GRK Ring Lecture: Deformation Theory, Part II

Prof. Stefan Schröer Mathematisches Institut Heinrich-Heine-Universität

29 October 2020

Set up:

Throughout:

- Let k be a field,
- \triangleright X_0 a k-scheme of finite type,
- ightharpoonup R a local noetherian ring with residue field $R/\mathfrak{m}_R=k$.

We seek to understand **deformations** of X_0 over the ring R.

This are pairs (X, φ) where X is a **flat** R-scheme of finite type, and $\varphi: X_0 \to X \otimes_R k$ is an isomorphism.

Too difficult

If R is a discrete valuation ring, like R = k[[t]], it looks so:

Too difficult

If R is a discrete valuation ring, like R = k[[t]], it looks so:

That is **far too difficult for us**, at least at the moment! What is a simpler choice for the ring *R*?

The ring of dual numbers

We work over the **ring of dual numbers** $R = k[\epsilon]$, where ϵ is a formal symbol subject to $\epsilon^2 = 0$.

This is a **local Artin ring** with residue field k. It also has a k-algebra structure. The spectrum is a singleton $\{\sigma\}$, with a tangent vector attached.

Deformations of X_0 over the ring $R = k[\epsilon]$ are called **first-order deformations**.

Deformations over dual numbers

Let (X, φ) be a deformation over the dual numbers $R = k[\epsilon]$. It sits in a cartesian square

Hence the inclusion $X_0 \subset X$ is a **homeomorphism**, so there is **no topology** left in our problem!

Deformations over dual numbers

Flatness ensures that in the exact sequence

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{O}_X \longrightarrow \mathscr{O}_{X_0} \longrightarrow 0$$
,

the ideal is $\mathscr{I} = k\epsilon \otimes_k \mathscr{O}_{X_0} = \epsilon \mathscr{O}_{X_0}$.

In particular \mathcal{O}_X is an **extension** of \mathcal{O}_{X_0} by $\mathscr{I} = \epsilon \mathcal{O}_{X_0}$, viewed as coherent sheaves on X.

Deformations over dual numbers

Flatness ensures that in the exact sequence

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{O}_X \longrightarrow \mathscr{O}_{X_0} \longrightarrow 0$$
,

the ideal is $\mathscr{I} = k\epsilon \otimes_k \mathscr{O}_{X_0} = \epsilon \mathscr{O}_{X_0}$.

In particular \mathscr{O}_X is an **extension** of \mathscr{O}_{X_0} by $\mathscr{I} = \epsilon \mathscr{O}_{X_0}$, viewed as coherent sheaves on X.

We would prefer to have extensions with **coherent sheaves on** X_0 !

Kähler differentials

Recall that each A-algebra B comes with a B-module of **Kähler** differentials $\Omega^1_{B/A}$, defined by the short exact sequence

$$0 \longrightarrow \Omega^1_{B/A} \longrightarrow (B \otimes_A B)/I^2 \longrightarrow (B \otimes B)/I \longrightarrow 0$$

where $I = (b \otimes 1 - 1 \otimes b)$ is the ideal for the diagonal.

Kähler differentials

Recall that each A-algebra B comes with a B-module of Kähler differentials $\Omega^1_{B/A}$, defined by the short exact sequence

$$0 \longrightarrow \Omega^1_{B/A} \longrightarrow (B \otimes_A B)/I^2 \longrightarrow (B \otimes B)/I \longrightarrow 0$$

where $I = (b \otimes 1 - 1 \otimes b)$ is the ideal for the diagonal.

Similar definition applies for morphisms of schemes. In particular we get a quasicoherent sheaf $\Omega^1_{X_0/k}$. The dual

$$\Theta_{X_0/k} = \underline{\mathsf{Hom}}(\Omega^1_{X_0/k}, \mathscr{O}_{X_0})$$

is the tangent sheaf.

The standard exact sequence

The k-structure on dual numbers gives $X_0 \to X \to \operatorname{Spec}(k)$, yields standard exact sequence

$$\ldots \to \mathscr{I}/\mathscr{I}^2 \to \Omega^1_{X/k} \otimes \mathscr{O}_{X_0} \to \Omega^1_{X_0/k} \to \Omega^1_{X_0/X} \to 0,$$

with for Kähler differentials. The map on the left is $[f] \mapsto df \otimes 1$.

The standard exact sequence

The k-structure on dual numbers gives $X_0 \to X \to \operatorname{Spec}(k)$, yields standard exact sequence

$$\ldots \to \mathscr{I}/\mathscr{I}^2 \to \Omega^1_{X/k} \otimes \mathscr{O}_{X_0} \to \Omega^1_{X_0/k} \to \Omega^1_{X_0/X} \to 0,$$

with for Kähler differentials. The map on the left is $[f] \mapsto df \otimes 1$.

Fact: If the scheme X_0 is reduced and generically smooth, the map $\mathscr{I}/\mathscr{I}^2 \to \Omega^1_{X/k}$ is injective. In any case, $\Omega^1_{X_0/X} = 0$.

Kodaira-Spencer

Suppose from now that X_0 is reduced and generically smooth. The deformation (X, φ) gives an **extension**

$$0\longrightarrow \mathscr{I}/\mathscr{I}^2\to \Omega^1_{X/k}\otimes\mathscr{O}_{X_0}\to \Omega^1_{X_0/k}\to 0$$

of coherent sheaves on X_0 . Yields **Yoneda class**

$$[\Omega^1_{X/k}\otimes\mathscr{O}_{X_0}]\in \mathsf{Ext}^1(\Omega^1_{X_0/k},\epsilon\mathscr{O}_{X_0}).$$

This is called the **Kodaira–Spencer class**.

Kodaira-Spencer

Suppose from now that X_0 is reduced and generically smooth. The deformation (X, φ) gives an **extension**

$$0\longrightarrow \mathscr{I}/\mathscr{I}^2\to \Omega^1_{X/k}\otimes\mathscr{O}_{X_0}\to \Omega^1_{X_0/k}\to 0$$

of coherent sheaves on X_0 . Yields **Yoneda class**

$$[\Omega^1_{X/k}\otimes\mathscr{O}_{X_0}]\in\operatorname{Ext}^1(\Omega^1_{X_0/k},\epsilon\mathscr{O}_{X_0}).$$

This is called the **Kodaira–Spencer class**.

Theorem. The mapping $(X, \varphi) \mapsto [\Omega^1_{X/k} \otimes \mathscr{O}_{X_0}]$ identifies isomorphism classes of deformations of X_0 over the dual numbers $R = k[\epsilon]$ with vectors in $\operatorname{Ext}^1(\Omega^1_{X_0/k}, \epsilon \mathscr{O}_{X_0})$.

Idea of proof

We describe the inverse mapping:

Suppose we have an extension \mathscr{E} . The universal differential $f\mapsto df$ defines via cartesian square

$$egin{array}{ccccc} \mathscr{O}_X & \longrightarrow & \mathscr{O}_{X_0} \\ & & & \downarrow^d & & \downarrow^d \\ 0 & \longrightarrow & \epsilon \mathscr{O}_{X_0} & \longrightarrow & \mathscr{E} & \longrightarrow & \Omega^1_{X_0/k} & \longrightarrow & 0 \end{array}$$

an abelian sheaf \mathcal{O}_X . One specifies multiplication as in dual numbers, using d(fg) = fdg + gdf.

The ringed space $X = (X_0, \mathcal{O}_X)$ becomes the total space of the deformation.

If X_0 is smooth, $\Omega^1_{X_0/k}$ is locally free, with dual $\Theta_{X_0/k}$, and we get an identification

$$\operatorname{Ext}^1(\Omega^1_{X_0/k}, \epsilon \mathscr{O}_{X_0}) = H^1(X_0, \Theta_{X_0/k}).$$

with cohomology of the tangent sheaf.

Cohomology groups are **more amenable to computations** that Ext groups. In any case, the zero class corresponds to the **constant deformation**

$$X=X_0\otimes_k k[\epsilon]$$

Corollary. If the scheme X_0 is smooth and affine, then every deformation over $R = k[\epsilon]$ is isomorphic to the constant deformation.

Proof: Use Serre's Cohomological Criterion for affineness.

Corollary. If the scheme X_0 is smooth and affine, then every deformation over $R = k[\epsilon]$ is isomorphic to the constant deformation.

Proof: Use Serre's Cohomological Criterion for affineness.

Corollary. Ever deformation of the projective space $X_0 = \mathbb{P}^n$ over $R = k[\epsilon]$ is isomorphic to the constant deformation.

Proof: Use the Euler sequence

$$0 \longrightarrow \mathscr{O}_{\mathbb{P}^n} \longrightarrow \oplus_{i=0}^n \mathscr{O}_{\mathbb{P}^n}(1) \longrightarrow \Theta_{\mathbb{P}^n/k} \longrightarrow 0.$$

Corollary. Let X = C be a smooth curve of genus $g \ge 2$. Then the space of first order deformations has dimension d = 3g - 3.

Proof: The structure sheaf has $\chi(\mathscr{O}_C)=1-g$. The **dualizing** sheaf $\omega_C=\Omega^1_{C/k}$ has degree r=2g-2. Its inverse $\mathscr{L}=\Theta_{C/k}$ has degree -r=2-2g<0. Riemann–Roch gives

$$-h^1(\mathscr{L}) = \chi(\mathscr{L}) = \deg(\mathscr{L}) + \chi(\mathscr{O}_C) = 3 - 3g.$$

Historical starting point:

This is the **starting point of algebraic geometry**! From Riemann's 1857 paper on abelian functions:

"... the corresponding class [...] depends on 3g-3 continuous variables, which we shall call the **moduli** of the class."

Bernhard Riemann (1826–1866)

Automorphisms and obstructions

The automorphisms group of the extension

$$0 \longrightarrow \mathscr{I}/\mathscr{I}^2 \to \Omega^1_{X/k} \otimes \mathscr{O}_{X_0} \to \Omega^1_{X_0/k} \to 0$$

is the Hom group

$$\operatorname{Hom}(\Omega^1_{X_0/k},\epsilon\mathscr O_{X_0})=\operatorname{Ext}^0(\Omega^1_{X_0/k},\epsilon\mathscr O_{X_0}).$$

By our Theorem, this is also the automorphism group for every first-order deformation (X, φ) .

Automorphisms and obstructions

The automorphisms group of the extension

$$0 \longrightarrow \mathscr{I}/\mathscr{I}^2 \to \Omega^1_{X/k} \otimes \mathscr{O}_{X_0} \to \Omega^1_{X_0/k} \to 0$$

is the Hom group

$$\operatorname{Hom}(\Omega^1_{X_0/k},\epsilon\mathscr O_{X_0})=\operatorname{Ext}^0(\Omega^1_{X_0/k},\epsilon\mathscr O_{X_0}).$$

By our Theorem, this is also the automorphism group for every first-order deformation (X, φ) .

We shall see later that the Ext group $\operatorname{Ext}^2(\Omega^1_{X_0/k},\epsilon\mathscr O_{X_0})$ containes the **obstructions** against higher-order deformations over rings like $R=k[t]/(t^n)$.

Formal schemes

Suppose $X_0 = C$ is a smooth curve. Then the obstruction group

$$\operatorname{Ext}^2(\Omega^1_{X_0/k},\epsilon\mathscr O_{X_0})=H^2(X_0,\Theta_{X_0/k})$$

is zero, by Grothendieck's Vanishing result.

So one finds compatible deformations (X_n, φ_n) of $X_0 = C$ over the rings $R_n = k[t]/(t^{n+1})$. This gives an inverse system of proper schemes $\mathfrak{X} = (X_n)_n \geq 0$ over the complete local rings R = k[[t]]. This are the so-called **formal schemes**.

Formal schemes

Suppose $X_0 = C$ is a smooth curve. Then the obstruction group

$$\operatorname{Ext}^2(\Omega^1_{X_0/k},\epsilon\mathscr O_{X_0})=H^2(X_0,\Theta_{X_0/k})$$

is zero, by Grothendieck's Vanishing result.

So one finds compatible deformations (X_n, φ_n) of $X_0 = C$ over the rings $R_n = k[t]/(t^{n+1})$. This gives an inverse system of proper schemes $\mathfrak{X} = (X_n)_n \geq 0$ over the complete local rings R = k[[t]]. This are the so-called **formal schemes**.

Does the formal R-scheme \mathfrak{X} come from an R-scheme X, such that $X_n = X \otimes R_n$?

Grothendieck's Algebraization Theorem

Theorem. Suppose there is a compatible family (\mathcal{L}_n) of invertible sheaves on (X_n) , such that $\mathcal{L}_0 \in \text{Pic}(X_0)$ is ample. Then there is a proper R-scheme X inducing the formal scheme \mathfrak{X} , unique up to unique isomorphism.

Grothendieck's Algebraization Theorem

Theorem. Suppose there is a compatible family (\mathcal{L}_n) of invertible sheaves on (X_n) , such that $\mathcal{L}_0 \in \text{Pic}(X_0)$ is ample. Then there is a proper R-scheme X inducing the formal scheme \mathfrak{X} , unique up to unique isomorphism.

This holds for arbitrary formal schemes. In dimension one, each proper scheme is projective (Riemann–Roch). The obstruction to lift a class in $\operatorname{Pic}(X_n) = H^1(X_n, \mathscr{O}_{X_n}^{\times})$ to the thickening X_{n+1} lies in $H^2(C, \mathscr{O}_C) \otimes kt^{n+1}$, which is zero!

So the d=3g-g first-oder deformations for C indeed give Riemann's moduli!

We now examine deformations over general local Artin rings R with residue field k and having a k-algebra structure.

Lemma. If the scheme X_0 is smooth and affine, then every deformation over R is constant.

Proof: Saw this already for $R = k[\epsilon]$. In general, apply induction on length(R), and use definition of smoothness.

Suppose that we have a deformation (X_{n-1}, φ_{n-1}) of X_0 over the ring $R_{n-1} = k[t]/(t^n)$.

Choose affine open covering $X_0 = U_1 \cup \ldots \cup U_r$. On each U_i the deformation over R_{n-1} becomes constant. So they extend to R_n . On overlaps U_{ij} these differ by isomorphisms φ_{ij} .

Suppose that we have a deformation (X_{n-1}, φ_{n-1}) of X_0 over the ring $R_{n-1} = k[t]/(t^n)$.

Choose affine open covering $X_0 = U_1 \cup ... \cup U_r$. On each U_i the deformation over R_{n-1} becomes constant. So they extend to R_n . On overlaps U_{ij} these differ by isomorphisms φ_{ij} .

May not satisfy **cocycle condition**, but $\varphi_{jk} \circ \varphi_{ij} = f_{ijk}\varphi_{ik}$ defines cocycle $f_{ijk} \in \Gamma(U_{ijk}, \Theta_{X_0/k} \otimes kt^n)$. Yields some cohomology class ob $\in H^2(X_0, \Theta_{X_0/k})$. Is the **obstruction** for changing the local isomorphisms so that global deformation arises via glueing.

Suppose that we have a deformation (X_{n-1}, φ_{n-1}) of X_0 over the ring $R_{n-1} = k[t]/(t^n)$.

Choose affine open covering $X_0 = U_1 \cup ... \cup U_r$. On each U_i the deformation over R_{n-1} becomes constant. So they extend to R_n . On overlaps U_{ij} these differ by isomorphisms φ_{ij} .

May not satisfy **cocycle condition**, but $\varphi_{jk} \circ \varphi_{ij} = f_{ijk}\varphi_{ik}$ defines cocycle $f_{ijk} \in \Gamma(U_{ijk}, \Theta_{X_0/k} \otimes kt^n)$. Yields some cohomology class ob $\in H^2(X_0, \Theta_{X_0/k})$. Is the **obstruction** for changing the local isomorphisms so that global deformation arises via glueing.

If ob = 0, the set of all deformations (X_n, φ_n) restricting to (X_{n-1}, φ_{n-1}) is a **torsor** under $H^1(X_0, \Theta_{X_0/k})$.

Formal smoothness for functors of Artin rings

Let Art(k) be the category of local Artin rings R with residue field k. Consider the functor

$$h: Art(k) \longrightarrow (Set)$$

that sends R to the set of isomorphism classes of deformations (X, φ) of the scheme X_0 over the ring R.

Theorem. Suppose that X_0 is smooth and $h^2(\Theta_{X_0/k}) = 0$. Then the above functor is formally smooth.

Formal smoothness for functors of Artin rings

Let Art(k) be the category of local Artin rings R with residue field k. Consider the functor

$$h: Art(k) \longrightarrow (Set)$$

that sends R to the set of isomorphism classes of deformations (X, φ) of the scheme X_0 over the ring R.

Theorem. Suppose that X_0 is smooth and $h^2(\Theta_{X_0/k}) = 0$. Then the above functor is formally smooth.

Here formal smoothness of functors means $h(A) \to h(A/I)$ is surjective for square-zero ideals, as in my first lecture. The result applies if $X_0 = C$ is a proper smooth curve.

K3 surfaces

It also applies if $X_0 = S$ is a **K3 surface** ($c_1 = 0$ and $b_2 = 22$).

Ernst Kummer (1810–1893)

Kunihike Kodaira (1915–1997)

Erich Kähler (1906–2000)

Examples are quartic hypersurfaces $S \subset \mathbb{P}^3$, or the resolution of singularities for $S \to A/\{\pm 1\}$.

K3 surfaces

Although deformations of the scheme X_0 are unobstructed, there are obstructions for deforming invertible sheaves \mathcal{L}_0 . They lie in $H^2(X_0, \mathcal{O}_{X_0}) = k$.

Over $k = \mathbb{C}$, this leads to **non-algebraic K3 surfaces**. Then the field of meromorphic functions $f: S \longrightarrow \mathbb{C}$ has transcendence degree trdeg < 2.

For general ground fields k, this yields formal families $\mathfrak{X} \to \operatorname{Spec}(k[[t]])$ of K3 surfaces that are **not algebraizable**.

