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Set up:

Throughout:

I Let k be a field,

I X0 a k-scheme of finite type,

I R a local noetherian ring with residue field R/mR = k .

We seek to understand deformations of X0 over the ring R.

This are pairs (X , ϕ) where X is a flat R-scheme of finite type,
and ϕ : X0 → X ⊗R k is an isomorphism.
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Too difficult

If R is a discrete valuation ring, like R = k[[t]], it looks so:

That is far too difficult for us, at least at the moment! What is a
simpler choice for the ring R?
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The ring of dual numbers

We work over the ring of dual numbers R = k[ε], where ε is a
formal symbol subject to ε2 = 0.

This is a local Artin ring with residue field k. It also has a
k-algebra structure. The spectrum is a singleton {σ}, with a
tangent vector attached.

Deformations of X0 over the ring R = k[ε] are called first-order
deformations.
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Deformations over dual numbers

Let (X , ϕ) be a deformation over the dual numbers R = k[ε]. It
sits in a cartesian square

X0 −−−−→ Xy y
Spec(k) −−−−→ Spec(R).

Hence the inclusion X0 ⊂ X is a homeomorphism, so there is no
topology left in our problem!
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Deformations over dual numbers

Flatness ensures that in the exact sequence

0 −→ I −→ OX −→ OX0 −→ 0,

the ideal is I = kε⊗k OX0 = εOX0 .

In particular OX is an extension of OX0 by I = εOX0 , viewed as
coherent sheaves on X .

We would prefer to have extensions with coherent sheaves on
X0!
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Kähler differentials

Recall that each A-algebra B comes with a B-module of Kähler
differentials Ω1

B/A, defined by the short exact sequence

0 −→ Ω1
B/A −→ (B ⊗A B)/I 2 −→ (B ⊗ B)/I −→ 0

where I = (b ⊗ 1− 1⊗ b) is the ideal for the diagonal.

Similar definition applies for morphisms of schemes. In particular
we get a quasicoherent sheaf Ω1

X0/k
. The dual

ΘX0/k = Hom(Ω1
X0/k

,OX0)

is the tangent sheaf.
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The standard exact sequence

The k-structure on dual numbers gives X0 → X → Spec(k), yields
standard exact sequence

. . .→ I /I 2 → Ω1
X/k ⊗ OX0 → Ω1

X0/k
→ Ω1

X0/X
→ 0,

with for Kähler differentials. The map on the left is [f ] 7→ df ⊗ 1.

Fact: If the scheme X0 is reduced and generically smooth, the map
I /I 2 → Ω1

X/k is injective. In any case, Ω1
X0/X

= 0.
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Kodaira–Spencer

Suppose from now that X0 is reduced and generically smooth. The
deformation (X , ϕ) gives an extension

0 −→ I /I 2 → Ω1
X/k ⊗ OX0 → Ω1

X0/k
→ 0

of coherent sheaves on X0. Yields Yoneda class

[Ω1
X/k ⊗ OX0 ] ∈ Ext1(Ω1

X0/k
, εOX0).

This is called the Kodaira–Spencer class.

Theorem. The mapping (X , ϕ) 7→ [Ω1
X/k ⊗ OX0 ] identifies

isomorphism classes of deformations of X0 over the dual numbers
R = k[ε] with vectors in Ext1(Ω1

X0/k
, εOX0).
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Idea of proof

We describe the inverse mapping:

Suppose we have an extension E . The universal differential f 7→ df
defines via cartesian square

OX −−−−→ OX0y yd

0 −−−−→ εOX0 −−−−→ E −−−−→ Ω1
X0/k

−−−−→ 0

an abelian sheaf OX . One specifies multiplication as in dual
numbers, using d(fg) = fdg + gdf .

The ringed space X = (X0,OX ) becomes the total space of the
deformation.
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Applications

If X0 is smooth, Ω1
X0/k

is locally free, with dual ΘX0/k , and we get
an identification

Ext1(Ω1
X0/k

, εOX0) = H1(X0,ΘX0/k).

with cohomology of the tangent sheaf.

Cohomology groups are more amenable to computations that
Ext groups. In any case, the zero class corresponds to the
constant deformation

X = X0 ⊗k k[ε]
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Applications

Corollary. If the scheme X0 is smooth and affine, then every
deformation over R = k[ε] is isomorphic to the constant
deformation.

Proof: Use Serre’s Cohomological Criterion for affineness.

Corollary. Ever deformation of the projective space X0 = Pn over
R = k[ε] is isomorphic to the constant deformation.

Proof: Use the Euler sequence

0 −→ OPn −→ ⊕n
i=0OPn(1) −→ ΘPn/k −→ 0.
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Applications

Corollary. Let X = C be a smooth curve of genus g ≥ 2. Then the
space of first order deformations has dimension d = 3g − 3.

Proof: The structure sheaf has χ(OC ) = 1− g . The dualizing
sheaf ωC = Ω1

C/k has degree r = 2g − 2. Its inverse L = ΘC/k

has degree −r = 2− 2g < 0. Riemann–Roch gives

−h1(L ) = χ(L ) = deg(L ) + χ(OC ) = 3− 3g .
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Historical starting point:

This is the starting point of algebraic geometry! From
Riemann’s 1857 paper on abelian functions:

”... the corresponding class [...] depends on 3g − 3 continuous
variables, which we shall call the moduli of the class.”

Bernhard Riemann (1826–1866)
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Automorphisms and obstructions

The automorphisms group of the extension

0 −→ I /I 2 → Ω1
X/k ⊗ OX0 → Ω1

X0/k
→ 0

is the Hom group

Hom(Ω1
X0/k

, εOX0) = Ext0(Ω1
X0/k

, εOX0).

By our Theorem, this is also the automorphism group for every
first-order deformation (X , ϕ).

We shall see later that the Ext group Ext2(Ω1
X0/k

, εOX0) containes
the obstructions against higher-order deformations over rings like
R = k[t]/(tn).
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Formal schemes

Suppose X0 = C is a smooth curve. Then the obstruction group

Ext2(Ω1
X0/k

, εOX0) = H2(X0,ΘX0/k)

is zero, by Grothendieck’s Vanishing result.

So one finds compatible deformations (Xn, ϕn) of X0 = C over the
rings Rn = k[t]/(tn+1). This gives an inverse system of proper
schemes X = (Xn)n ≥ 0 over the complete local rings R = k[[t]].
This are the so-called formal schemes.

Does the formal R-scheme X come from an R-scheme X ,
such that Xn = X ⊗ Rn?
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Grothendieck’s Algebraization Theorem

Theorem. Suppose there is a compatible family (Ln) of invertible
sheaves on (Xn), such that L0 ∈ Pic(X0) is ample. Then there is a
proper R-scheme X inducing the formal scheme X, unique up to
unique isomorphism.

This holds for arbitrary formal schemes. In dimension one, each
proper scheme is projective (Riemann–Roch). The obstruction to
lift a class in Pic(Xn) = H1(Xn,O

×
Xn

) to the thickening Xn+1 lies in

H2(C ,OC )⊗ ktn+1, which is zero!

So the d = 3g − g first-oder deformations for C indeed give
Riemann’s moduli!

16 / 21



Grothendieck’s Algebraization Theorem

Theorem. Suppose there is a compatible family (Ln) of invertible
sheaves on (Xn), such that L0 ∈ Pic(X0) is ample. Then there is a
proper R-scheme X inducing the formal scheme X, unique up to
unique isomorphism.

This holds for arbitrary formal schemes. In dimension one, each
proper scheme is projective (Riemann–Roch). The obstruction to
lift a class in Pic(Xn) = H1(Xn,O

×
Xn

) to the thickening Xn+1 lies in

H2(C ,OC )⊗ ktn+1, which is zero!

So the d = 3g − g first-oder deformations for C indeed give
Riemann’s moduli!

16 / 21



The case of smooth affine schemes

We now examine deformations over general local Artin rings R
with residue field k and having a k-algebra structure.

Lemma. If the scheme X0 is smooth and affine, then every
deformation over R is constant.

Proof: Saw this already for R = k[ε]. In general, apply induction on
length(R), and use definition of smoothness.
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The case of smooth affine schemes

Suppose that we have a deformation (Xn−1, ϕn−1) of X0 over the
ring Rn−1 = k[t]/(tn).

Choose affine open covering X0 = U1 ∪ . . . ∪ Ur . On each Ui the
deformation over Rn−1 becomes constant. So they extend to Rn.
On overlaps Uij these differ by isomorphisms ϕij .

May not satisfy cocycle condition, but ϕjk ◦ ϕij = fijkϕik defines
cocycle fijk ∈ Γ(Uijk ,ΘX0/k ⊗ ktn). Yields some cohomology class
ob ∈ H2(X0,ΘX0/k). Is the obstruction for changing the local
isomorphisms so that global deformation arises via glueing.

If ob = 0, the set of all deformations (Xn, ϕn) restricting to
(Xn−1, ϕn−1) is a torsor under H1(X0,ΘX0/k).
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Formal smoothness for functors of Artin rings

Let Art(k) be the category of local Artin rings R with residue field
k . Consider the functor

h : Art(k) −→ (Set)

that sends R to the set of isomorphism classes of deformations
(X , ϕ) of the scheme X0 over the ring R.

Theorem. Suppose that X0 is smooth and h2(ΘX0/k) = 0. Then
the above functor is formally smooth.

Here formal smoothness of functors means h(A)→ h(A/I ) is
surjective for square-zero ideals, as in my first lecture. The result
applies if X0 = C is a proper smooth curve.
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K3 surfaces

It also applies if X0 = S is a K3 surface (c1 = 0 and b2 = 22).

Ernst Kummer
(1810–1893)

Kunihike Kodaira
(1915–1997)

Erich Kähler
(1906–2000)

Examples are quartic hypersurfaces S ⊂ P3, or the resolution of
singularities for S → A/{±1}.
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K3 surfaces

Although deformations of the scheme X0 are unobstructed, there
are obstructions for deforming invertible sheaves L0. They lie in
H2(X0,OX0) = k.

Over k = C, this leads to non-algebraic K3 surfaces. Then the
field of meromorphic functions f : S 99K C has transcendence
degree trdeg < 2.

For general ground fields k , this yields formal families
X→ Spec(k[[t]]) of K3 surfaces that are not algebraizable.

21 / 21



Thank you very much for the attention!


