
The Milnor Conjectures
Oberseminar Algebra, Geometrie und Zahlentheorie WS 2015/16

The Milnor Conjectures relate the following three algebraic invariants of
a field: the Witt group of quadratic forms, étale cohomology and Milnor
K-theory. Our aims in this seminar will be very modest: we would like to
understand the statements of the conjectures and their verifications in the
numerous cases dealt with in Milnor’s original paper [Mil69]. The aim is
not to understand Voevodsky et al.’s proof. Even Merkurjew’s proof of the
conjectures in degree two will at most be sketched in one of the last talks.

Dates

All talks will take place Fridays in 25.22.03.73, beginning at 12:30 and lasting for up to
90 minutes.

Talk 1: 23 Oct Marcus Zibrowius
30 Okt Extrakolloquien – kein Seminar

Talk 2: 6 Nov Tobias Hemmert
Talk 3: 13 Nov Anitha Thillaisundaram
Talk 4: 20 Nov Matthias Riepe
Talk 5: 27 Nov Leif Zimmermann
Talk 6: 4 Dec Steffen Kionke
Talk 7: 11 Dec André Schell
Talk 8: 18 Dec Benedikt Schilson
Talk 9: 8 Jan Saša Novaković

Talk 10: 15 Jan Kevin Langlois
Talk 11: 22 Jan Matteo Vannacci

Talk ?12: 29 Jan Stefan Schröer
Talk ?15: 5 Feb Alexander Samokhin
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The ? in the last four talks means “pick and mix” – these talks are mutually independent.

Talk 1: Introduction

Present an overview over (a) the history of the conjectures and (b) the seminar. In
particular, give names and symbols to all key players:

k∗(F )

s

yy

h

$$

gr∗W (F ) e
// h∗(F )

At the top, we have the Milnor K-theory of our field F , or more precisely its Milnor
K-theory modulo 2: ki(F ) := Ki(F )/2. On the left, we have the graded ring associated
with the Witt ring W (F ), and on the right we have the étale cohomology ring with
Z/2-coefficients hi(F ) := H i

et(F,Z/2). Moreover, we have three ring homomorphisms s,
h, e connecting them. Milnor’s Conjectures say that these are isomorphisms.

Convey a sense of surprise (c. f. [Pfi00]).
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Part I: Basic theory

Talk 2: The Witt ring of quadratic forms

Discuss all material in [QM11, §§2.1–2.3]. More details can be found in [Lam05]:

• Witt’s cancellation theorem: [Lam05, I.2]

• The Grothendieck-Witt ring Ŵ (F ) and the Witt ring W (F ): [Lam05, II.1], [Mil69,
§2]

• Pfister forms, the fundamental ideal I(F ) and its powers, and the graded Witt ring
gr∗W (F ) =

⊕
n I

n(F )/In+1(F ): [Lam05, X.1]

(A warning concerning notation: the Grothendieck-Witt ring, also known as Witt-
Grothendieck ring, is usually denoted either GW (F ) or Ŵ (F ). In [QM11], however,
GW (F ) is used to denote the graded Witt ring, which we will write as gr∗W (F ). The
graded Grothendieck-Witt ring coincides with the graded Witt ring in all positive degrees
[Mil69, first paragraph of §4].)

Talk 3: Galois cohomology

Begin by discussing group cohomology for a finite group G. In particular, explain how to
compute the cohomology of a cyclic group Z/n [GS06, 3.2.9].

Next, pass to profinite groups [SerCG, I; GS06, 4.2]. Explain how to compute the
cohomology of Ẑ [SerCG, I §2.2, Prop. 8; SerCL, XIII §1, Prop. 2].

Finally, discuss the basic properties of Galois cohomology, including the identification
of H∗(F, µn) with F×/(F×)n via Hilbert’s Theorem 90 [SerCL, X §1, Prop. 2; GS06,
4.3.6]. In particular, using our notation hi(F ) := H i(F,Z/2) and noting that Z/2 ∼= µ2
(canonically), we find h1(F ) ∼= F×/(F×)2.

In the end, you should have covered all material in [QM11, §4 and §§5.1–5.2], except the
very last statement (Thm 5.5).

Talk 4: Quaternion algebras

Present [Lam05, III.1 and 2] and explain:

(a) How to view a quaternion algebra as a quadratic space, and, in fact, as a two-fold
Pfister form.
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(b) How to view a quaternion algebra as an element of h2(F ) = H2(F,Z/2) using the
second identification below:

H2(F, F×
s ) ∼= Br(F )

h2(F ) ∼= 2Br(F )

Here, Br(F ) is the Brauer group of F , and 2Br(F ) is its two-torsion subgroup.
The first isomorphism appeared in last semester’s seminar. [SerCL, X §5, Prop. 9;
GS06, 4.4] The second follows via Hilbert’s Theorem 90.

Talk 5: Milnor’s K-theory and his conjectures

Introduce Milnor K-theory [Mil69, §1; QM11, 1.1] and discuss its relation with symbols
[Kup, 2.1–2.3] For an example calculation, perhaps use [Mil69, 1.4] = [Lam05, Thm X.6.10]
on non-real fields.

Next, explain how to obtain the surjective ring homomorphism s [Mil69, 4.1; QM11, §2.4]
and the ring homomorphism h [Mil69, 6.1; QM11, 5.5]. State Milnor’s implicit conjectures:
[Mil69, 4.3 and sentence above 6.2] and explain why they hold in degrees zero and one.

As for degree two, we will see an elementary proof that s2 is bijective in the next talk.
Discuss here the significance of the bijectivity of h2 (Merkurjev’s Theorem), as discussed
in [Lam05, V.6].

Talk 6: Stiefel-Whitney classes

Discuss Milnor’s Stiefel-Whitney classes wi for quadratic forms with values in k∗ [Mil69,
§3]. Use these classes to prove that s2 is bijective [Mil69, 4.1]. Also, explain Milnor’s
proof that sn is an isomorphism in all degrees for global fields [Mil69, 4.2 and 4.5]. Simply
assume Tate’s computations of k∗(F ) for now—we may return to them later (see talk on
global fields below).

By composing with h, we obtain Stiefel-Whitney classes with values in Galois cohomology.
In degrees one and two, these coincide with certain classical invariants on the Grothendieck-
Witt ring: w1 is the discriminant (i. e. the determinant modulo two), and w2 is the
Hasse-invariant [Lam05, V.3.17].

Finally, point out that while, by definition, w1 is e1 and w2 is e2, the higher invariants
ei := his

−1
i are much more mysterious.
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Part II: Examples

Talk 7: Algebraically closed fields and real closed fields

• For C, all the rings above are isomorphic to Z/2, concentrated in degree zero. More
generally, this is true for any algebraically closed field.

To prove this for k∗, use [Lam05, V.6.15] together with the fact that k∗ is generated in
degree one.

• For R, all the rings above are isomorphic to Z/2[x], with x of degree one. More
generally, this is true for any real closed field.

For k∗, see [Mil69, eg. 1.6] or [Lam05, X.6.9]. From here, the fact that s is an isomor-
phism could again be deduced using [Mil69, 4.2], thus yielding a computation of gr∗W .
Alternatively, gr∗W can be computed directly: note that any real closed field is euclidean
[Lam05, VIII.1.8] and use [Lam05, II.3.2].

Talk 8: Finite fields

Show that the Milnor Conjectures hold for finite fields [Mil69, 4.6 and 6.2] through direct
computations of all invariants involved. These can be found in:

• W ∗(Fq): [Lam05]

• h∗(Fq): Gal(Fq) = Ẑ [GS06, 4.1.5], whose cohomology we have already computed
(c. f. talk on Galois cohomology)

• k∗(Fq): [Mil69, eg. 1.5]

Also mention the following result:

• Let F1 ⊂ F2 ⊂ F3 ⊂ . . . be a sequence of subfields of F , with union F . If the
Milnor Conjectures hold for each Fi, they also hold for F .

The idea here is simply to check that all three invariants “commute with colimits”.
(For h∗, this follows from [SerCG, I §2.2, Prop. 8], which has already been used in the
computation of Ẑ.) Thus, for example, the conjectures hold not just for the algebraic
closure F̄p =

⋃
n Fpn but also for

⋃
n Fp2n ,

⋃
n Fp3n etc.
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Talk 9: Complete valued fields

By a complete valued field we mean a field complete with respect to a discrete valuation,
for example the field of formal Laurent series F̄ ((t)) over an arbitrary field F̄ . Discuss
the following result on s:

• Let F be a complete valued field with residue field F̄ . If s is an isomorphism for F̄ ,
then it is also an isomorphism for F . [Mil69, 5.2]

It will easily follow from two versions of “Springer’s Theorem”:

• Springer’s Theorem for the Witt ring [Lam05, VI.1]

• Milnor’s “Springer’s Theorem for K∗” [Mil69, 2.6]

Milnor also proves a similar result for h, but only in a special case:

• If h is an isomorphism for a field F̄ , then h is also isomorphism for F̄ ((t)). [Mil69, 6.3]

Talk 10: Local fields

Both Lam and Milnor understand “local fields” to be non-archimedean, so we will follow
the same convention here. Thus, a local field is either of the form F((t)) with F finite
or it is a finite extension of Qp.

1 These local fields are precisely the complete valued
fields whose residue fields are finite. Thus, the conjectures have mostly been verified in
Talks 8 and 9: the conjecture concerning s has been verified for all local fields, and the
conjecture concerning h has been verified at least for F((t)).

Here, we complete the verification of Milnor’s conjectures for all local fields by explicitly
calculating:

(a) gr2W (F ) ∼= k2(F ) ∼= h2(F ) ∼= Z/2

(b) gr∗W (F ), k∗(F ) and h∗(F ) vanish in degrees > 2.

For the degree two statement (a), we need:

• There exists a unique quaternion division algebra over each local field. [Lam05,
VI.2.10]

• The Brauer group of a local field is Br(F ) = Q/Z, so h2(F ) = 2Br(F ) = Z/2.
[SerCL, XII §3, Thm 2]

Indeed, the first bullet point implies that the image of h2 is Z/2, so combined with the
second we find that h2 is surjective. Moreover:

• The dimension and the Stiefel-Whitney classes w1 and w2 with values in Galois
cohomology are a complete set of invariants for quadratic forms over local fields.
[Lam05, VI.2.12].

1The only other two fields usually included under the heading “local” are R and C.
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In particular, w2 = e2 is injective, and thus the degree two statement (a) follows.

For statement (b), we first deduce from the previous considerations that gr∗W ∼= k∗
vanishes in higher degrees. Then all we are left to show is that cd2F = 2 for a local field
of char 6= 2. This is a special case of [SerCG, II §4.3, Prop. 12].

Talk 11: Transcendental extensions

For a purely transcendental extension F (t), Milnor obtains the following result:

• If s is an isomorphism for every finite extension of F , then it is also an isomorphism
for F (t). [Mil69, 5.8]

For example, it follows that s is an isomorphism for the fields Fq(t). This will be
generalized in the talk on global fields.

Present Milnor’s proof of the above result. In particular, go over the constructions of the
short exact sequences of the form:

0→ Kn(F )→ Kn(F (t))→
⊕

πKn−1(Fπ)→ 0

0→W (F )→W (F (t))→
⊕

πW (Fπ)→ 0

For the first, see [Mil69, §2]; for the second, see [Mil69, 5.3]/[Lam05, IX.3].

Mention the analogous results for Q. [Lam05, VI.4]

Talk 12: ?Global fields

A global field is either a number field (i. e. a finite extension of Q) or a function field of a
curve over a finite field (i. e. a finite extension of Fq(t)). Tate showed that for any such
field F , we have a short exact sequence and isomorphisms as follows:

0→ k2(F )→
⊕

νk2(Fν)→ Z/2→ 0

kn(F ) ∼=
⊕

νkn(Fν) ∀ n ≥ 3

Here, Fν runs over all completions of F . Each such completion is either a local field
or isomorphic to R or C. By our previous computations, only the real completions are
relevant for n ≥ 3.

Explain where Tate’s results and corresponding results for gr∗W (F ) and h∗(F ) come
from, and why the Milnor Conjectures hold. For s, there are several options:

Option Milnor-Tate: Discuss Tate’s original computation, and remind us of Milnor’s
quick corollary that s is an isomorphism (c. f. talk on Stiefel-Whitney classes above). The
computations are presented in the appendix to Milnor’s paper:
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• The statement on k2 is [Mil69, A1]. As we already know that k2F ∼= gr2W (F ) for
any field F , we can alternatively obtain this statment via a computation of gr2W
(c. f. next option, in particular [Lam05, VI.3.11 and the following remark]).

• The isomorphisms in higher degrees are stated in [Mil69, A2]. They are proved
using the theory of ideles.

Option Elman-Lam: Discuss Elman and Lam’s proof that s is an isomorphism for all
local and global fields, compute gr∗W (F ), and obtain Tate’s result on k∗ “for free”. The
main ingredients are:

• The Hasse-Minkowski principal for quadratic forms. [Lam05, VI.3.1]
— This principal allows us to compute gr∗W (F ). [Lam05, VI.3.9, 3.11 and the
following remark; X.6.28]

• Global and local fields are linked. [Lam05, VI.3.6]
— This statement obviously requires some background on linkage of quaternion
algebras, in particular Albert’s Theorem. [Lam05, III.4]

• The map s is an isomorphism for linked fields. [Lam05, X.6.27]
— The proof uses the theory of linkage of Pfister forms. [Lam05, X.5]

Either option is probably enough to fill a talk, but if your adrenalin level is high, you can
go on to discuss h∗(F ) and the map h. (Follow the references in [Mil69, proof of 6.2].)

Part III: Complements

Talk 13: ?Merkurjev’s Theorem

Discuss some aspect(s) of Merkurjev’s proof that h2 is an isomorphism, for example
“Hilbert 90 for K2”. See for example [Wad86], [Ker90] or [GS06].

Talk 14: ?Arason and Pfister’s Hauptsatz

There is another “conjecture” in [Mil69]: Milnor asks whether the filtration of W (F ) by
powers of the fundamental ideal I(F ) is Hausdorff, i. e. whether

⋂
n I(F )n = 0. This is

indeed the case, and was proved soon after the paper had appeared. It is an immediate
consequence of the following “Haupsatz” of Arason and [AP71]:

• A positive-dimensional anisotropic form q ∈ In(F ) has dimension at least 2n.

Illustrate this statement using the examples we have seen, and discuss its proof (c. f.
[Lam05, X.4 and X.5]).
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Talk 15: ?Milnor K-theory versus Quillen’s K-theory

In degrees greater than two, Milnor K-theory and Quillen K-theory generally differ.
Discuss some examples (see for example [Kup, §2]) and explain why “Milnor K-theory is
the simplest part of [Quillen] K-theory” [Tot92].
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