Übungen zur Einführung in die Algebra

Blatt 12

Aufgabe 1. Stellen Sie das symmetrische Polynom

$$f = X_1^3 + X_2^3 + X_3^3$$

als Polynom $f = Q(e_1, e_2, e_3)$ in den elementar-symmetrischen Polynomen

$$e_1 = X_1 + X_2 + X_3$$
, $e_2 = X_1X_2 + X_1X_3 + X_2X_3$, $e_3 = X_1X_2X_3$

dar.

Aufgabe 2. (i) Sei $K = \mathbb{Q}$. Geben Sie zwei Kubiken $f, g \in K[X]$ an so, daß der Zerfällungskörper von f Grad drei hat, und der Zerfällungskörper von g Grad sechs hat.

(ii) Machen Sie das gleiche über dem Körper $K=\mathbb{F}_2(T),$ wobei T eine Unbestimmte ist.

Aufgabe 3. Sei K ein Körper, $f \in K[X]$ ein separables Polynom, und $K \subset L$ ein Zerfällungskörper dazu. Wir betrachten die Menge der Wurzeln $R = \{\lambda \in L \mid f(\lambda) = 0\}$ und die Wirkung der Galois-Gruppe

$$\operatorname{Gal}(L/K) \times R \longrightarrow R, \quad (\sigma, \lambda) \longmapsto \sigma(\lambda).$$

Beweisen Sie, daß diese Gruppenwirkung transitiv ist genau dann, wenn das Polynom $f \in K[X]$ irreduzibel ist.

Aufgabe 4. Sei $K \subset L$ eine endliche Galois-Erweiterung. Angenommen, die Galois-Gruppe $G = \operatorname{Gal}(L/K)$ ist isomorph zu einem semidirekten Produkt $G = H \rtimes_{\phi} K$ von zwei Untergruppen $H, K \subset G$. Seien $E = L^H$ und $F = L^K$ die entsprechenden Fixkörper.

- (i) Zeigen Sie mittels der Galois-Korrespondenz, daß $L = K(E \cup F)$ gilt.
- (ii) Folgern Sie daraus, daß die kanonische Abbildung

$$E \otimes_K F \longrightarrow L, \quad \lambda \otimes \mu \longmapsto \lambda \mu$$

bijektiv sein muss.

Abgabe: Bis Donnerstag, 6.7. um 9:10 Uhr in den Zettelkästen.

Klausur: Donnerstag, der 13.7. von 9:00-11:00 Uhr st. im Hörsaal 5E Die Zulassung wird durch Aushang bekanntgegeben.

Erlaubte Hilfsmittel: 2 Blatt (= 4 Seiten) handschriftliche Notizen. Bitte bringen Sie Papier und Kugelschreiber mit.

Seminarvorbesprechung:

Im WS 06/07 findet ein Seminar über *Kommutative Algebra* statt. Die erste Vorbesprechung mit Vortragsverteilung ist am Donnerstag, den 13.7. gegen 15:45 Uhr im Seminarraum 25.22.01.81, im Anschluß an das laufende Seminar.