed as
coherent sheaves on X.

We would prefer to have extensions with coherent sheaves on
Xo!
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Kahler differentials

Recall that each A-algebra B comes with a B-module of Kahler
differentials QIB/A' defined by the short exact sequence

0 — Qp/a — (B®aB)/I> — (BRB)/I —0

where | = (b® 1 —1® b) is the ideal for the diagonal.
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Kahler differentials

Recall that each A-algebra B comes with a B-module of Kahler
differentials QlB/A, defined by the short exact sequence

0 — Qp/a — (B®aB)/I> — (BRB)/I —0
where | = (b® 1 —1® b) is the ideal for the diagonal.

Similar definition applies for morphisms of schemes. In particular
we get a quasicoherent sheaf Q}%/k. The dual

Ox,/k = Hom(Q /1., Ox,)

is the tangent sheaf.
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The standard exact sequence

The k-structure on dual numbers gives Xo — X — Spec(k), yields
standard exact sequence

N —>Q}</k®ﬁxo - Q%(O/k - Q%q)/x -0,

with for Kahler differentials. The map on the left is [f] — df ® 1.
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The standard exact sequence

The k-structure on dual numbers gives Xo — X — Spec(k), yields
standard exact sequence

I I Q}</k ® Ox, — Q}O/k — Q;O/X -0,
with for Kahler differentials. The map on the left is [f] — df ® 1.

Fact: If the scheme Xj is reduced and generically smooth, the map
I/ 5% = Q}(/k is injective. In any case, Q%@/X =0.
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Kodaira—Spencer

Suppose from now that Xj is reduced and generically smooth. The
deformation (X, ) gives an extension

0— I/ % = Q5 ) @ Oxy = Uy ) = 0
of coherent sheaves on Xj. Yields Yoneda class
[Q% )k © Ox,] € Ext (R, k., €Ox,)-

This is called the Kodaira—Spencer class.
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Kodaira—Spencer

Suppose from now that Xj is reduced and generically smooth. The
deformation (X, ) gives an extension

0— I/ % = Q5 ) @ Oxy = Uy ) = 0
of coherent sheaves on Xj. Yields Yoneda class
[Q% )k © Ox,] € Ext (R, k., €Ox,)-
This is called the Kodaira—Spencer class.
Theorem. The mapping (X, @) — [Q}qk ® Ox,) identifies

isomorphism classes of deformations of Xy over the dual numbers
R = kl[e] with vectors in Extl(Q}%/k7 €0x,).
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|dea of proof

We describe the inverse mapping:

Suppose we have an extension &. The universal differential f — df
defines via cartesian square

ﬁx —_— ﬁxo

| L

0 —— eOx, —— & —— Q4

Xo/k > 0

an abelian sheaf &x. One specifies multiplication as in dual
numbers, using d(fg) = fdg + gdf.

The ringed space X = (Xp, Ox) becomes the total space of the
deformation.
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Applications

If Xg is smooth, Q}%/k is locally free, with dual ©x, ., and we get
an identification

Eth(Q}(o/k’ GﬁXO) = Hl(X07 @XO//()‘

with cohomology of the tangent sheaf.

Cohomology groups are more amenable to computations that
Ext groups. In any case, the zero class corresponds to the
constant deformation

X = Xo Qp k[e]
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Applications

Corollary. If the scheme Xy is smooth and affine, then every
deformation over R = kle| is isomorphic to the constant
deformation.

Proof: Use Serre’'s Cohomological Criterion for affineness.
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Applications

Corollary. If the scheme Xy is smooth and affine, then every
deformation over R = kle| is isomorphic to the constant
deformation.

Proof: Use Serre’'s Cohomological Criterion for affineness.

Corollary. Ever deformation of the projective space Xy = P" over
R = kle] is isomorphic to the constant deformation.

Proof: Use the Euler sequence

0 — Opn — ®_gOpn(1) — Opn /i — 0.

11/21



Applications

Corollary. Let X = C be a smooth curve of genus g > 2. Then the
space of first order deformations has dimension d = 3g — 3.

Proof: The structure sheaf has x(0¢) = 1 — g. The dualizing
sheaf w¢e = Qlc/k has degree r = 2g — 2. lts inverse £ = O¢ /i
has degree —r = 2 — 2g < 0. Riemann—Roch gives

—h'(Z) = X(£) = deg(£) + x(Oc) = 3 - 3g.
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Historical starting point:

This is the starting point of algebraic geometry! From
Riemann’s 1857 paper on abelian functions:

"... the corresponding class [...] depends on 3g — 3 continuous
variables, which we shall call the moduli of the class.”

Bernhard Riemann (1826-1866)

13/21



Automorphisms and obstructions

The automorphisms group of the extension
0— I/I% = Q%) @ Oxy = Uy ) = 0
is the Hom group
Hom(Q, /1, €0x,) = Ext®(Qx, 4 €0x,)-

By our Theorem, this is also the automorphism group for every
first-order deformation (X, ¢).
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Automorphisms and obstructions

The automorphisms group of the extension
0— I/I% = Q%) @ Oxy = Uy ) = 0
is the Hom group
Hom(Q, /1, €0x,) = Ext®(Qx, 4 €0x,)-

By our Theorem, this is also the automorphism group for every
first-order deformation (X, ¢).

We shall see later that the Ext group Ext2(Q}(0/k, €0x,) containes
the obstructions against higher-order deformations over rings like
R = k[t]/(t").
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Formal schemes

Suppose Xy = C is a smooth curve. Then the obstruction group
Ext2(§2}<0/k,eﬁxo) = H*(Xo, ©x,/k)
is zero, by Grothendieck’s Vanishing result.

So one finds compatible deformations (X, ¢,) of Xo = C over the
rings R, = k[t]/(t"*1). This gives an inverse system of proper
schemes X = (X,), > 0 over the complete local rings R = k[[t]].
This are the so-called formal schemes.

15/21



Formal schemes

Suppose Xy = C is a smooth curve. Then the obstruction group
Ext2(§2}<0/k,eﬁxo) = H*(Xo, ©x,/k)
is zero, by Grothendieck’s Vanishing result.

So one finds compatible deformations (X, ¢,) of Xo = C over the
rings R, = k[t]/(t"*1). This gives an inverse system of proper
schemes X = (X,), > 0 over the complete local rings R = k[[t]].
This are the so-called formal schemes.

Does the formal R-scheme X come from an R-scheme X,
such that X, = X ® R,?
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Grothendieck’s Algebraization Theorem

Theorem. Suppose there is a compatible family (£,) of invertible
sheaves on (X,), such that £y € Pic(Xo) is ample. Then there is a
proper R-scheme X inducing the formal scheme X, unique up to
unique isomorphism.
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Grothendieck’s Algebraization Theorem

Theorem. Suppose there is a compatible family (£,) of invertible
sheaves on (X,), such that £y € Pic(Xo) is ample. Then there is a
proper R-scheme X inducing the formal scheme X, unique up to
unique isomorphism.

This holds for arbitrary formal schemes. In dimension one, each
proper scheme is projective (Riemann—Roch). The obstruction to
lift a class in Pic(X,) = HY(X,, 0% ) to the thickening X1 lies in
H?(C,0¢) ® kt"*1, which is zero!

So the d = 3g — g first-oder deformations for C indeed give
Riemann's moduli!
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The case of smooth affine schemes

We now examine deformations over general local Artin rings R
with residue field k and having a k-algebra structure.

Lemma. If the scheme Xy is smooth and affine, then every
deformation over R is constant.

Proof: Saw this already for R = k[e]. In general, apply induction on
length(R), and use definition of smoothness.
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The case of smooth affine schemes

Suppose that we have a deformation (X,—1,p,—1) of Xo over the
fing Ry 1 = K[t] /(")

Choose affine open covering Xo = Uy U ... U U,. On each U; the
deformation over R,_1 becomes constant. So they extend to R,.
On overlaps Uj; these differ by isomorphisms ¢j;.
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The case of smooth affine schemes

Suppose that we have a deformation (X,—1,p,—1) of Xo over the
fing Ry 1 = K[t] /(")

Choose affine open covering Xo = Uy U ... U U,. On each U; the
deformation over R,_1 becomes constant. So they extend to R,.
On overlaps Uj; these differ by isomorphisms ¢j;.

May not satisfy cocycle condition, but pj o p;j = fjjpi defines
cocycle fi € T'(Ujik, ©x,/k ® kt"). Yields some cohomology class
ob € H?(Xy, ©x,/k)- Is the obstruction for changing the local
isomorphisms so that global deformation arises via glueing.
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The case of smooth affine schemes

Suppose that we have a deformation (X,—1,p,—1) of Xo over the
fing Ry 1 = K[t] /(")

Choose affine open covering Xo = Uy U ... U U,. On each U; the
deformation over R,_1 becomes constant. So they extend to R,.
On overlaps Uj; these differ by isomorphisms ¢j;.

May not satisfy cocycle condition, but pj o p;j = fjjpi defines
cocycle fi € T'(Ujik, ©x,/k ® kt"). Yields some cohomology class
ob € H?(Xy, ©x,/k)- Is the obstruction for changing the local
isomorphisms so that global deformation arises via glueing.

If ob = 0, the set of all deformations (X, ¢n) restricting to
(Xn—1,¢n_1) is a torsor under H(Xo, Oxo/k)-
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Formal smoothness for functors of Artin rings

Let Art(k) be the category of local Artin rings R with residue field
k. Consider the functor

h: Art(k) — (Set)

that sends R to the set of isomorphism classes of deformations
(X, ) of the scheme Xj over the ring R.

Theorem. Suppose that Xy is smooth and h*(©x, ) = 0. Then
the above functor is formally smooth.
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Formal smoothness for functors of Artin rings

Let Art(k) be the category of local Artin rings R with residue field
k. Consider the functor

h: Art(k) — (Set)

that sends R to the set of isomorphism classes of deformations
(X, ) of the scheme Xj over the ring R.

Theorem. Suppose that Xy is smooth and h*(©x, ) = 0. Then
the above functor is formally smooth.

Here formal smoothness of functors means h(A) — h(A/l) is
surjective for square-zero ideals, as in my first lecture. The result
applies if Xp = C is a proper smooth curve.

19/21



K3 surfaces

It also applies if Xo = S is a K3 surface (¢; = 0 and by = 22).

Ernst Kummer Kunihike Kodaira Erich Kahler
(1810-1893) (1915-1997) (1906—2000)

Examples are quartic hypersurfaces S C P3, or the resolution of
singularities for S — A/{%1}.
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K3 surfaces

Although deformations of the scheme Xy are unobstructed, there
are obstructions for deforming invertible sheaves .%. They lie in
H?(Xo, Ox,) = k.

Over k = C, this leads to non-algebraic K3 surfaces. Then the
field of meromorphic functions f : S --» C has transcendence
degree trdeg < 2.

For general ground fields k, this yields formal families
X — Spec(k][t]]) of K3 surfaces that are not algebraizable.
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Thank you very much for the attention!



