Moduli spaces of vector bundles on curves

M. Reineke

10 June 2021, Ringvorlesung GRK 2240

M. Reineke Moduli spaces of vector bundles on curves

Aim

- Define vector bundles, relate them to locally free sheaves
- Study line bundles on smooth projective curves
- Define Hilbert schemes
- Discuss semistability
- Construct moduli spaces
- Study properties of moduli spaces

We follow Part I of J. Le Potier: Lectures on Vector Bundles.

Definition

Let X be a connected \mathbb{C} -variety.

- A linear fibration on X is a map p : E → X of varieties, together with a vector space structure on every fibre p⁻¹(x) =: E_x.
- A map of linear fibrations $p: E \to X$, $p': E' \to X$ is a map $\varphi: E \to E'$ such that $p'\varphi = p$ and $\varphi: E_x \to E'_x$ linear for all $x \in X$.
- V fin.dim. \mathbb{C} -vector space: $\operatorname{pr}_1: X \times V \to X$ trivial fibration.
- A vector bundle on X is a linear fibration which is locally isomorphic to a trivial one. That is: exists open covering $X = \bigcup_i U_i$ such that $U_i \times V \simeq p^{-1}(U_i)$ for all *i*.
- Its rank $rk(E) = \dim V$.

One can define direct sums, subbundles, quotient bundles of vector bundles. But in general we don't have kernels, images, cokernels.

Example

 $X = \mathbb{A}^1$, $V \neq 0$ vector space

$$\varphi: X \times V \to X \times V, \quad (\lambda, \nu) \mapsto (\lambda, \lambda \nu).$$

Kernel is a linear fibration *E* with $E_0 = V$ and $E_{\lambda} = 0$ for $\lambda \neq 0$.

The category of vector bundles on X is equivalent to the category of locally free (coherent) sheaves on X.

Idea of proof: associate to the vector bundle $p: E \to X$ its sheaf of sections

$$U \mapsto \Gamma(U, E) := \{ s : U \to E \mid p \circ s = \mathrm{id}_U \},\$$

which is a $\mathcal{O}_X(U)$ -module. This sheaf is locally isomorphic to $\mathcal{O}_X \otimes V$.

From now on X is a smooth projective curve. In the \mathbb{C} -topology, it is a compact Riemann surface of some genus $g \ge 0$.

Line bundles, that is, vector bundles of rank 1 form group under \otimes , the Picard group $\operatorname{Pic}(X)$ of X. It is isomorphic to the group $\operatorname{Div}(X)$ of divisors modulo linear equivalence. We have an exact sequence

$$1 \to \operatorname{Jac}(X) = \operatorname{Pic}^0(X) \to \operatorname{Pic}(X) \simeq \operatorname{Div}(X) \stackrel{\mathsf{deg}}{\to} \mathbb{Z} \to 1$$

where deg $\sum_{x \in X} \lambda_x x = \sum_x \lambda_x$, and $\operatorname{Jac}(X)$ is an abelian variety, topologically isomorphic to $\mathbb{C}^g / \mathbb{Z}^{2g}$.

We can generalize the degree deg to arbitrary rank bundles by $\deg(E) := \deg(\bigwedge^{\operatorname{rk} E} E).$

向下 イヨト イヨト

Topologically, rank and degree are the only invariants of a vector bundle on X.

The given embedding $X \subset \mathbb{P}^n$ induces line bundle $\mathcal{O}_X(1)$. Let \mathcal{F} be a coherent sheaf on X (it is then isomorphic to the direct sum of a locally free sheaf and a torsion sheaf, concentrated on finitely many points of X). Has coherent cohomology $H^i(X, \mathcal{F})$ for i = 0, 1, Euler characteristic $\chi(\mathcal{F}) = \dim H^0(X, \mathcal{F}) - \dim H^1(X, \mathcal{F})$. Twist of coherent sheaf: $\mathcal{F}(n) := \mathcal{F} \otimes \mathcal{O}_X(1)^{\otimes n}$.

Fact

Exists Hilbert polynomial $P(t) \in \mathbb{Z}[t]$ such that $P(n) = \chi(\mathcal{F}(n))$ for all n. Namely, $P(t) = \operatorname{rk}(\mathcal{F}) \operatorname{deg}(\mathcal{O}_X(1))t + \chi(\mathcal{F})$.

Take \mathcal{E} locally free, P linear polynomial. Exists projective variety $\operatorname{Hilb}^{p}(\mathcal{E})$ parametrizing quotients of \mathcal{E} with Hilbert polynomial P.

Sketch of proof: One can choose N large enough such that the following holds:

given a quotient \mathcal{E}/\mathcal{F} , the subspace $H^0(X, \mathcal{F}(N)) \subset H^0(X, \mathcal{E}(N))$ has codimension P(N) and determines \mathcal{E}/\mathcal{F} as cokernel of $H^0(X, \mathcal{F}(N)) \otimes \mathcal{O}_X(-N) \to \mathcal{E}$.

In this way, we realize $\operatorname{Hilb}^{P}(\mathcal{E})$ as closed subvariety of Grassmannian $\operatorname{Gr}^{P(N)}(H^{0}(X, \mathcal{E}(N)))$.

伺下 イヨト イヨト

(Semi-)stability

Definition

- Slope of $0 \neq E$ is $\mu(E) = \deg(E)/\operatorname{rk}(E)$.
- *E* is called semistable if $\mu(F) \le \mu(E)$ for all subbundles $0 \ne F \subset E$.
- E is called stable if μ(F) < μ(E) for all proper subbundles 0 ≠ F ⊂ E.

Fact

- Semistable bundles of a fixed slope form an abelian finite length category.
- In particular, its simple/irreducible objects are the stables of that slope, and any semistable admits Jordan-Hölder type filtration by stables of same slope.
- An arbitrary vector bundle admits a unique Harder-Narasimhan filtration: a filtration with semistable subquotients of decreasing slope.

Let G be a linearly reductive group, acting linearly on some vector space Z, and assume $Y \subset \mathbb{P}(Z)$ G-stable closed subvariety. Homogeneous coordinate ring $\mathbb{C}[Y] = \mathbb{C}[Z]/\mathbb{V}(Y)$ contains (graded, finitely generated) ring of G-invariants $\mathbb{C}[Y]^G$.

Definition

 $y \in Y$ semistable if $f(y) \neq 0$ for some $0 \neq f \in \mathbb{C}[Y]^G$ of positive degree.

Theorem

Then $Y^{sst} \to Y^{sst}//G := \operatorname{Proj}(\mathbb{C}[Y]^G)$ is a categorical quotient: it is surjective and every fibre contains a unique closed G-orbit in Y^{sst} . That is: $Y^{sst}//G$ parametrizes semistable closed G-orbits in Y.

伺下 イヨト イヨト

Semistability can be verified numerically using the Hilbert-Mumford criterion. We will only see this in an example: SL(V) acts linearly on V, thus on any $V \otimes W$, thus on any $\bigwedge^{p}(V \otimes W)$, thus on

$$\mathrm{Gr}^p(V\otimes W)\subset \mathbb{P}(\bigwedge^p(V\otimes W)).$$

Then $U \subset V \otimes W$ defines a semistable point iff for all proper non-zero $V' \subset V$, we have

$$\frac{\dim U \cap (V' \otimes W)}{\dim V'} \leq \frac{\dim U}{\dim V}.$$

Finally we can construct a moduli space for vector bundles of rank $r \in \mathbb{N}$ and degree $d \in \mathbb{Z}$ on X, more precisely a variety whose points parametrize semistable such vector bundles up to Jordan-Hölder equivalence (we can't do better).

Tensoring with a degree 1 line bundle induces bijection between isoclasses of (semistable) bundles of rank r, degree d and bundles of rank r, degree d + r. We can thus choose wlog d arbitrarily large. In fact – after many subtle and delicate numerical considerations which we have to omit completely – so large that:

every rank r degree d bundle is then a quotient of $\mathcal{O}_X \otimes V$ (for a certain V of dimension $\chi = d + r(1 - g)$) with Hilbert polynomial $rt + \chi$.

伺い イヨト イヨト

Construction of moduli spaces of vector bundles

every rank *r* degree *d* bundle is then a quotient of $\mathcal{O}_X \otimes V$ (for a certain *V* of dimension $\chi = d + r(1 - g)$) with Hilbert polynomial $rt + \chi$. And (for *N* large enough)

 $\operatorname{Hilb}^{rt+\chi}(\mathcal{O}_X\otimes V)\subset \operatorname{Gr}^{rN+\chi}(V\otimes H^0(X,O_X(N))).$

A bundle is semistable (by Hilbert-Mumford criterion) iff the corresponding subspace U in the Grassmannian is semistable for the SL(V)-action. Two bundles are isomorphic iff the corresponding subspaces in the Grassmannian are conjugate under SL(V). Thus we finally define:

Definition

$$M(r, d) := \operatorname{Hilb}^{rt+\chi}(\mathcal{O}_X \otimes V)^{\operatorname{sst}} / / \operatorname{SL}(V).$$

Assume $g \ge 2$.

- M(r, d) parametrizes semistable rank r degree d bundles on X up to Jordan-Hölder equivalence.
- Exists open subset $M^{s}(r, d)$ parametrizing stable bundles up to isomorphism.
- $M^{s}(r,d) \neq \emptyset$ for all r and d.
- M(r, d) is irreducible of dimension $(g 1)r^2 + 1$.
- M(r, d) is smooth if gcd(r, d) = 1.

Thank you!

□▶▲理▶▲理▶

E