Lie Algebras – Lecture 3

M. Reineke

26 November 2020, Ringvorlesung GRK 2240

M. Reineke Lie Algebras – Lecture 3

伺 ト イヨト イヨト

Aim

- Finish classification of semisimple Lie algebras: uniqueness, existence
- Adjoint group of a semisimple Lie algebra
- Universal enveloping algebra
- \mathbb{Z} -form
- Irreducible representations

We have extracted from a semisimple Lie algebra \mathfrak{g} (with a choice of Cartan subalgebra \mathfrak{h} = maximal abelian subalgebra of ad-diagonalizables) first its root system (\mathbb{E}, Φ) via Cartan decomposition:

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \underbrace{\mathfrak{g}_{\alpha}}_{\mathsf{dim} = 1},$$

 $\mathbb{E} = \mathbb{R} \otimes_{\mathbb{Q}} (\langle \Phi \rangle_{\mathbb{Q}} \subset \mathfrak{h}^*), \ \Phi \text{ finite, stable under reflections, integrality property,}$

then its Dynkin diagram determining the root system, and these admit a discrete classification.

It remains (!) to go backwards: show that the Dynkin diagram determines the Lie algebra up to isomorphism, and that any Dynkin diagram admits a corresponding semisimple Lie algebra.

伺 ト イヨト イヨト

$$\mathfrak{sl}_n(k) = \{A \in \mathfrak{gl}_n(k) \mid \operatorname{tr}(A) = 0\} \text{ with basis}$$

$$E_{ii} - E_{i+1,i+1} \text{ for } i = 1, \dots, n-1 \text{ and } E_{ij} \text{ for } i \neq j.$$

$$\mathfrak{h} = \operatorname{Ker}(\operatorname{tr}) \subset \mathfrak{t}_n, \text{ thus } \mathfrak{h}^* \simeq \mathfrak{t}_n^* / \langle \operatorname{tr} \rangle.$$

$$[E_{kk}, E_{ij}] = (\delta_{ik} - \delta_{jk}) E_{ij}, \text{ thus } E_{ij} \in (\mathfrak{sl}_n(k)) E_{ii}^* - E_{ji}^* \text{ for all } i \neq j.$$
Thus $\mathbb{E} = \mathbb{R}^n / \langle \sum_i e_i \rangle$ and $\Phi = \{e_i - e_j \mid i \neq j\}.$

$$\Delta = \{e_1 - e_2, \dots e_{n-1} - e_n\} \text{ is a base, and}$$

$$(e_i - e_{i+1}, e_j - e_{j+1}) = 2\delta_{ij} - \delta_{i,j+1} - \delta_{i+1,j}.$$

Yields Dynkin diagram A_{n-1} .

伺下 イヨト イヨト

 \mathfrak{g} semisimple with Cartan $\mathfrak{g},$ associated roots $\Phi\subset\mathfrak{h}^*,$ base $\Delta\subset\Phi.$

Theorem

Then \mathfrak{g} is generated by the \mathfrak{g}_{α} for $\alpha \in \pm \Delta$. Consequently (!), the root systems determines the Lie algebra with its Cartan subalgebra.

Theorem

All Cartan subalgebras are conjugate under the adjoint group. Consequently (!), root system intrinsic to g.

Adjoint group: subgroup of $Aut(\mathfrak{g})$ generated by all

$$\exp \operatorname{ad}_x = \sum_{n \ge 0} \frac{1}{n!} (\operatorname{ad}_x)^n$$

for ad_x nilpotent.

• • = • • = •

Functor C: Assoc_k \rightarrow Lie_k maps (A, \cdot) to $(A, [x, y] = x \cdot y - y \cdot x)$.

Admits left adjoint U: for any Lie algebra \mathfrak{g} exists associative algebra $U\mathfrak{g}$, together with map $i : \mathfrak{g} \to U\mathfrak{g}$ such that $i([x,y]) = i(x) \cdot i(y) - i(y) \cdot i(x)$, with universal property: for all $f : \mathfrak{g} \to A$ such that $f([x,y]) = f(x) \cdot f(y) - f(y) \cdot f(x)$,

exists a unique map $\hat{f} : U\mathfrak{g} \to A$ such that $\hat{f} \circ i = f$:

$$\mathfrak{g} \stackrel{i}{
ightarrow} U\mathfrak{g} \ f\searrow \downarrow \widehat{f} \ A$$

Construction: $T\mathfrak{g} = \bigoplus_{n \ge 0} \mathfrak{g}^{\otimes n}$ tensor algebra (product is concatenation of tensors).

$$U\mathfrak{g} = T\mathfrak{g}/(x\otimes y - y\otimes x - [x,y]).$$

Theorem (PBW)

 $i: \mathfrak{g} \to U\mathfrak{g}$ is injective. If $(x_i)_{i \in I}$ basis of \mathfrak{g} , then $\prod_{i \in I} x_i^{m_i}$ basis of $U\mathfrak{g}$.

Theorem

 \mathfrak{g} semisimple, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra, $\Delta \subset \Phi \subset \mathfrak{g}^*$ (base of) roots, $\langle \neg, \neg \rangle$ Cartan matrix on Δ . Then $U\mathfrak{g}$ is given by generators $h_{\alpha}, e_{\alpha}, f_{\alpha}$ for $\alpha \in \Delta$ subject to the relations:

•
$$[h_{\alpha}, h_{\beta}] = 0$$
,

•
$$[e_{\alpha}, f_{\alpha}] = h_{\alpha}, [e_{\alpha}, f_{\beta}] = 0 \text{ for } \alpha \neq \beta,$$

•
$$[h_{\alpha}, e_{\beta}] = \langle \beta, \alpha \rangle e_{\beta}, [h_{\alpha}, f_{\beta}] = -\langle \beta, \alpha \rangle f_{\beta},$$

•
$$(\mathrm{ad} e_{\alpha})^{1-\langle \beta, \alpha \rangle} e_{\beta} = 0$$
,

•
$$(\mathrm{ad} f_{\alpha})^{1-\langle \beta, \alpha \rangle} f_{\beta} = 0$$

Conversely, starting from Cartan matrix (or Dynkin diagram), this defines (the universal enveloping algebra of) a semisimple Lie algebra with this Dynkin diagram.

Already in first talk: $\mathfrak{sl}_2(k)$ has generators h, e, f and relations

$$[e, f] = h, [h, e] = 2e, [h, f] = -2f.$$

From Serre presentations: $\mathfrak{sl}_3(k)$ has generators $h_1, h_2, e_1, e_2, f_1, f_2$. Namely, $h_1 = E_{11} - E_{22}, h_2 = E_{22} - E_{33}, e_1 = E_{12}, e_2 = E_{23}, f_1 = E_{21}, f_2 = E_{32}$.

$$\langle h_1, e_1, f_1 \rangle \simeq \langle h_2, e_2, f_2 \rangle \simeq \mathfrak{sl}_2(k).$$

Only interesting Serre relation: $[e_1, [e_1, e_2]] = 0$. Follows from $[e_1, e_2] = E_{13}$.

Theorem

 \mathfrak{g} semisimple: exist choice of $0 \neq x_{\alpha} \in \mathfrak{g}_{\alpha}$ for all $\alpha \in \Phi$ such that

$$B = \{h_{\alpha}, \, \alpha \in \Delta, \, x_{\alpha}, \, \alpha \in \Phi\}$$

is basis with integral structure constants.

Thus for any field K we can define $\mathfrak{g}_K = K \otimes_{\mathbb{Z}} \langle B \rangle_{\mathbb{Z}}$. Not always semisimple!

• • = • • = •

From universal property of $U\mathfrak{g}$:

 $\operatorname{Rep}(\mathfrak{g}) \simeq \operatorname{Mod} U\mathfrak{g}.$

g solvable: all finite dimensional irreducible representation $\mathfrak{g} \to \mathfrak{gl}(V)$ (that is, only g-invariant subspaces of V are 0 and V) are one-dimensional, parametrized by $(\mathfrak{g}/[\mathfrak{g},\mathfrak{g}])^*$.

But extend nontrivially; in general $\operatorname{Ext}^{1}_{\mathfrak{g}}(V, W) \neq 0$.

Theorem (Weyl)

All finite-dimensional representations of g semisimple are completely reducible, that is, direct sums of irreducibles.

伺 ト イヨト イヨト

Theorem

The irreducible g-representations are parametrized (up to iso) by the dominant integral weight $\lambda \in \mathfrak{h}^*$ such that $\langle \lambda, \alpha \rangle \in \mathbb{Z}_{\geq 0}$ for all $\alpha \in \Delta$.

Construction:

$$V(\lambda) = U \mathfrak{g} / U \mathfrak{g} \cdot \langle e_lpha, \ h_lpha - \lambda(h_lpha) 1, \ f_lpha^{\langle \lambda, lpha
angle + 1} \ lpha \in \Delta
angle.$$

Thank you!

▲御▶ ▲臣▶ ▲臣▶

E