Lie Algebras – Lecture 2

M. Reineke

19 November 2020, Ringvorlesung GRK 2240

伺 ト イヨト イヨト

Aim

- Formulate Cartan-Killing classification of (semi-)simple Lie algebras
- Extract root system from a semisimple Lie algebra
- Extract Dynkin diagram from root system

向下 イヨト イ

- Definition of Lie algebras, discussion of the axioms,
- Lie algebras from associative algebras, $\mathfrak{gl}_n(k)$,
- Lie algebras of derivations, $\operatorname{Der}_k(k[X])$, $\mathfrak{g}_2 = \operatorname{Der}_k(\mathbb{O})$,
- Lie algebras of algebraic groups Lie(G) = Der_k(k[G])^G ≃ T₁(G),
- $\mathfrak{sl}_n(k)$, $\mathfrak{so}_n(k)$, $\mathfrak{sp}_{2n}(k)$; $\mathfrak{t}_n \oplus \mathfrak{n}_n = \mathfrak{b}_n \subset \mathfrak{gl}_n$,
- lower central and derived series; abelian, nilpotent and solvable Lie algebras,
- radical, (semi-)simple Lie algebras, criteria for semisimplicity.

We have seen the canonical decomposition of a Lie algebra:

$$0 \to \underbrace{\mathrm{rad}(\mathfrak{g})}_{\text{solvable}} \to \mathfrak{g} \to \underbrace{\mathfrak{g}/\mathrm{rad}(\mathfrak{g})}_{\text{semisimple}} \to 0.$$

Even better:

Theorem (Levi)

Exists semisimple Lie subalgebra $\mathfrak{s} \subset \mathfrak{g}$ such that $\mathfrak{g} = \operatorname{rad}(\mathfrak{g}) \oplus \mathfrak{s}$ as *k*-vector space. Thus $\mathfrak{s} \simeq \mathfrak{g}/\operatorname{rad}(\mathfrak{g})$, and even $\mathfrak{g} = \mathfrak{s} \ltimes \operatorname{rad}(\mathfrak{g})$.

Why will we ignore the solvable part and concentrate on semisimple Lie algebras?

- We know where to find (all) solvable Lie algebras: they all sit as Lie subalgebras in some b_n, and, conversely, any Lie subalgebra of b_n is solvable.
- Even better, any solvable Lie algebra is filtered by trivial Lie algebras: exists

$$\mathfrak{g} = \mathfrak{g}^0 \supset \mathfrak{g}^1 \supset \ldots \supset \mathfrak{g}^n = 0$$

sequence of ideals, all subquotients $\mathfrak{g}^i/\mathfrak{g}^{i+1}$ one-dimensional. But a classification up to isomorphism is "'hopeless".

Theorem

Equivalent:

- \mathfrak{g} semisimple
- Killing form κ(x, y) = tr ([x, _] ∘ [y, _] ∈ End(𝔅)) nondegenerate

•
$$\mathfrak{g}\simeq igoplus_{i=1}^n \mathfrak{g}_i$$
, all \mathfrak{g}_i simple.

向下 イヨト イ

⇒ >

Theorem

A Lie algebra is simple if and only if it is isomorphic to one of following:

- one in the infinite series $\mathfrak{sl}_n(k)$, $\mathfrak{so}_n(k)$, $\mathfrak{sp}_{2n}(k)$,
- one of five exceptional Lie algebras \mathfrak{g}_2 , \mathfrak{f}_4 , \mathfrak{e}_6 , \mathfrak{e}_7 , \mathfrak{e}_8 .

Root space decomposition - adjoint representation

From now on, \mathfrak{g} semisimple.

Idea: Analyze \mathfrak{g} via its *adjoint representation*.

Definition

Representation of a Lie algebra \mathfrak{g} on *k*-vector space *V* is a Lie algebra morphism $\mathfrak{g} \to \mathfrak{gl}(V)$.

 $x \in \mathfrak{g}$: $\operatorname{ad}_x = [x,] \in \operatorname{End}(\mathfrak{g}).$

Defines adjoint representation $\operatorname{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}), \ \operatorname{ad}(x) = \operatorname{ad}_x.$

Recall from linear algebra: commuting diagonalizable operators $\varphi_1, \ldots, \varphi_k \in \operatorname{End}_k(V)$ are simultaneously diagonalizable:

$$V = \bigoplus_{\lambda_1,...,\lambda_k} V_{\lambda_1,...,\lambda_k},$$

 $V_{\lambda_1,\ldots,\lambda_k} = \{ v \in V \mid \varphi_i(v) = \lambda_i v, i = 1,\ldots,k \}.$

(3)

Root space decomposition - Cartan decomposition

Choose (!!) maximal family $x_1, \ldots, x_k \in \mathfrak{g}$ of commuting elements such that ad_{x_i} diagonalizable. $\mathfrak{h} = \langle x_1, \ldots, x_k \rangle$ Cartan subalgebra. Consider simultaneous eigenspace decomposition:

Definition (Cartan decomposition)

$$\mathfrak{g} = \bigoplus_{lpha \in \mathfrak{h}^*} \mathfrak{g}_{lpha},$$

$$\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid [h, x] = \alpha(h)x, h \in \mathfrak{h}\}.$$

Facts

• $\mathfrak{g}_0 = \mathfrak{h}$.

•
$$\Phi := \{0 \neq \alpha \in \mathfrak{h}^* \mid \mathfrak{g}_{\alpha} \neq 0\} \subset \mathfrak{h}^*$$
 finite.

• dim
$$\mathfrak{g}_{lpha}=1$$
 for all $lpha\in \Phi$.

Facts

- κ nondegenerate on \mathfrak{h} , thus induces (_, _) on \mathfrak{h}^* ,
- Φ spans \mathfrak{h}^* . Define $\mathbb{E}_{\mathbb{Q}} = \langle \Phi \rangle_{\mathbb{Q}} \subset \mathfrak{h}^*$ (since $\mathbb{Q} \subset k$).
- (_, _) positive definite on $\mathbb{E}_{\mathbb{Q}}$.

Define $\mathbb{E} = \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}$: *Euklidean* vector space with distinguished subset Φ .

The pair (\mathbb{E}, Φ) has very special rigidity properties, encoded in the axioms of a *root system*.

伺 ト イヨト イヨト

Theorem (Root system of a semisimple Lie algebra)

- (\mathbb{E}, Φ) is a root system, that is:
 - Φ is finite, spans \mathbb{E} , does not contain 0.
 - If $\alpha \in \Phi$, then $k\alpha \in \Phi$ iff $k = \pm 1$.
 - Φ stable under reflections at hyperplanes orthogonal to Φ :

$$\alpha \in \Phi \text{ implies } \sigma_{\alpha}(\Phi) \subset \Phi, \text{ where } \sigma_{\alpha}(\beta) = \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)}\alpha.$$

• Integrality: If $\alpha, \beta \in \Phi$, then $\langle \beta, \alpha \rangle := \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$.

Examples of roots systems

<ロト < 部ト < 注ト < 注ト = 注

Facts

- Φ admits a base, that is: exists $\Delta \subset \Phi$, basis of \mathbb{E} , $\Phi \subset \mathbb{N}\Delta \cup -\mathbb{N}\Delta$,
- the Cartan matrix C = (⟨β, α⟩)_{α,β∈Δ} determines (𝔼, Φ) completely.
- $C \in M_n(\mathbb{Z})$ fulfills:

•
$$C_{ii} = 2$$
,

•
$$C_{ij} \leq 0$$
 for $i \neq j$,

- C symmetrizable: C = DS, D diagonal, S symmetric,
- C positive definite.

Encode *C* completely in *Dynkin diagram*: graph with vertices Δ , number of edges between α and β is $\langle \alpha, \beta \rangle \cdot \langle \beta, \alpha \rangle$, arrow from α to β if $\langle \alpha, \beta \rangle < \langle \beta, \alpha \rangle$.

• • = • • = •

Theorem

Any Dynkin diagram is a disjoint union of the following:

M. Reineke Lie Algebras – Lecture 2

We have extracted from a semisimple Lie algebra \mathfrak{g} (with a choice of Cartan subalgebra \mathfrak{h}) first its root system (\mathbb{E}, Φ):

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \underbrace{\mathfrak{g}_{\alpha}}_{\mathsf{dim} = 1},$$

then its Dynkin diagram determining the root system, and these admit a discrete classification.

It remains (!) to go backwards: show that the Dynkin diagram determines the Lie algebra up to isomorphism, and that any Dynkin diagram admits a corresponding semisimple Lie algebra.

Thank you!

▲御▶ ▲臣▶ ▲臣▶

E