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A radical γ of rings is said to have the Amitsur property if for all rings A, γ(A[X]) =
(γ(A[X])∩A)[X]. Let Xα denote a set of indeterminates of cardinality α. We say that γ
has the α-Amitsur property if for all rings A, γ(A[Xα]) = (γ(A[Xα])∩A)[Xα]. We study
properties of this type of radicals and show relationships with other known radicals for
rings.

A ring A is said to be an absolute γ-ring if A[x1, . . . , xn] ∈ γ, for any n ∈ N. We
show that A is an absolute G-ring for the Brown–McCoy radical G, if and only if A is
in the radical class S determined by the unitary strongly prime rings. Moreover, A is an
absolute nil ring if and only if A is an absolute J-ring, where J denotes the Jacobson
radical.

Keywords: Radical theory (16N20, 16N40, 16N80); polynomial rings; Amitsur property.

1. Introduction

In this paper, rings are associative, not necessarily with identity. The notation I�A
and L�l A means that I is an ideal and L is a left ideal in a ring A, respectively.

Recall that a (Kurosh–Amitsur) radical γ is a class of rings which

(i) is closed under homomorphic images,
(ii) is closed under extensions ( I and A/I in γ imply A ∈ γ),
(iii) has the inductive property (if I1 ⊆ I2 ⊆ · · · ⊆ Iλ ⊆ · · · is a chain of ideals of

the ring A =
⋃
Iλ and each Iλ is in γ, then A is in γ).

For a radical γ, the semisimple class of γ is defined as

Sγ = {A |A a ring with γ(A) = 0}.
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As usual, L(M) will stand for the lower radical induced by a class M of rings.
For basic notions of radical theory we refer to [5] and [20].

Notation 1.1. The following symbols are used:
β the Baer (prime) radical, [5],
L the Levitzki radical, [5],
N the Köthe (nil) radical, [5],
u the uniformly strongly prime radical, [17]
S the unitary strongly prime radical, [4]
J the Jacobson radical,
G the Brown–McCoy radical.

An important issue in radical theory is to describe the radical of a polynomial
ring. This leads to a notion introduced in [10]:

Definition 1.2. A radical γ of rings is said to have the Amitsur property if for any
ring A,

γ(A[x]) = (A ∩ γ(A[x]))[x].

This property of radicals was considered in several papers, e.g. [3–5, 8, 10, 12,
17, 19]. We note that all the radicals listed in 1.1 have the Amitsur property.

2. The α-Amitsur Property

Let X be a set of commuting indeterminates. To indicate that card X = α we write
Xα. Here α may be infinite.

The following observation from [3] will be needed.

Lemma 2.1. Let γ be a radical of rings. For any element f ∈ Z[Xα],

fγ(A[Xα]) ⊆ γ(A[Xα]).

Proof. Clearly fγ(A[Xα]) �A[Xα]. Since γ(A[Xα]) is an ideal of A[Xα], we have

B = γ(A[Xα]) + fγ(A[Xα]) �A[Xα].

Let ϕ be the natural homomorphism ϕ : B → B/γ(A[Xα]), and define the surjective
ring homomorphism

ψ : γ(A[Xα]) → B/γ(A[Xα]), a �→ ϕ(f · a).

Thus B/γ(A[Xα]) ∈ γ and, by extension closure, B ∈ γ and B ⊆ γ(A[Xα]). This
implies fγ(A[Xα] ⊆ γ(A[Xα]).

Proposition 2.2. If γ is a radical then, for any ring A,

(A ∩ γ(A[Xα]))[Xα] ⊆ γ(A[Xα]).
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Proof. Since (A ∩ γ(A[Xα]))[Xα] = (A ∩ γ(A[Xα]))Z[Xα] and A ∩ γ(A[Xα]) ⊆
γ(A[Xα]), Lemma 2.1 yields

(A ∩ γ(A[Xα]))[Xα] ⊆ γ(A[Xα]).

Definition 2.3. Let α be a cardinal. We say that a radical γ has the α-Amitsur
property if for all rings A,

γ(A[Xα]) = (A ∩ γ(A[Xα]))[Xα],

and γ has the strong α-Amitsur property if for all rings A,

γ(A[Xα]) = γ(A)[Xα].

If α = 1, then the 1-Amitsur property is just the Amitsur property and the
strong 1-Amitsur property is called the strong Amitsur property.

For any radical γ we define the class

γα = {A |A a ring with A[Xα] ∈ γ}.
Note that γα is a radical for any radical γ and

γ1 ⊇ · · · ⊇ γα ⊇ · · · .
Theorem 2.4. For a radical γ and a cardinal α, the following are equivalent.

(a) γ has the α-Amitsur property;
(b) γ(A[Xα]) ∩A = 0 implies γ(A[Xα]) = 0;
(c) A[Xα] ∈ Sγ for any A ∈ Sγα.

Proof. (a) ⇒ (c). Suppose A ∈ Sγα. Since γ has the α-Amitsur property,

γ(A[Xα]) = (γ(A[Xα]) ∩A)[Xα] ∈ γ,

thus γ(A[Xα]) ∩A ∈ γα ∩ Sγα = 0. Hence γ(A[Xα]) = 0 and A[Xα] ∈ Sγ.

(c) ⇒ (b). Let γ(A[Xα])∩A = 0. Clearly γα(A) ∈ γα. Therefore (γα(A))[Xα] ∈ γ

and (γα(A))[Xα] ⊆ γ(A[Xα]). Hence

(γα(A))[Xα] ∩A ⊆ γ(A[Xα]) ∩A = 0.

Thus γα(A) = 0 and A ∈ Sγα. By (c) we have γ(A[Xα]) = 0.

(b) ⇒ (a). Put I = γ(A[Xα]) ∩ A. By Proposition 2.2, I[Xα] ⊆ γ(A[Xα]). We
know that for any radical γ,

γ(A[Xα])/I[Xα] = γ(A[Xα]/I[Xα]) ∼= γ(B[Xα]),

where B = A/I. Thus

γ(B[Xα]) ∩B ∼= (γ(A[Xα])/I[Xα]) ∩ ((A+ I[Xα])/I[Xα])

= (γ(A[Xα]) ∩ (A+ I[Xα]))/I[Xα]

= ((γ(A[Xα]) ∩A) + I[Xα])/I[Xα]

= (I + I[Xα])/I[Xα] = 0.
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Thus γ(B[Xα]) ∩B = 0. Hence I[Xα] ⊇ γ(A[Xα]) and

γ(A[Xα]) = I[Xα] = (γ(A[Xα]) ∩A)[Xα].

Corollary 2.5. Let γ be a radical. Then the following are equivalent.

(a) γ has the α-Amitsur property;
(b) If γ(A[Xα]) 	= 0, then γ(A[Xα]) ∩A 	= 0, for any ring A.
(c) If γ(A[Xα]) 	= 0 then γα(A) 	= 0, for any ring A.

Proposition 2.6. Let γ have the α-Amitsur property. Then γ has the β-Amitsur
property for all β with α ≤ β.

Proof. We claim that γ(A[Xβ]) 	= 0 implies A ∩ γ(A[Xβ ]) 	= 0. Since Xβ consists
of commuting indeterminates,

0 	= γ(A[Xβ]) = γ((A[Xβ\Yα])[Yα]) = (A[Xβ\Yα] ∩ γ(A[Xβ ]))[Yα]

for any subset Yα of Xβ with card Yα = α. Clearly, for any 0 	= a ∈ γ(A[Xβ ]), there
exist elements xι1 , . . . , xιn(a) of Xβ. such that

a =
∑

ai1,...,in(a)x
α1
i1
. . . x

αn(a)
in(a)

,

where ai1,...,in(a) ∈ A and for each xij there exists a component αj 	= 0 such that

ai1,...,in(a)x
α1
i1
. . . x

αin(a)
in(a)

	= 0 or a ∈ A.
We call the number of nonzero summands of a the length of a and denote

it by l(a). Suppose that A ∩ γ(A[Xβ ]) = 0. Clearly 1 ≤ l(a) for each nonzero
a ∈ γ(A[Xβ ]). Now choose a nonzero element a ∈ γ(A[Xβ]) with l(a) minimal.

If all xi1 , . . . , xin(a) ∈ X ′
α of a, for a subset X ′

α ⊆ Xβ such that card X ′
α = α,

then all ai1,...,in(a) ∈ A[Xβ\X ′
α] ∩ γ(A[Xβ ]). Since ai1,...,in(a) ∈ A,

ai1,...,in(a) ∈ A[Xβ\X ′
α] ∩ γ(A[Xβ]) ∩A ⊆ γ(A[Xβ ]) ∩A = 0.

Therefore a = 0, a contradiction. Hence {xi1 , . . . , xin(a)} � X ′
α for each X ′

α.
Now consider xi1 , . . . , xis /∈ X ′

α, where 1 ≤ s < n(a) and xis+1 , . . . , xin(a) ∈ X ′
α,

without loss of generality. Then

0 	= a =
∑
fs(xi1 , . . . , xis)xαs+1

is+1
. . . xαn

in(a)

∈ γ(A[Xβ] = ((A[Xβ\X ′
α]) ∩ γ(A[Xβ ]))[X ′

α]

and we also have

fs = fs(xi1 , . . . , xis) ∈ (A[Xβ\X ′
α]) ∩ γ(A[Xβ ]).

If l(fs) = l(a) we can take fs instead of a. Then the number of indeterminates
in fs is less than that in a. Continuing the above procedure we can find some
fk ∈ γ(A[Xβ ]) and fk ∈ γ(A[X ′

α]) for some α, contradicting the above construc-
tion. Therefore l(fs) < l(a) and fs ∈ γ(A[Xβ]). Since a 	= 0, there exists some
fs 	= 0. This is a contradiction to l(a) being minimal. Thus A ∩ γ(A[Xβ ]) 	= 0. By
Corollary 2.5, γ has the β-Amitsur property.
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Corollary 2.7. Let γ be a radical.

(i) If γ has the Amitsur property, then it has the α-Amitsur property, for any
cardinal α.

(ii) If γ does not have the α-Amitsur property, then it does not have the α′-Amitsur
property for α′ ≤ α.

In [12], Puczy�lowski proved that γ̃(A[Xα]) = (A∩γ̃(A[Xα]))[Xα] for any cardinal
α and commuting indeterminates, where γ̃ is one of β,L,J or G. Our Corollary 2.7(i)
is a proper generalization of these results.

Definition 2.8. Let γ be a radical. A ring A is said to be an absolute γ-ring if
A[x1, . . . , xn] ∈ γ, for any 0 	= n ∈ N. It is easy to see that the class γ̄ of all absolute
γ-rings is a radical class and γ̄ =

⋂
n∈N

γn.

Definition 2.9. Let P denote a property an element of a ring may possess. It will
be assumed that the element zero always has this property.

A ring A is called a P-ring (see [18]), if each element a ∈ A is a P-element, that
is, a has property P. The fact that a ∈ A is a P-element in A we denote by a ∈ PA.

A radical γ is said to be P-radical if for any ring A,

γ(A) =
∑

{I �A | I is a P-ring}.

Lemma 2.10. Let γ be a P-radical. Then γ̄ = γN.
If γ has the N-Amitsur property, then for every ring A,

γ(A[XN]) = γ̄(A[XN]) = γ̄(A)[XN],

and γ̄ is the unique minimal radical such that γ(A[XN]) = γ̄(A[XN]).

Proof. Clearly γ̄ ⊇ γN. Let A ∈ γ̄ and consider the ring A[XN]. Then A[Xn] ∈ γ for
any n ∈ N. For any element a ∈ A[XN], there exists n ∈ N such that a ∈ A[Xn] ∈ γ.
Since γ is a P-radical, every element a ∈ A[XN] is a P-element, and a ∈ PA[XN].
Thus A[XN] ∈ γ and so A ∈ γN.

Now assume γ to have the N-Amitsur property. Then γ(A[XN]) = (A ∩
γ(A[XN]))[XN] ∈ γ. Hence A ∩ γ(A[XN]) ∈ γ̄. Since the elements in XN are com-
muting, (A ∩ γ(A[XN]))[XN] ∈ γ̄ and therefore

(A ∩ γ(A[XN]))[XN] ⊆ γ̄(A[XN]) ⊆ γ(A[XN]).

Thus γ(A[XN]) = γ̄(A[XN]) = (A ∩ γ(A[XN))[XN].
Clearly (A ∩ γ(A[XN]))[XN] ⊆ γ̄(A)[XN] ⊆ γ̄(A[XN]). Suppose γ(A[XN]) =

σ(A[XN]), for some radical σ. From above, γ̄(A) ∈ σ for every ring A. Thus γ̄ ⊆ σ.
The proof is complete.

Corollary 2.11. Let γ be a P-radical. If γ(A[XN]) = σ(A[XN]) = σ(A)[XN] for a
radical σ, then σ = γ̄.
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Proof. Clearly σ ⊆ γN = γ̄. By assumption, γ has the N-Amitsur property. By
Lemma 2.10, γ̄ is unique minimal, hence σ = γ̄.

Proposition 2.12. Let γ be a P-radical with the N-Amitsur property. Then any
radical σ such that γ̄ ⊆ σ ⊆ γ has the N-Amitsur property and, for any ring A,

γ(A[XN]) = σ(A[XN]) = σ̄(A)[XN] = γ̄(A)[XN].

Proof. By assumption, γ̄(A[XN]) ⊆ σ((A[XN]) ⊆ γ(A[XN]). In view of Lemma 2.10
and Corollary 2.11,

γ(A[XN]) = γ̄(A[XN]) = σ̄(A)[XN].

Therefore γ(A[XN]) = γ̄(A[XN]) = σ̄(A[XN]).
If γ(A[XN]) 	= 0, then 0 	= γ̄(A) ⊆ σ(A[X ]) ∩ A. By Corollary 2.5, σ has the

N-Amitsur property.

Definition 2.13. We say that a class M of rings is α-polynomially extensible if for
all rings A ∈M , A[Xα] ∈M .

Clearly, if a class M of rings is 1-polynomially extensible, then M is
n-polynomially extensible for any n ∈ N.

Proposition 2.14. The class of all polynomially extensible radicals form a com-
plete sublattice of the lattice of all radical classes.

Proof. The intersection property is clear.
Let A ∈ L(

⋃
i∈I γi) = σ, where each γi is a polynomially extensible radical.

Suppose A[x] /∈ σ, i.e., A[x]/σ(A[x]) 	= 0. Then Ā = (A + σ(A[x]))/σ(A[x]) 	= 0
since otherwise, by Lemma 2.1, A[x] ⊆ σ(A[x]), a contradiction.

Since A ∈ σ, 0 	= Ā ∈ σ. We have γi(A) 	= 0 for some i. By assumption
0̄ 	= γi(Ā)[x] ∈ γi ⊆ σ. Thus σ(A[x]/σ(A[x])) 	= 0̄, a contradiction.

Corollary 2.15. For any radical class γ, the radical class of absolute γ-rings is
equal to the largest polynomially extensible subradical σ in γ.

Proof. By Definition 2.8, the class of all absolute γ-rings is equal to γ̄ =
⋂

n∈N
γn.

Let A ∈ γ̄ and A[x] /∈ γ̄. Then there exists some n ∈ N such that A[x] /∈ γn.
But for any s ∈ N, A[x1, . . . , xs] ∈ γ. Choosing n + 1 < s we get A[x1] ∈ γn, a
contradiction. Thus γ̄ is polynomially extensible. By Proposition 2.14, there exists
a unique largest polynomially extensible subradical σ ⊆ γ. Hence γ̄ ⊆ σ. Let A ∈ σ.
Since σ is polynomially extensible, A[x1] ∈ σ and in fact A[x1, . . . ., xn] ∈ σ for all
n ∈ N. Thus A is an absolute γ-ring and therefore A ∈ γ̄.

Definition 2.16. Let Z〈x, y1, . . . , yn, . . .〉 and Z〈x, y1, . . . , yn〉 denote the polyno-
mial rings over the integers Z in non-commuting indeterminates x, y1, . . . , yn, . . . and
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x, y1, . . . , yn, respectively. The subrings of polynomials with zero constant term will
be denoted by H and Hn, for n = 0, 1, 2, . . . , respectively. Furthermore, let G be a
nonempty subset of H and Gn = G ∩Hn. For any ring A consider the set

PG(A) = {f(x, b1, . . . , bn) | n = 0, 1, 2, . . . , f ∈ Gn, bi ∈ A}.
For an element a ∈ A, let PG denote the property that there exists a polynomial
f(x, b1, . . . , bn) ∈ PG(A) such that f(a, b1, . . . , bn) = 0.

Theorem 2.17. For a ring A the following are equivalent:

(a) A is an absolute G-ring;
(b) A is an absolute S-ring;
(c) A ∈ Ḡ =

⋂
n∈N

Gn;
(d) A ∈ S;
(e) A ∈ σ where σ is the unique largest polynomially extensible subradical of G;
(f) for any f ∈ A[Xk], k ∈ N, there exist n,m ∈ N and elements a1, . . . , am,

b1, . . . , bm ∈ A[Xk] such that fn =
∑m

i=1 ai[f, bi], where [f, bi] is the commuta-
tor of f and bi;

(g) for any f ∈ A[XN], there exist n,m ∈ N and elements a1, . . . , am, b1, . . . , bm ∈
A[XN] such that fn =

∑m
i=1 ai[f, bi];

(h) A ∈ GN = {A | A a ring with A[XN] ∈ G}.
The assertions (f), (g) and (h) also hold for non-commuting indeterminates.

Proof. Define

G = {x+
∑l

i=1 yizi +
∑l

i=1 yixzi |x, yi, zi are free generators of
Z〈x, yi, zi〉, i, l ∈ N}

and consider PG as defined in Definition 2.16. We know that G is a PG-radical
and since G has the Amistur property, by Corollary 2.7(i), G has the N-Amitsur
property. Therefore, in view Lemma of 2.10, Corollary 2.11, 2.15 and [4,
Theorem 5.1], we have Ḡ = S = σ = GN, and A is an absolute G-ring if and
only if it is an absolute S-ring. Thus the assertions (a) to (e) are equivalent.

(c) ⇒ (h). Suppose A ∈ Ḡ. Then by Lemma 2.10,

G(A[XN]) = Ḡ(A)[XN] = A[XN],

and we have A ∈ GN.

(h) ⇒ (g). Let A ∈ GN. Then A[XN] ∈ G and since A[XN ∪ x] ∼= A[XN] ∈ G,
we have A[XN][x] ∈ G, therefore A[XN] ∈ G1. By [18, Corollary 7.6], for any
f ∈ A[XN], there exist n,m ∈ N and elements a1, . . . , am, b1, . . . , bm ∈ A[XN], such
that fn =

∑m
i=1 ai[f, bi].

(g) ⇒ (f). Let A be a ring satisfying the condition in (f). A[Xk] is a homo-
morphic image of A[XN], hence for f ∈ A[Xk], there exists g ∈ A[XN] such that
f = ḡ. Therefore fn = ḡn =

∑
āi[ḡ, b̄i] where āi, b̄i ∈ A[Xk].
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(f) ⇒ (c). Let A be a ring with the condition in (f). Then, for every f ∈ A[Xk],
there exist n,m ∈ N and elements ai, bi ∈ A[Xk], i ≤ m, satisfying the condition
in (f). Therefore, again by [18, Corollary 7.6], A[Xk] ∈ G1 for each k ∈ N. Thus
A[Xk] ∈ G for every k ∈ N. This shows that A is an absolute G-ring, hence A ∈ Ḡ.

The fact that (f), (g) and (h) also hold for non-commuting indeterminates was
observed in [4, Remark 3.2] (referring to [12, 1.6] and [8, Corollary 13]).

This completes the proof of Theorem 2.17.

Denote by S1 the subclass of S consisting of all unitary strongly prime rings R
with nonzero pseudo radical (see [4]),

0 	= ps(R) =
⋂

{I �R | 0 	= I prime ideal in R}.

Putting S2 = S\S1, Ferrero and Wisbauer proved in [4] that for R ∈ S2 and any
0 	= a ∈ R, there exists some n ∈ N and an ideal M of R[Xn], such that R[Xn]/M
is a simple ring with unit and a /∈ M ∩R. If R is a simple ring without unit, then
A[x] ∈ G (see [14]). In [4] this result was extended: If A is a simple ring without
unit, then A[Xn] ∈ G for any n ∈ N. This is again extended by the next corollary.

Corollary 2.18.

(i) If A is an S-semisimple ring, then for any 0 	= a ∈ A there exists an n ∈ N
and an ideal M of A[Xn] for which A[Xn]/M is a simple ring with unit and
a /∈M ∩A.

(ii) If A[Xn] ∈ G, for all n ∈ N for commuting indeterminates Xn, then A[X ] ∈ G
for any commuting or non-commuting indeterminates X.

(iii) The unitary strongly prime radical S is the unique largest polynomially exten-
sible subradical in G.

Proof. (i) Assume that A is an S-semisimple ring. Consider the chain of ideals
of A,

A ⊇ G1(A) ⊇ · · · ⊇ Gn(A) ⊇ · · · .
Since A is S-semisimple,

⋂
N

Gn(A) = 0. Therefore, for any 0 	= a ∈ A, there exists
n ∈ N such that a ∈ Gn−1(A) and a /∈ Gn(A). Since G has the Amitsur property,
in view of Corollary 2.7(i) and Theorem 2.4, An[Xn] = (A/Gn(A))[Xn] ∈ SG.
Therefore An[Xn] is a subdirect product of simple rings with unit. Choose b 	= 0
as an image of a. Then An[Xn] has a factor ring An[Xn]/K which is a simple ring
with unit and contains a nonzero image c of b. Since An[Xn]/K is a homomorphic
image of A[Xn]/Gn(A)[Xn] such that K ⊇ (Gn(A))[Xn] and also An[Xn]/K ∼=
A[Xn]/K � c 	= 0 we conclude that a /∈ A ∩K.

(ii) Let A[Xn] ∈ G, for all n ∈ N. Then by the above theorem A ∈ S. Therefore
A[X ] ∈ G for all X .

(iii) This follows from Corollary 2.15.
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Now we consider the Jacobson radical J and the nil radical N.

Theorem 2.19.

(i) For any ring A, J(A[XN]) = N(A[XN]) = N̄(A)[XN] = J̄(A)[XN] for commut-
ing indeterminates XN.

(ii) J(A[XN]) = N(A[XN]) for non-commuting XN and in general

J(A[XN]) 	= J̄(A)[XN].

(iii) N̄ is the unique largest polynomially extensible subradical in N and J.
(iv) β = β̄ ⊂ L̄ = L ⊂ N̄ = J̄ ⊂ S̄ = S = Ḡ ⊂ G.

Proof. (i) We know that J1 ⊆ N, therefore we have J̄ ⊆ N. Put G = {x+ y+xy}
and consider PG as defined in Definition 2.16. Then J is PG-radical and has the
Amitsur property and also the N-Amitsur property. By Proposition 2.12, we have

J(A[XN]) = N(A[XN]) = N̄(A)[XN] = J̄(A)[XN].

(ii) Puczy�lowski proved in [12] that J(A[XN]) = L(A)[XN] for non-commuting
indeterminates. Therefore J(A[XN]) = N(A[XN]) = L(A)[XN]. But in [7], Golod
constructed an absolutely nil and non-locally nilpotent algebra B. Therefore
J(B[XN]) 	= J̄(B)[XN].

(iii) follows from (i) and Corollary 2.15.
(iv) L � N̄ follows from Golod’s example and J̄ � S̄ is a consequence of Corol-

lary 2.18.

We note that Theorem 2.19(iv) is a proper generalization of [9, Theorem 3.3].

Corollary 2.20. For a ring A, the following are equivalent:

(a) A is an absolute nil ring;
(b) A is an absolute J-ring;
(c) for any f ∈ A[Xn], n ∈ N, there exists g ∈ A[Xn] with f + g + fg = 0;
(d) for all n ∈ N, A[Xn] is a nil ring;
(e) A[XN] is a nil ring;
(f) A[XN] is a Jacobson radical ring.

Proof. (a) ⇔ (b). It follows from Theorem 2.19(i) that N̄ = J̄.

(b) ⇒ (f). Let A ∈ J̄. Then by Theorem 2.19(i), A[XN] ∈ J.

(f) ⇒ (e). If A[XN] ∈ J, then A[XN ∪ x] ∼= A[XN] ∈ J. Thus A[XN] ∈ N.

(e) ⇒ (d) ⇒ (c) ⇒ (b) is clear.

Amitsur proved that a nil algebra A over an infinite field F is absolutely nil
if and only if A is an LBL-algebra (every finitely generated submodule of A is of
bounded index, see [1]).
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Remark 2.21. Let γ be a radical. If A[Xα] ∈ γ for some α, then A[x] ∈ γ.

Recall from Definition 2.3 that a radical γ has the strong α-Amitsur property if
γ(A[Xα]) = γ(A)[Xα].

Proposition 2.22. For a radical γ and a cardinal α, the following are equivalent.

(a) Sγ and γ are α-polynomially extensible;

(b) γ(A[Xα]) = γ(A)[Xα].

Proof. (a) ⇒ (b). From (a) we have γ(A)[Xα] ∈ γ. Since

γ(A)[Xα] �A[Xα], γ(A)[Xα] ⊆ γ(A[Xα]),

we know that γ(A[Xα]/γ(A)[Xα]) = γ(A[Xα])/γ(A)[Xα]. Again by (a),

0 = γ(A/γ(A))[Xα] ∼= γ(A[Xα]/γ(A)[Xα])

and thus γ(A[Xα]) = γ(A)[Xα].

(b) ⇒ (a). This is clear, since for A ∈ γ, γ(A[Xα]) = γ(A)[Xα] = A[Xα] and for
A ∈ Sγ, γ(A[Xα]) = γ(A)[Xα] = 0[Xα] = 0.

Theorem 2.23. Let γ be a P-radical. Then γ has the strong Amitsur property if
and only if γ has the strong α-Amitsur property for some (or any) cardinal α.

Proof. ⇒. By Proposition 2.22, if A ∈ γ, then A[Xn] ∈ γ, and A ∈ Sγ implies
A[Xn] ∈ Sγ, for any n ∈ N. Hence, again by Proposition 2.22, γ has the strong
n-Amitsur property. Suppose α is infinite and A ∈ Sγ. For any a ∈ A[Xα], there
exist xi1 , . . . , xin ∈ Xα and ai1,...,in ∈ A such that a =

∑
ai1,...,inx

α1
i1
. . . xαn

in
. Then

A[xi1 , . . . , xin ] ∈ Sγ as above. But A[xi1 , . . . , xin ] is a homomorphic image ofA[Xα].
Since a is an arbitrary element, A[Xα] is a subdirect product of γ-semisimple rings.
Since Sγ is subdirectly closed, A[Xα] ∈ Sγ.

Let A ∈ γ. For every a ∈ A[Xα], there exists n ∈ N such that a ∈ A[Xn]. Since
γ is a P-radical, for every element a of A[Xα], a ∈ PA[Xα]. Thus A[Xα] ∈ γ. By
Proposition 2.22, γ has the strong α-Amitsur property.

⇐. Suppose γ has the strong α-Amitsur property and 1 < α. Suppose A ∈ γ.
Then A[Xα] ∈ γ. By Remark 2.21, A[X1] ∈ γ.

Suppose A ∈ Sγ and γ(A[x1]) 	= 0. Then from above

γ(A[x1])[x2, . . . , xn−1] ∈ γ and 0 	= γ(A[x1])[x2, . . . , xn−1] �A[Xn]

for any n ∈ N. If α is infinite, since γ is P-radical, γ(γ(A[x1])[Xα]) 	= 0. There-
fore γ(A[Xα]) 	= 0. Since γ has the strong α-Amitsur property, A[Xα] ∈ Sγ, a
contradiction.

The following corollary extends [4, Theorem 3.3] for commuting indeterminates.
In general it need not be true for non-commuting indeterminates.
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Corollary 2.24. Let γ be a P-radical with the α-Amitsur property. Then:

(i) γ̄(A[X ]) = γ̄(A)[X ], for all A, where X are commuting indeterminates.
(ii) γ̄ is the unique largest strong Amitsur radical in γ.

Proposition 2.25. The semisimple class of idempotent radicals (that is all radical
rings are idempotent) is polynomially extensible.

Proof. Let γ be an idempotent radical and γ(A[x]) 	= 0 and A ∈ Sγ. It is clear
that xA[x] is a subdirect product of nilpotent rings. Therefore γ(A[x]) � xA[x],
because γ(A[x]) is an idempotent ring. Note that

((γ(A[x]) + xA[x])/xA[x]) � (A[x])/xA[x] ∼= A ∈ Sγ.

Since γ(A[x]) � xA[x], we have

0 	= (γ(A[x]) + xA[x])/xA[x] ∼= γ(A[x])/(γ(A[x]) ∩ xA[x]) ∈ γ.

Therefore A contains a nonzero γ radical ideal, a contradiction.

Corollary 2.26.

(i) Every polynomially extensible idempotent radical has the strong Amitsur
property.

(ii) Every nonzero hereditary idempotent radical has the Amitsur property but not
the strong Amitsur property.

Proof. (i) This follows from Propositons 2.25 and 2.22.

(ii) If γ(A[x]) 	= 0 then γ(A[x]) ∩ xA[x] 	= 0 which is not idempotent. This is
impossible.

Theorem 2.27. Let γ be an idempotent radical. Then γ has the Amitsur property
if and only if it satisfies the condition

(T ) f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]).

Proof. ⇒. This follows from [11].

⇐. Suppose γ(A[x]) 	= 0. By a proof similar to that of Proposition 2.25, we get
γ(A[x]) � xA[x]. Therefore there exists 0 	= a0 + a1x + · · · + anx

n ∈ γ(A[x]) such
that a0 	= 0. Hence by condition (T), f(0) ∈ γ(A[x]) and by Corollary 2.5, γ has
the Amitsur property.

3. Lattice of Radicals with α-Amitsur Property

Recall that L(M) denotes the lower radical generated by a class M of rings and let
Λ be any index set.
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Proposition 3.1. Let {γi}i∈Λ be a family of radicals with the α-Amitsur property.
Then the radicals

γ = L(
⋃

Λ γi) and γo =
∧

Λ γi =
⋂

Λ γi

have the α-Amitsur property.
Thus, for any cardinal α, the class of radicals with α-Amitsur property is a

complete sublattice in the lattice of all radicals.

Proof. Let A be a ring such that γ(A[Xα]) 	= 0. Then there exists an i ∈ Λ, with
γi(A[Xα]) 	= 0. Since γi has the α-Amitsur property,

0 	= (A ∩ γi(A[Xα])[Xα] = γi(A[Xα]) ⊆ γ(A[Xα]).

Thus 0 	= A ∩ γ(A[Xα]) and, by Corollary 2.5, γ has the α-Amitsur property.
Now suppose γo(A[Xα]) 	= 0 for a ring A, and set

Iα =
{
ai1,...,in ∈ A

∣∣∣
∑

ai1,...,inx
i1
1 · · ·xin

n ∈ γo(A[Xα])
}
.

Denote by Iα the ideal of A generated by Iα. Then clearly

γo(A[Xα]) ⊆ Iα[Xα] and γi(Iα[Xα]) 	= 0 for every i ∈ Λ.

We set Ji = Iα ∩ γi(Iα[Xα]) and by the α-Amitsur property,

γi(Iα[Xα]) = Ji[Xα].

Since Iα �A we have Ji �A.
Now we claim that Iα = Ji for all i ∈ Λ. Clearly Ji ⊆ Iα and suppose Iα 	= Ji

for some i. Since Ji � A, there exists ai1,...,in ∈ Iα\Ji. Thus there is some 0 	=
f(Xα) ∈ γi(Iα[Xα]) such that f(Xα) = ai1,...,inx

i1
1 · · ·xin

n +g(Xα) where g(Xα) has
no member of xi1

1 · · ·xin
n .

Since γo(A[Xα]) ⊆ γi(Iα[Xα]) = Ji[Xα], all coefficients of f(Xα) are in Ji, a
contradiction. Thus Iα = Ji, for all i. Hence by Lemma 2.1, Iα[Xα] ⊆ γi(Iα[Xα]).
From this we have γo(Iα[Xα]) = Iα[Xα]. Since γo(A[Xα]) 	= 0, also Iα 	= 0 and
so 0 	= Iα ∩ Iα[Xα] ⊆ A ∩ γ(A[Xα]). By Corollary 2.5, γo has the α-Amitsur
property.

Corollary 3.2. Let α be a cardinal.

(i) Any radical contains a unique largest subradical with the α-Amitsur property.
(ii) For any radical γ there exists a unique minimal radical σ with α-Amitsur prop-

erty such that γ ⊆ σ.

Remark 3.3. Denote by Lα the lattice of radicals with the α-Amitsur property.
Then, by Corollary 2.7, we have the ascending chain

L1 ⊆ L2 ⊆ · · · ⊆ Lα ⊆ · · · .
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A radical γ is said to be hereditary (left, right, strongly hereditary), if I � γ(A)
(L �l γ(A), R �r γ(A), subring S ⊆ γ(A)) implies I ∈ γ (L ∈ γ, R ∈ γ, S ∈ γ),
respectively (see [5]).

We note the following (see [2, 5, 13, 16] and [15]).

Proposition 3.4. The class of all (left, right, strongly) hereditary radicals is a
complete sublattice in the lattice of all radical classes.

Corollary 3.5. The class of all (left, right, strongly) hereditary radicals with the
α-Amitsur property is a complete sublattice in the lattice of all radical classes.

Proof. This follows from the Propositions 3.1 and 3.4.

Proposition 3.6. The class of all strong Amitsur radicals is a complete sublattice.

Proof. A radical γ is strongly Amitsur if and only if Sγ and γ are polynomially
extensible. Thus the assertion follows from Theorem 2.4 and the Propositions 3.1
and 2.14.

Proposition 3.7. The class of all (left, right, strongly) hereditary radicals with the
strong Amitsur property is a complete sublattice in the lattice of all radical classes.

Proof. This is a consequence of the Propositions 3.4 and 3.6.

From the above results it is natural to ask which of the radicals are coatomic.
We will give an answer to this question. Let X be an infinite set of indeterminates
and denote by |M | the cardinality of any set M .

Lemma 3.8. Let A be a semiprime ring. Then there exists a nonzero ideal IJ of
A such that |IJ | ≤ |J | for 0 	= J �A[X ].

Proof. Let 0 	= J � A[X ]. Then there exists 0 	= f(X) ∈ J such that the
degree of f(X) is minimial. From those elements, we can choose an element
f0(X) =

∑
ai1,...,inx

α1
1 · · ·xαn

n with minimial length. Since f0(X) 	= 0, there exists
b = ai1,...,in 	= 0. We consider the ideal IJ = A1bA1 �A and the map

φ : IJ → J, c =
∑m

i=1
aibbi �→ c̄ =

∑m

i=1
aif0(X)bi.

Indeed if c, d ∈ IJ such that c 	= d then c̄ 	= d̄ because the length of f0(X) is
minimial. Clearly that if c = d then c̄ = d̄. Thus | IJ |≤| J |.

Theorem 3.9. Let X be an infinite set of indeterminates. Then the lower radical
γ = L(Z〈X〉) determined by the free ring Z〈X〉 is strongly hereditary and has the
strong Amitsur property.
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Proof. First we show that γ has the strong Amitsur property. We claim that if a
ring A ∈ Sγ, then A[x] ∈ Sγ. Suppose A ∈ Sγ and J = γ(A[x]) 	= 0. Since J ∈ γ,
J has a nonzero accessible subring J1 (that is, J1 � J2 � · · ·� Jn = J �A[x]) such
that J1

∼= Z〈X〉/I for some ideal I of Z〈X〉. Hence

|J1| = |Z〈X〉/I| ≤ |Z〈X〉|.
Denoting by 〈J1〉 the ideal of J3 generated by J1, we have

〈J1〉 � J3 � · · · � Jn = J �A[x],

and by Andrunakievich’s Lemma, 〈J1〉3 ⊆ J1. Continuing this procedure we get that
J0 = 〈· · · 〈〈J1〉3〉3 · · ·〉3 is an ideal of A[x] and J0 ⊆ J1 for some n ∈ N. Therefore
|J0| ≤ |J1| ≤ |Z〈X〉|.

It is easy to see that the Baer radical β ⊆ γ. Since A ∈ Sγ, A is a semiprime
ring. Hence J0 	= 0. By Lemma 3.8, there exists a nonzero ideal I0 of A such that
|I0| ≤ |J0|. Hence I0 is a homomorphic image of Z〈X〉. Since A ∈ Sγ and I0 � A,
I0 ∈ Sγ ∩ γ = 0. This is a contradiction.

Next we show that A ∈ γ implies A[x] ∈ γ. We may assume thatA is a semiprime
ring. Since A ∈ γ there exists an accessible subring J1 such that J1 is a homomorphic
image of Z〈X〉. In the same way as above we can find a nonzero ideal Iλ of A such
that Iλ ∼= Z〈X〉/I0

λ for some I0
λ � Z〈X〉. Therefore Iλ[x] ∈ γ.

Put I =
∑{Iλ�A | such that Iλ[x] ∈ γ}. Then I[x] = (

∑
Iλ)[x] =

∑
(Iλ[x]) ∈ γ.

Suppose that I 	= A. Then A[x]/I[x] ∼= (A/I)[x] = Ā[x] and 0 	= Ā ∈ γ. Thus, as
above, there exists 0 	= B̄ � Ā such that B̄[x] ∈ γ where B̄ = B/I for some
B � A. Therefore B[x] ∈ γ, a contradiction. Hence we have γ(A[x]) = A[x] and,
by Proposition 2.22, γ has the strong Amitsur property. The hereditariness follows
from [16, Proposition 8].

Theorem 3.10. There is no coatom in the lattice of all radicals with the α-Amitsur
property (which are hereditary, left hereditary, or strongly hereditary).

Moreover, there is no coatom in the lattice of all strong Amitsur radicals (which
are hereditary, left hereditary, strongly hereditary).

Proof. Let γ be a coatom in the lattice of radicals with the α-Amistur property
radicals. Then there exists a free ring Z〈X〉 /∈ γ with |X | infinite. We consider the
lower radical σ generated by γ and Z〈X〉. Then, by Corollary 1 in [6], σ 	= all rings.
Hence, by Theorems 3.1 and 3.9, it has the α-Amitsur property.

The other cases are covered by Corollary 3.5.
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