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Preface

The notion of a coalgebra is dual to the notion of an algebra. Nevertheless
both of them are related to similar objects in linear algebra. Coalgebras over
fields are well-studied in the literature, e.g. in the texts of Sweedler [9], Abe
[1], Montgomery [8], and Dǎscǎlescu, Nǎstǎsescu and Raianu [4].

To understand coalgebras over commutative rings is not only of interest
for the sake of generalisation but also to provide techniques for the study of
such structures over noncommutative rings - the corings. In these lectures we
concentrate on coalgebras over commutative rings but the methods provided
will readily apply to the more general case.

There are parts of module theory over algebras A that provide a useful
framework for the theory of comodules. Given any left A-module M , denote
by σ[M ] the full subcategory of the category AM of left A-modules that is
subgenerated by M . This is the smallest Grothendieck subcategory of AM
containing M . Internal properties of σ[M ] strongly depend on the module
properties of M and this can be used as key for a homological classification
of modules, that is, a characterisation of the structural properties of M by
the properties of the category σ[M ].

On the other hand, by definition, σ[M ] is closed under direct sums, sub-
modules and factor modules in AM, and so it is a hereditary pretorsion class in

AM. Hence torsion theory provides a setting for studying the outer properties
of σ[M ], that is, the behaviour of σ[M ] as a subclass of AM.

Both the inner and outer properties of the categories of type σ[M ] are
important in the study of coalgebras and comodules and it is the purpose of
these lectures to make this clear. To begin with we present material from
algebra and module theory in a form that is immediately applicable to co-
modules. Then a solid introduction to coalgebras and their comodules is
given.

Portions of the notes are taken from the joint book with Tomasz Brzeziński
[3] and I would like to use this opportunity to express my appreciation for his
significant contributions to the subject.
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Chapter 1

Modules and Algebras

1 Tensor product, tensor functor

The tensor product of modules is an important notion both for the theory
of algebras and coalgebras. To ensure the generality desired for our pur-
poses we give an account of the construction of the tensor product over non-
commutative rings R. Notice that for some notions and results R need not
have a unit.

1.1 Definition. Let MR be a right module, RN a left module over the ring
R and G an abelian group.

A Z-bilinear map β : M ×N → G is called R-balanced if, for all m ∈ M ,
n ∈ N and r ∈ R, we have: β(mr, n) = β(m, rn).

An abelian group T with an R-balanced map τ : M × N → T is called
the tensor product of M and N if every R-balanced map

β : M ×N → G, G an abelian group ,

can be uniquely factorized over τ , i.e., there is a unique Z-homomorphism
γ : T → G which renders the following diagram commutative:

M ×N

τ

��

β // G .

T

γ

::uuuuuuuuuu

With standard arguments applied for universal constructions it is easily
seen that the tensor product (T, τ) for a pair of modules MR, RN is uniquely
determined up to isomorphism (of Z-modules).

1.2. Existence of tensor products. For the R-modules MR, RN , we form
the direct sum of the family of Z-modules {Z(m,n)}M×N with
Z(m,n) ' Z, the free Z-module over M ×N ,

F =
⊕

M×N
Z(m,n) ' Z(M×N).

By construction, there is a (canonical) basis {f(m,n)}M×N in F . We simply
write f(m,n) = [m,n]. LetK denote the submodule of F generated by elements

1



2 Chapter 1. Modules and Algebras

of the form

[m1 +m2, n]− [m1, n]− [m2, n], [m,n1 + n2]− [m,n1]− [m,n2],

[mr, n]− [m, rn], with m,mi ∈M, n, ni ∈ N, r ∈ R.
Putting M ⊗R N := F/K we define the map

τ : M ×N →M ⊗R N, (m,n) 7→ m⊗ n := [m,n] +K .

By definition of K, the map τ is R-balanced. Observe that τ is not surjective
but the image of τ , Im τ = {m⊗ n | m ∈ M, n ∈ N}, is a generating set of
M ⊗R N as a Z-module.

If β : M × N → G is an R-balanced map we obtain a Z-homomorphism
γ̃ : F → G, [m,n] 7→ β(m,n), and obviously K ⊂ Ke γ̃. Hence γ̃ factorizes
over τ and we have the commutative diagram

M ×N

τ

��

β // G .

M ⊗R N

γ

::ttttttttt

γ is unique since its values on the generating set Im τ of T are uniquely
determined.

Observe that every element in M ⊗R N can be written as a finite sum

m1 ⊗ n1 + · · ·+mk ⊗ nk.

However this presentation is not unique. m ⊗ n only represents a coset and
m,n are not uniquely determined. Also a presentation of zero in M ⊗R N is
not unique. We may even have that M ⊗R N is zero for non-zero M and N ,
e.g. Z2 ⊗Z Z3 = 0.

1.3. Tensor product of homomorphisms. Consider two R-homomorphisms
f : MR →M ′

R and g : RN → RN
′.

(1) There is a unique Z-linear map

f ⊗ g : M ⊗R N →M ′ ⊗R N
′,

with f ⊗ g(m⊗ n) = f(m)⊗ g(n), m ∈M, n ∈ N.
f ⊗ g is called the tensor product of the homomorphisms f and g.

(2) If f and g are surjective, then f ⊗ g is surjective and

Ke f ⊗ g = Ke f ⊗′ N +M ⊗′ Ke g,

where Ke f ⊗′ N denotes the submodule of M ⊗R N generated by the
elements u⊗ n with u ∈ Ke f and n ∈ N , etc.
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Proof. (1) Define a map

f × g : M ×N →M ′ ⊗R N
′, (m,n) 7→ f(m)⊗ g(n).

It is Z-bilinear and R-balanced since f(mr) ⊗ g(n) = f(m) ⊗ g(rn). Hence
the map f × g can be factorized over M ⊗RN and we obtain the desired map
f ⊗ g.

(2) If f and g are surjective, then obviously M ′ ⊗R N
′ is generated as

Z-module by the elements {f(m)⊗ g(n) |m ∈M, n ∈ N} and hence f ⊗ g is
surjective.

It is clear that the subgroup H = Ke f ⊗′ N +M ⊗′ Ke g lies in Ke f ⊗ g
and hence, with the canonical projection p, the map f ⊗ g factors into

M ⊗R N
p−→M ⊗R N/H

ν−→M ′ ⊗R N
′.

Obvioulsy ν is surjective. To show that ν is an isomorphism we first consider
a map

α : M ′×N ′ →M⊗RN/H, (m′, n′) 7→ m⊗n+H, where m′ = f(m), n′ = g(n).

To see that the map is well-defined, i.e., that it is independent of the choice of
m ∈M with f(m) = m′, and similarly of n ∈ N , observe that for f(m1) = m′

and g(n1) = n′ we have

m1 ⊗ n1 = m⊗ n+ [(m1 −m)⊗ n+m⊗ (n1 − n) + (m1 −m)⊗ (n1 − n)],

where the right summand [. . .] lies in H. Clearly ν is Z-linear and R-balanced
and hence induces a map ᾱ : M ′⊗RN

′ →M⊗RN/H with ᾱ◦ν = I, proving
that ν is injective. tu

1.4. Tensor product and direct sums. Let MR be an R-module and

RN =
⊕

ΛNλ, with the canonical injections ελ : RNλ → RN and projections
πλ : RN → RNλ.

Then (M ⊗R N, IM ⊗ ελ) is a direct sum of {M ⊗R Nλ}Λ, i.e.,

M ⊗R (
⊕

Λ
Nλ) '

⊕
Λ
(M ⊗R Nλ).

We say the tensor product commutes with direct sums.

Proof. For the maps IM ⊗ πλ : M ⊗R N → M ⊗R Nλ, we derive from
properties of tensor products of homomorphisms

(IM ⊗ ελ)(IM ⊗ πµ) = δλµIM⊗RNλ
.

For a family {fλ : M ⊗R Nλ → X}Λ of Z-linear maps, we define

f : M ⊗R N → X, m⊗ n 7→
∑

λ∈Λ
fλ(IM ⊗ πλ(m⊗ n)) ,
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where the sum is always finite.
Obviously, f ◦ (IM ⊗ ελ) = fλ and (M ⊗R N, IM ⊗ ελ) is a direct sum of

the {M ⊗R Nλ}Λ.

By symmetry, we obtain, for MR =
⊕

Λ′Mµ,

(
⊕

Λ′Mµ)⊗R N '
⊕

Λ′(Mµ ⊗R N),

(
⊕

Λ′Mµ)⊗R (
⊕

ΛNλ) '
⊕

Λ′×Λ(Mµ ⊗Nλ).

tu

1.5. Module structure of tensor products. By construction, the tensor
product M ⊗R N of MR and RN is only an abelian group. However, if TMR

or RNS are bimodules, then we may define module structures on M ⊗R N :
If TMR is a (T,R)-bimodule, then the elements of T may be regarded as

R-endomorphisms of M and the tensor product with IN yields a map

T → EndZ(M ⊗R N), t 7→ t⊗ IN .

From the properties of this construction noted in 1.3 we see that this is a ring
homomorphism. Hence TM ⊗R N becomes a left T-module and the action of
t ∈ T on

∑
mi ⊗ ni ∈M ⊗R N is given by

t(
∑

mi ⊗ ni) =
∑

(tmi)⊗ ni.

For an (R,S)-bimodule RNS, we obtain in the same way that M ⊗R NS is a
right S-module.

If TMR and RNS are bimodules, the structures defined above turn

TM ⊗R NS into a (T, S)-bimodule since we have, for all t ∈ T , s ∈ S and
m⊗ n ∈M ⊗R N , that (t(m⊗ n))s = (tm)⊗ (ns) = t((m⊗ n)s).

1.6. Tensor product with R. Regarding R as an (R,R)-bimodule, for
every R-module RN , there is an R-isomorphism

µR : R⊗R N → RN,
∑

ri ⊗ ni 7→
∑

rini.

The map exists since the map R × N → RN, (r, n) 7→ rn is balanced, and
obviously has the given properties.

Since the tensor product commutes with direct sums (see 1.4), we obtain,

for every free right R-module FR ' R
(Λ)
R , Λ an index set, a Z-isomorphism

F ⊗R N ' N (Λ).

1.7. Associativity of the tensor product. Assume three modules MR,

RNS and SL to be given. Then (M ⊗R N)⊗S L and M ⊗R (N ⊗S L) can be
formed and there is an isomorphism

σ : (M ⊗R N)⊗S L→M ⊗R (N ⊗S L), (m⊗ n)⊗ l 7→ m⊗ (n⊗ l) .
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Proof. We only have to show the existence of such a map σ. Then,
by symmetry, we obtain a corresponding map in the other direction which is
inverse to σ:
We first define, for l ∈ L, a morphism fl : N → N ⊗S L, n 7→ n ⊗ l, then
form the tensor product IM ⊗ fl : M ⊗R N →M ⊗R (N ⊗S L) and obtain

β : (M ⊗R N)× L→M ⊗R (N ⊗S L), (m⊗ n, l) 7→ IM ⊗ fl (m⊗ n).

It only remains to verify that β is balanced to obtain the desired map. tu

1.8. Tensor functors. For an (S,R)-bimodule SUR, the assignments

SU ⊗R − : Obj(R-Mod) −→ Obj(S-Mod), RM 7→ SU ⊗RM,

Mor(R-Mod) −→ Mor(S-Mod), f 7→ IU ⊗ f,

yield a covariant functor SU ⊗R − : R-Mod → S-Mod with the properties

(1) SU ⊗R − is additive and right exact;

(2) SU ⊗R − preserves direct sums.

Similarly we obtain a functor − ⊗S UR : Mod-S → Mod-R
with the same properties.

Proof. Applying 1.3 it is easily checked that the given assignments
define an additive functor. In 1.4 we have seen that it preserves direct sums.

It remains to show that it is right exact. An exact sequence K
f→ L

g→ N → 0
in R-Mod yields the sequence

U ⊗R K
I⊗f−→ U ⊗R L

I⊗g−→ U ⊗R N −→ 0 ,

where, by 1.3(2), I ⊗ g is surjective and

Ke I ⊗ g = U ⊗′ Ke g = U ⊗′ Im f = Im I ⊗ f,

proving the exactness of this sequence. tu
Notice that the relation between tensor products and direct products is

more complicated than that between tensor products and direct sums.

1.9. Tensor product and direct products. Let UR be a right R-module
and {Lλ}Λ a family of left R-modules. With the canonical projections we have
the maps

IU ⊗ πµ : U ⊗R (
∏

Λ
Lλ) → U ⊗R Lµ

and, by the universal property of the product,

ϕU : U ⊗R (
∏

Λ
Lλ) →

∏
Λ
U ⊗R Lλ, u⊗ (lλ)Λ 7→ (u⊗ lλ)Λ.

It is easy to see that, for U = R, and hence also for U = Rn, ϕU is an
isomorphism.
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(1) The following assertions are equivalent:

(a) U is finitely generated;

(b) ϕU is surjective for every family {Lλ}Λ;

(c) ϕ̃U : U ⊗ RΛ → (U ⊗ R)Λ ' UΛ is surjective for any set Λ (or
Λ = U).

(2) The following assertions are also equivalent:

(a) U is finitely presented in R-Mod;

(b) ϕU is bijective for every family {Lλ}Λ;

(c) ϕ̃U : U ⊗R R
Λ → UΛ is bijective for every set Λ.

Proof. (1) (a) ⇒ (b) If U is finitely generated and R(A) f→ Rn g→ U → 0
is exact, we can form the commutative diagram with exact rows:

R(A) ⊗
∏

ΛLλ

ϕ
R(A)

��

f⊗I // Rn ⊗
∏

ΛLλ

ϕRn

��

g⊗I // U ⊗
∏

ΛLλ

ϕU

��

// 0

∏
Λ(R(A) ⊗ Lλ)

Q
(f⊗I)//

∏
Λ(Rn ⊗ Lλ)

Q
(g⊗I)//

∏
Λ(U ⊗ Lλ) // 0.

As pointed out above, ϕRn is bijective and hence ϕU is surjective.

(b) ⇒ (c) is obvious.

(c) ⇒ (a) Assume (c). Then, for Λ = U , the map ϕ̃ : U ⊗ RU → UU

is surjective. For the element (uu)U (= IU in Map(U,U) = UU), we choose∑
i≤kmi ⊗ (riu) as a preimage under ϕ̃U , with riu ∈ R, mi ∈ U , i.e.

(uu)U =
∑

i≤k
(mir

i
u)U = (

∑
i≤k
mir

i
u)U .

Hence, for every u ∈ U , we get u =
∑

i≤kmir
i
u, i.e. m1, . . . ,mk is a generating

set of U .

(2) (a) ⇒ (b) In the proof (1) (a) ⇒ (b) we can choose a finite index set
A. Then ϕR(A) is an isomorphism and hence also ϕU .

(b) ⇒ (c) is obvious.

(c) ⇒ (a) From (1) we already know that U is finitely generated. Hence
there is an exact sequence 0 → K → Rn → U → 0, n ∈ N. From this we
obtain – for any set Λ – the following commutative diagram with exact rows

K ⊗RΛ

ϕ̃K

��

// Rn ⊗RΛ

ϕRn

��

// U ⊗RΛ

ϕU

��

// 0

0 // KΛ // (Rn)Λ // UΛ // 0 .
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Here ϕ̃Rn is an isomorphism (see above) and ϕ̃U is an isomorphism by (c).
According to the Kernel Cokernel Lemma, ϕ̃K is surjective and, by(1), K
is finitely generated. Therefore, for some m ∈ N, we get an exact sequence
Rm → K → 0, and Rm → Rn → U → 0 is also exact. tu

As a consequence of the right exactness of the tensor functor the following
two results can be shown:

1.10. Zero in the tensor product. Let {ni}i∈Λ a generating set of the
R-module RN and {mi}i∈Λ a family of elements in the R-module MR with
only finitely many mi 6= 0.

Then
∑

Λmi ⊗ ni = 0 in M ⊗R N if and only if there are finitely many
elements {aj}j∈Λ′ in M and a family {rji}Λ′×Λ of elements in R with the
properties

(i) rji 6= 0 for only finitely many pairs (j,i),

(ii)
∑

i∈Λrjini = 0 for every j ∈ Λ′,

(iii) mi =
∑

j∈Λ′ajrji.

Proof. For elements with these properties we see∑
Λ
mi ⊗ ni =

∑
Λ

∑
Λ′
ajrji ⊗ ni =

∑
Λ′

(aj ⊗
∑

Λ
rjini) = 0.

Now assume
∑

Λmi ⊗ ni = 0. With the canonical basis {fi}i∈Λ and the map
g : R(Λ) → RN, fi 7→ ni, we obtain the exact sequence

0 −→ RK
ε−→ R(Λ) g−→ RN −→ 0.

Tensoring with M ⊗R − yields the exact sequence

M ⊗R K
I⊗ε−→M ⊗R R

(Λ) I⊗g−→M ⊗R N −→ 0 .

By assumption, I ⊗ g(
∑

Λmi⊗ fi) =
∑

Λmi⊗ ni = 0 and there is an element∑
j∈Λ′aj ⊗ kj ∈M ⊗R K with I ⊗ ε(

∑
j∈Λ′aj ⊗ kj) =

∑
i∈Λmi ⊗ fi.

Every kj ∈ K ⊂ R(Λ) can be written as kj =
∑

i∈Λrjifi with only finitely
many rji 6= 0. This implies 0 = (kj)εg =

∑
i∈Λrjini for all j ∈ Λ′, and in

M ⊗R R
(Λ) we get∑

i∈Λ
mi ⊗ fi =

∑
j∈Λ′

aj ⊗ kj =
∑

i∈Λ
(
∑

j∈Λ′
ajrji)⊗ fi.

From this the projections onto the components yield the desired condition
mi =

∑
j∈Λ′ajrji. tu
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1.11. Tensor product with cyclic modules. Let I be a right ideal of a
ring R with many idempotents and RM a left module. Then

R/I ⊗RM ' RM/IM ('M/IM if 1 ∈ R).

Proof. From the exact sequence 0 → I → R→ R/I → 0 we obtain the
first row exact in the commutative diagram

I ⊗RM −→ R⊗RM −→ R/I ⊗RM −→ 0
↓µI ↓µR ↓ γ

0 −→ IM −→ RM −→ RM/IM −→ 0

with the map µI : I⊗RM → IM, i⊗m 7→ im. By 1.6, µR is an isomorphism
and hence γ is an isomorphism by the Kernel Cokernel Lemma. tu

An interesting connection between Hom- and tensor functors is derived
from the definition of the tensor product:

1.12. Hom-tensor relation. Let UR and RM be R-modules, N a Z-module
and denote by Ten(U×M,N) the set of the R-balanced maps from U×M into
N . By the definition of U ⊗RM (see 12.1), the canonical map τ : U ×M →
U ⊗RM yields a Z-isomorphism

ψ1 : HomZ(U ⊗RM,N) → Ten(U ×M,N), α 7→ τα.

On the other hand, every β ∈ Ten(U ×M,N) defines an R-homomorphism

hβ : M → HomZ(U,N), m 7→ β(−,m),

where HomZ(U,N) is regarded as a left R-module in the usual way. From
this we obtain a Z-isomorphism

ψ2 : Ten(U ×M,N) → HomR(M,HomZ(U,N)), β 7→ hβ.

Now every ϕ ∈ HomR(M,HomZ(U,N)) determines an R-balanced map

ϕ̃ : U ×M → N, (u,m) 7→ ϕ(m)(u),

and the assignment ϕ 7→ ϕ̃ is a map inverse to ψ2. The composition of ψ1

and ψ2 leads to the Z-isomorphism

ψM : Hom(U ⊗RM,N) → HomR(M,Hom(U,N)), δ 7→ [m 7→ δ(− ⊗m)],

with inverse map ψ−1
M : ϕ 7→ [u⊗m 7→ ϕ(m)(u)].

If SUR is an (S,R)-bimodule and SN an S-module, then SU⊗RM is also a
left S-module and with respect to this structure ψM becomes a Z-isomorphism

ψM : HomS(U ⊗RM,N) → HomR(M,HomS(U,N)).
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It is readily verified that, for every R-homomorphism g : RM → RM
′, the

following diagram is commutative:

HomS(U ⊗RM
′, N)

Hom(I⊗g,N) //

ψM′
��

HomS(U ⊗RM,N)

ψM

��
HomR(M ′,HomS(U,N))

Hom(g,HomS(U,N))// HomR(M,HomS(U,N)) .

Similarly we obtain, for modules RUS, MR and NS, a Z-isomorpism

ψ′M : HomS(M ⊗R U,N) → HomR(M,HomS(U,N))

and a corresponding commutative diagram.

1.13. Definitions. Let M be a left R-module. A right R-module UR is
called M-flat if, for every monomorphism f : K → M in R-Mod, the map
IU ⊗ f : U ⊗R K → U ⊗RM is also a monomorphism.

UR is said to be flat (with respect to R-Mod) if U is M -flat for every
M ∈ R-Mod.

Since U ⊗R − is always right exact, UR is flat (with respect to R-Mod) if
and only if the functor U ⊗R − : R-Mod → Z-Mod is exact.

1.14. Direct sum of M -f lat modules. Let {Uλ}Λ be a family of right
R-modules and RM ∈ R-Mod. The direct sum

⊕
ΛUλ is M-flat if and only if

Uλ is M-flat for every λ ∈ Λ.

Proof. From the exact sequence 0 → K
f→M we form the commutative

diagram

(
⊕

ΛUλ)⊗R K
I⊗f //

��

(
⊕

ΛUλ)⊗RM

��⊕
Λ(Uλ ⊗R K)

⊕(Iλ⊗f) //
⊕

Λ(Uλ ⊗RM),

in which the vertical maps are the canonical isomorphisms (see 1.4). Hence
I ⊗ f is monic if and only if all Iλ ⊗ f are monic. tu

1.15. Properties of M -flat modules. Let UR be a right R-module. Then:

(1) UR is M-flat if and only if U ⊗R − is exact with respect to every exact
sequence 0 → K ′ →M with K ′ finitely generated.

(2) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence in R-Mod. If UR
is M-flat, then UR is also M ′- and M ′′-flat.

(3) Let {Mλ}Λ be a family of left R-modules. If UR is Mλ-flat for every
λ ∈ Λ, then UR is also

⊕
ΛMλ-flat.
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Proof. (1) Let 0 → K
ε→ M be exact and

∑
i≤nui ⊗ ki ∈ U ⊗R K

with (
∑

i≤nui ⊗ ki)I ⊗ ε = 0 ∈ U ⊗RM . Let K ′ denote the submodule of K
generated by k1, . . . , kn. Since the map

I ⊗ ε′ : U ⊗R K
′ → U ⊗R K → U ⊗RM

is monic by assumption, we get
∑

i≤nui ⊗ ki = 0 in U ⊗R K
′. Then it also

has to be zero in U ⊗R K, i.e., I ⊗ ε is monic.

(2) Let UR be M -flat. If 0 → K
ε′→ M ′ is exact, the canonical map

U ⊗R K
I⊗ε′−→ U ⊗RM

′ −→ U ⊗RM is monic and UR is M ′-flat.

If 0 → L
f→ M ′′ is exact, we obtain, by a pullback, the commutative

diagram with exact rows and columns

0 0
↓ ↓

0 −→ M ′ −→ P −→ L −→ 0
‖ ↓ ↓ f

0 −→ M ′ −→ M −→ M ′′ −→ 0 .

Tensoring with UR yields the following commutative diagram with exact rows
and columns

0
↓

U ⊗RM
′ −→ U ⊗R P −→ U ⊗R L −→ 0

‖ ↓ ↓ I ⊗ f

0 −→ U ⊗RM
′ −→ U ⊗RM −→ U ⊗RM

′′ −→ 0 .

By the Kernel Cokernel Lemma, I ⊗ f has to be monic, i.e., U is M ′′-flat.

(3) We show that UR is M1 ⊕M2-flat if it is both M1- and M2-flat. Then
we get assertion (3) for finite index sets Λ by induction. For arbitrary sets Λ
we use (1): A finitely generated submodule K ′ ⊂

⊕
ΛMλ is contained in a

finite partial sum. Since the tensor product preserves direct summands, the
assertion follows from the finite case.

Let UR be M1- and M2-flat and 0 → K
f→ M1 ⊕M2 exact. Forming a

pullback we obtain the commutative exact diagram

0 0 0
↓ ↓ ↓

0 −→ P −→ K −→ L −→ 0
↓ ↓ ↓

0 −→ M1 −→ M1 ⊕M2 −→ M2 −→ 0 .
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Tensoring with UR yields the commutative exact diagram

0 0
↓ ↓

U ⊗R P −→ U ⊗R K −→ U ⊗R L −→ 0
↓ ↓ I ⊗ f ↓

0 −→ U ⊗RM1 −→ U ⊗R (M1 ⊕M2) −→ U ⊗RM2 −→ 0 .

By the Kernel Cokernel Lemma, I ⊗ f has to be monic. tu

1.16. Flat modules. Characterizations. For a right R-module UR, the
following assertions are equivalent:

(a) UR is flat (with respect to R-Mod);

(b) U ⊗R − is exact with respect to all exact sequences 0 → RI → RR

(with RI finitely generated);

(c) for every (finitely generated) left ideal RI ⊂ R, the canonical map

µI : U ⊗R I → UI is monic (and hence an isomorphism).

Proof. The equivalence of (a) and (b) follows from 1.13.
(b) ⇔ (c) For every (finitely generated) left ideal I ⊂ R, we have the

commutative diagram with exact rows (see 1.11)

U ⊗R I
I⊗ε−→ U ⊗R R −→ U ⊗R R/I −→ 0

↓µI ‖ ‖
0 −→ UI −→ U −→ U/UI −→ 0 .

Hence µI is monic (an isomorphism) if and only if I ⊗ ε is monic. tu

In a ring R with unit, for every left ideal I ⊂ R, we have R ⊗R I ' I.
Hence RR is a flat module (with respect to R-Mod). Then, by 1.14, all free
R-modules and their direct summands (= projective modules) are flat (with
respect to R-Mod).

An R-module UR is called faithfully flat (with respect to R-Mod) if UR is
flat (w.r. to R-Mod) and, for N ∈ R-Mod, the relation U ⊗R N = 0 implies
N = 0.

1.17. Faithfully flat modules. Characterizations. For a right R-module
UR the following assertions are equivalent:

(a) UR is faithfully flat;

(b) UR is flat and, for every (maximal) left ideal I ⊂ R, I 6= R, we have

U ⊗R R/I 6= 0 (i.e., UI 6= U).
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Proof. (a) ⇒ (b) Because of the isomorphism U ⊗R R/I ' U/UI (see
1.11), U ⊗R R/I 6= 0 is equivalent to UI 6= U . By (a), U ⊗R R/I = 0 would
imply I = R.

(b) ⇒ (a) If UI 6= U for every maximal left ideal I ⊂ R, then this is also
true for every proper left ideal I ⊂ R. Hence U ⊗R K 6= 0 for every cyclic
R-module K. Since every R-module N contains a cyclic submodule and UR
is flat, we have U ⊗R N 6= 0. tu

1.18. Pure morphisms. Related to any morphism f : M → M ′ in
R−Mod, there is an exact sequence

0 // Ke f //M
f //M ′ // Coke f // 0 .

Given L ∈ Mod−R, we say the morphism f is L-pure if tensoring this se-
quence with L⊗R − yields an exact sequence. The morphism f is said to be
pure if it is L-pure for every L ∈ Mod−R. Since the tensor functor is right
exact, the following are equivalent:

(a) f is L-pure;

(b) 0 // L⊗R Ke f // L⊗RM
IL⊗f // L⊗RM

′ is exact;

(c) Ke f →M and Im f →M ′ are L-pure (mono) morphisms.

For any inclusion i : N →M , the image of the map

IL ⊗ i : L⊗R N → L⊗RM

is called the canonical image of L⊗RN in L⊗RM . If IL⊗ i is injective (i.e.,
i is an L-pure morphism), then N is said to be an L-pure submodule and we
identify the canonical image of IL ⊗ i with L⊗R N .

Obviously, any direct summand is a pure submodule, and if L is a flat
right R-module, then every morphism f : M →M ′ in R−Mod is L-pure.

1.19. Tensor product over commutative rings. Let M , N and L be
modules over a commutative ring R.

An R-balanced map β : M ×N → L is called R-bilinear if

β(rm, n) = rβ(m,n) for all r ∈ R,m ∈M,n ∈ N.

By 1.5, RM ⊗R N is a left R-module with r(m ⊗ n) = (rm) ⊗ n and we see
that the balanced map

τ : M ×N →M ⊗R N, (m,n) 7→ m⊗ n,

is bilinear: τ(rm, n) = (rm)⊗n = rτ(m,n). Hence we have, for commutative
rings R:
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A map β : M × N → L is R-bilinear if and only if there is an R-linear
map β̄ : M ⊗R N → L with β = τ β̄.

With the notation BilR(M ×N,L) = {β : M ×N → L | β R-bilinear} we
have an isomorphism of R-modules

HomR(M ⊗R N,L) ' BilR(M ×N,L).

If M and N are vector spaces over a field K, then, by the above con-
siderations, M ⊗K N is also a K-vector space and since the tensor product
commutes with direct sums we find

dimK(M ⊗K N) = dimKM · dimKN.

Every free R-module RF is isomorphic to R(Λ) for a suitable index set Λ. Over
non-commutative rings the cardinality of Λ need not be uniquely determined.
However, over a commutative ring with unit we have:

If R(Λ) ' R(Λ′), then Λ and Λ′ have the same cardinality.

Proof. For a maximal ideal m of R, tensoring with − ⊗R R/m yields
(R/m)(Λ) ' (R/m)(Λ′). For vector spaces over a field (= R/m) it is known
that the cardinality of a basis is uniquely determined. tu

1.20. Twist map. For modules M,N over a commutative ring R, there is
an R-isomorphism

tw : M ⊗R N → N ⊗RM, m⊗ n 7→ n⊗m,

called the twist map.

The purity condition on the submodules imply the important

1.21. Intersection property.

(1) Let M ′ ⊂ M and K ′ ⊂ K be pure R-submodules, or assume K and
K/K ′ to be (M-) flat.

Then the canonical image of M ′ ⊗R K
′ in M ⊗R K is equal to the

intersection of the canonical images of M ′⊗RK and M⊗RK
′ in M⊗R

K, i.e.,

M ′ ⊗R K
′ = (M ′ ⊗R K) ∩ (M ⊗R K

′).

(2) Let U, V ⊂M be R-submodules and K a flat R-module. Then

(U ⊗R K) ∩ (V ⊗R K) = (U ∩ V )⊗R K.
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Proof. (1) Under the given conditions we have the exact commutative
diagram

0 0 0
↓ ↓ ↓

0 → M ′ ⊗R K
′ → M ′ ⊗R K → M ′ ⊗R K/K

′ → 0
↓ ↓ ↓

0 → M ⊗R K
′ → M ⊗R K → M ⊗R K/K

′ → 0 ,

where the left square is a pullback (e.g., [10, 10.3]), and hence we can make
the identification stated.

(2) This is shown with a similar argument. tu
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2 Algebras and modules

From now on R will usually denote an associative commutative ring with
unit. We recall basic definitions for algebras in a form which is suitable for
dualising to coalgebras. The unadorned symbol ⊗ will always stand for ⊗R.

2.1. Algebras. An R-module A is said to be an R-algebra if there exists an
R-linear map

µ : A⊗R A→ A,

called the multiplication of A. For a, b ∈ A, we write µ(a⊗ b) = a · b (or ab).

2.2. Unit element. An element e ∈ A is called a unit if a · e = a = e · a, for
all a ∈ A. This yields an R-homomorphism ι : R→ A, r 7→ re, with

µ ◦ (ι⊗ IA) = µ ◦ (IA ⊗ ι) = IA,

(putting A⊗R R = A = R ⊗R A) which correponds to the commutativity of
the diagram

R⊗R A
ι⊗IA //

'
&&MMMMMMMMMMM A⊗R A

µ

��

A⊗R R

'
xxqqqqqqqqqqq

IA⊗ιoo

A

It is easy to check that for any R-linear map ι : R → A with these
properties, ι(1) is an identity element in A.

2.3. Associativity and commutativity An R-algebra A is said to be asso-
ciative, if a(bc) = (ab)c, for all a, b, c ∈ A. For the defining map µ : A⊗RA→
A, this corresponds to the commutativity of the diagram

A⊗R A⊗R A
IA⊗µ //

µ⊗IA
��

A⊗R A

µ

��
A⊗R A

µ // A .

The commutativity of A is expressed by the commutativity of the following
diagram, where tw denotes the twist map,

A⊗R A

µ
##H

HHHHHHHH
tw // A⊗R A

µ
{{vvvvvvvvv

A .
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2.4. Algebra morphisms. Given two R-algebras µA : A⊗A→ A and µB :
B⊗RB → B, an R-linear map f : A→ B is said to be an algebra morphism,
if f(ab) = f(a)f(b), for all a, b ∈ A, i.e., we have the commutative diagram

A⊗R A
µA //

f⊗f
��

A

f

��
B ⊗R B

µB // B .

Clearly f preserves the units ιA : R → A, ιB : R → B, if and only if we
have a commutative diagram

R

ιA
��

= // R

ιB
��

A
f // B.

Obviously the identity IA : A → A is an algebra morphism and the
composition of algebra morphisms is again an algebra morphism.

2.5. Tensor product of algebras. Let µA : A⊗RA→ A and µB : B⊗RB →
B define R-algebras. Then A⊗R B is an R-algebra by the R-linear map

µA⊗B : (A⊗R B)⊗R (A⊗B)
I⊗tw⊗I−→ (A⊗R A)⊗R (B ⊗R B)

µA⊗µB−→ A⊗R B .

It is straightforward to show that the algebra A⊗RB is associative (com-
mutative) if both A and B are associative (commutative).

If eA and eB are the units in A and B, then eA⊗ eB is the unit in A⊗RB.
In particular, if B is an associative and commutative algebra with unit,

then it is easy to verify that µA⊗B is in fact B-linear, yielding a map

µA⊗B : (A⊗R B)⊗B (A⊗R B) → A⊗R B,

showing that A⊗R B is a B-algebra (scalar extension of A by B).

2.6. Tensor product of algebra morphisms. Let f : A → A1 and g :
B → B1 be R-algebra morphisms. Then:

(1) There is an algebra morphism

h : A⊗R B → A1 ⊗R B1, a⊗ b 7→ f(a)⊗ g(b).

(2) If f and g are surjective, then h is also surjective and (see 1.3)

A1 ⊗R B1 ' (A⊗R B)/(Ke f ⊗′ B + A⊗′ Ke g).
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Proof. (1) Put h = f ⊗ g, the tensor product of f and g as R-module
morphism. It remains to show that h is a ring morphism:

h((a1 ⊗ b1)(a2 ⊗ b2)) = f(a1a2)⊗ g(b1b2)
= (f(a1)⊗ g(b1))(f(a2)⊗ g(b2))
= h(a1 ⊗ b1)h(a2 ⊗ b2).

(2) This is shown in 1.3. tu

2.7. Universal property of the tensor product. Let f : A → C and
g : B → C be unital algebra morphisms such that

[f(A), g(B)] = 0,

where [−,−] denotes the commutator. Then there exists a unique algebra
morphism h : A⊗R B → C, satisfying

h(a⊗ b) = f(a)g(b) , for all a ∈ A, b ∈ B.

Proof. Since f and g are R-module morphisms, there is an R-module
morphism

h = f ⊗ g : A⊗R B → C, (a, b) 7→ f(a)g(b).

It remains to verify that h is an algebra morphism. By our assumptions on
the commutators of f(A) and g(B), we have

h((a1 ⊗ b1)(a2 ⊗ b2)) = f(a1a2)g(b1b2)

= f(a1)f(a2)g(b1)g(b2)

= (f(a1)g(b1))(f(a2)g(b2))

= h(a1 ⊗ b1)h(a2 ⊗ b2).

tu
As a special case, 2.7 implies that in the category of commutative as-

sociative unital R-algebras, the tensor product yields the coproduct of two
algebras.

2.8. A-modules and homomorphisms. Let µ : A ⊗R A → A define an
associative R-algebra with unit ι : R → A. Then an R-module M with an
R-linear map %M : A ⊗R M → M is called a (unital) left A-module if the
following diagrams are commutative:

A⊗R A⊗RM
IA⊗%M //

µ⊗I
��

A⊗RM

%M

��
A⊗RM

%

M
//M

, R⊗RM
ι⊗IM //

'
&&NNNNNNNNNNN A⊗RM

%M

��
M .
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Again we will often write %M(a ⊗m) = am and then the commutativity
of the diagram can be rephrased by the familiar conditions

(ab)m = a(bm), 1Am = m, for all a, b ∈ A, m ∈M.

An R-linear map g : M → N between A-modules is called an A-morphism
or A-homomorphism provided the following diagram commutes:

A⊗RM
IA⊗g //

%M

��

A⊗R N

%N

��
M

g // N .

Using the standard notation mentioned above, g : M → N is an A-morphism
if and only if

g(am) = ag(m), for all a ∈ A, m ∈M.

Notice that the A-morphisms between two A-modules M,N are charac-
terized by an exact sequence

0 −→ HomA(M,N) −→ HomR(M,N)
β−→ HomR(A⊗RM,N),

where β(f) = %N ◦ (id⊗ f)− f ◦ %M .

The A-modules together with the A-morphisms form a category which we
denote by A-Mod.

It is easily checked that here the defining map %M : A ⊗R M → M is an
A-morphism and this implies that A is a generator in A-Mod, i.e., every left
A-module is a homomorphic image of a direct sum of copies of A (= A(Λ)).

There are well-known relations between R-morphisms and A-morphisms
which are readily derived from the basic relation 1.12.

2.9. Hom-tensor relations. For any R-module X, consider the R-linear
map α : X → A⊗R X, x 7→ 1A ⊗ x.

(1) For each A-module %M : A⊗RM →M , the map

HomA(A⊗R X,M) → HomR(X,M), f 7→ f ◦ α,

is an R-isomorphism with inverse map h 7→ %M ◦(id⊗h). So the functor

A⊗R − : R−Mod → A−Mod, X 7→ A⊗R X,

is left adjoint to the forgetful functor A−Mod → R−Mod.
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(2) For any left A-module N , the R-linear map

HomA(M⊗X,N) → HomR(X,HomA(M,N)), g 7→ [x 7→ g◦(−⊗x)],

is an R-isomorphism with inverse map h 7→ [m⊗ x 7→ h(x)(m)]. So

M ⊗R − : R−Mod → A−Mod, X 7→M ⊗R X,

is left adjoint to the functor

HomA(M,−) : A−Mod → R−Mod, N 7→ HomA(M,N).

2.10. Tensor product with modules. Let M and M ′ be left A-modules
and Q an R-module. Consider the R-linear map

νM : HomA(M,M ′)⊗R Q→ HomA(M,M ′ ⊗R Q), [h⊗ q 7→ (−)h⊗ q].

(1) If Q is a flat R-module and M a finitely generated (finitely presented)
A-module, then νM is injective (an isomorphism).

(2) νM is also an isomorphism in the following cases:

(i) M is a finitely generated, M ′-projective A-module, or
(ii) M is M ′-projective and Q is a finitely presented R-module, or
(iii) Q is a finitely generated projective R-module.

Proof. (1) It is easy to check that νM is an isomorphism for M = A
and M = Ak, k ∈ N. Since AM is finitely generated, there exists an exact
sequence of A-modules A(Λ) → An →M → 0, with Λ an index set, n ∈ N.

The functors HomA(−,M ′)⊗RQ and HomA(−,M ′⊗RQ) yield the exact
commutative diagram

0 →HomA(M,M ′)⊗R Q →HomA(An,M ′)⊗R Q → HomA(A(Λ),M ′)⊗R Q
↓ νM ↓ νAn ↓ νA(Λ)

0 →HomA(M,M ′ ⊗R Q) →HomA(An,M ′ ⊗R Q) →HomA(A(Λ),M ′ ⊗R Q).

Since νAn is an isomorphism, νM has to be injective.
If M is finitely presented we can choose Λ to be finite. Then also νA(Λ)

and νM are isomorphisms.

(2)(i) From the exact sequence of R-modules 0 → K → R(Λ) → Q → 0,
we construct the commutative diagram with the upper line exact,

HomA(M,M ′)⊗R K → HomA(M,M ′)⊗R R
(Λ) → HomA(M,M ′)⊗R Q → 0

↓ν ↓' ↓νM

HomA(M,M ′ ⊗R K) → HomA(M,M ′ ⊗R R
(Λ)) → HomA(M,M ′ ⊗R Q) → 0 ,

where ν is defined as above replacing Q by K.
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Since M is M ′ ⊗R R
(Λ)-projective, the lower sequence is also exact and

hence νM is surjective. By the same argument we obtain that ν is surjective.
Now it follows from the Kernel Cokernel Lemma that νM is injective.

(ii) This statement is obtained from the proof of (1), with Λ a finite set
and K a finitely generated R-module.

(iii) The assertion is obvious for Q = R and is easily extended to finitely
generated free (projective) modules Q. tu

Combining the preceding observations we get

2.11. Tensor product with an algebra. Let A, B be R-algebras and M ,
M ′ left A-modules. Consider the map

HomA(M,M ′)⊗RB → HomA⊗B(M⊗RB,M
′⊗RB), f⊗b 7→ [m⊗b′ 7→ (m)f⊗b′b].

(1) If B is a flat R-module and M is a finitely generated (finitely presented)
A-module, then the map is injective (an isomorphism).

(2) The map is also an isomorphism if

(i) M is a finitely generated, M ′-projective A-module, or
(ii) M is M ′-projective and B is a finitely presented R-module, or
(iii) B is a finitely generated projective R-module.

Proof. The map is the composition of maps

HomA(M,M ′)⊗R B → HomA(M,M ′ ⊗R B) and

HomA(M,M ′ ⊗R B) → HomA⊗RB(M ⊗R B,M
′ ⊗R B).

tu

2.12. Tensor product of morphisms of modules. Let A, B be associative
unital R-algebras, M,M ′ left A-modules and N,N ′ left B-modules.

(1) For f ∈ HomA(M,M ′) and g ∈ HomB(N,N ′),

f ⊗ g ∈ HomA⊗B(M ⊗R N,M
′ ⊗R N

′).

(2) The mapping (f, g) 7→ f ⊗ g induces an R-module morphism

ψ : HomA(M,M ′)⊗R HomB(N,N ′) → HomA⊗B(M ⊗R N,M
′ ⊗R N

′).

Assume M and N are finitely generated. Then ψ is an isomorphism if

(i) M is M ′-projective and N is N ′-projective, or
(ii) M and N are projective as A-, resp. B-modules, or
(iii) M is a finitely presented A-module, N and N ′ are finitely generated,

projective B-modules, and B is a flat R-module.
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(3) ψ : EndA(M)⊗R EndB(N) → EndA⊗RB(M ⊗R N) is an algebra mor-
phism.

Proof. (1) Just verify that f ⊗ g is in fact an A⊗B-module morphism.

(2) ψ is well-defined since (f, g) 7→ f ⊗ g yields an R-bilinear map.

(i) We have isomorphisms

HomA⊗RB(M ⊗R N,M
′ ⊗R N

′) ' HomB(N,HomA(M,M ′ ⊗R N
′))

' HomB(N,HomA(M,M ′)⊗R N
′)

' HomA(M,M ′)⊗ HomB(N,N ′) .

(ii) is a special case of (i).

(iii) Since B ' HomB(B,B) we know that ψ is an isomorphism for N =
N ′ = B. Similar to the above argument, this isomorphism can be extended
to finitely generated free and projective modules N and N ′.

(3) is easily verified. tu
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3 The category σ[M ]

Throughout A will denote an R-algebra and M a left A-module. The mod-
ule structure of M is reflected by the smallest Grothendieck category of A-
modules containing M , which we briefly describe in this section.

An A-module N is called M-generated if there exists an epimorphism
M (Λ) → N for some set Λ.

3.1. The category σ[M ]. An A-module N is called M-subgenerated if it is
(isomorphic to) a submodule of an M -generated module. By σ[M ] we denote
the full subcategory of AM whose objects are all M -subgenerated modules.
Obviously the finitely generated (cyclic) submodules of M (N) form a set of
generators in σ[M ].

The trace functor T M : AM → σ[M ], which sends any X ∈ AM to

T M(X) :=
∑

{f(N) | N ∈ σ[M ], f ∈ AHom(N,X)},

is right adjoint to the inclusion functor σ[M ] → AM. For any family {Nλ}Λ

of modules in σ[M ], the product in σ[M ] is∏M

Λ
Nλ = T M(

∏
Λ
Nλ),

where the unadorned
∏

denotes the usual (Cartesian) product of A-modules,
since, for any P ∈ σ[M ],

AHom(P, T M(
∏M

Λ
Nλ)) '

∏
Λ
AHom(P,Nλ).

Moreover, for any injective A-module Q, T M(Q) is an injective object in the
category σ[M ].

N ∈ σ[M ] is said to be a generator in σ[M ] if it generates all modules in
σ[M ], and M is called a self-generator if it generates all its own submodules.

3.2. Injective modules. Let U and M be A-modules. U is said to be
M-injective if every diagram in AM with exact row

0 → K → M
↓
U

can be extended commutatively by some morphism M → U . This holds if

AHom(−, U) is exact with respect to all exact sequences of the form 0 → K →
M → N → 0 (in σ[M ]). U is injective in σ[M ] (in AM) if it is N -injective,
for every N ∈ σ[M ] (N ∈ AM, resp.).
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3.3. Injectives in σ[M ]. (Cf. [10, 16.3, 16.11, 17.9].)

(1) For Q ∈ σ[M ] the following are equivalent:

(a) Q is injective in σ[M ];

(b) the functor AHom(−, Q) : σ[M ] → MR is exact;

(c) Q is M-injective;

(d) Q is N-injective for every (finitely generated) submodule N ⊂M ;

(e) every exact sequence 0 → Q→ N → L→ 0 in σ[M ] splits.

(2) Every M-injective object in σ[M ] is M-generated.

(3) Every object in σ[M ] has an injective hull.

3.4. Projectivity. Let M and P be A-modules. P is said to be M-projective
if the functor AHom(P,−) is exact on all exact sequences of the form 0 →
K → M → N → 0 in AM. P is called projective in σ[M ] (in AM) if it is
N -projective, for every N ∈ σ[M ] (N ∈ AM, repectively).

3.5. Projectives in σ[M ]. (Cf. [10, 18.3].)
For P ∈ σ[M ] the following are equivalent:

(a) P is projective in σ[M ];

(b) the functor AHom(P,−) : σ[M ] → MR is exact;

(c) P is M (Λ)-projective, for any index set Λ;

(d) every exact sequence 0 → K → N → P → 0 in σ[M ] splits.

If P is finitely generated, then (a)–(d) are equivalent to:

(e) P is M-projective.

A module P ∈ σ[M ] is called a progenerator in σ[M ] if it is finitely gen-
erated, projective and a generator in σ[M ]. Notice that there may be no
projective objects in σ[M ]. A module N ∈ σ[M ] is a subgenerator in σ[M ] if
σ[N ] = σ[M ].

3.6. Subgenerators. (Cf. [10].)

(1) For an A-module M the following are equivalent:

(a) M is a subgenerator in AM (that is, σ[M ] = AM);

(b) M generates all injective modules in AM;

(c) there is a monomorphism A→Mk, for some k ∈ N.

(2) A faithful module AM is a subgenerator in AM provided

(i) AM is finitely generated over EndA(M), or

(ii) AA is finitely cogenerated, or

(iii) σ[M ] is closed under products in AM.
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3.7. Semisimple modules.

(1) The following are equivalent:

(a) M is a (direct) sum of simple modules;

(b) every submodule of M is a direct summand;

(c) every module (in σ[M ]) is M-projective (or M-injective);

(d) every simple module (in σ[M ]) is M-projective;

(e) every cyclic module (in σ[M ]) is M-injective.

Modules M with these properties are called semisimple modules.

(2) Assume M to be semisimple.

(i) There exists a fully invariant decomposition

M =
⊕

Λ
Tr(Eλ,M),

where {Eλ}Λ is a minimal representing set of simple submodules
of M and the Tr(Eλ,M) are minimal fully invariant submodules.

(ii) The ring S = AEnd(M) is von Neumann regular and M is semi-
simple as a right S-module.

(iii) If all simple submodules of AM are isomorphic, then all simple
submodules of MS are isomorphic.

Proof. The first parts are shown in [10, 20.2–20.6].
(2)(ii) Let Am ⊂ M be a simple submodule. We show that mS ⊂ M

is a simple S-submodule. For any t ∈ S with mt 6= 0, Am ' Amt. Since
these are direct summands in M , there exists some φ ∈ S with mtφ = m and
hence mS = mtS, implying that mS has no nontrivial S-submodules. As a
semisimple module, M =

∑
ΛAmλ with Amλ simple. NowM = A(

∑
ΛmλS),

showing that M is a sum of simple S-modules amλS, where a ∈ A.
(2)(iii) It is straightforward to show that, for any m,n ∈ M , Am ' An

implies mS ' nS. tu

Definitions. A module M has finite length if it is Noetherian and Ar-
tinian. M is called locally Noetherian (Artinian, of finite length) provided
every finitely generated submodule of M is Noetherian (Artinian, of finite
length). M is called semi-Artinian if every factor module of M has a nonzero
socle.

3.8. Local finiteness conditions. (Cf. [10, 27.5, 32.5].)

(1) The following are equivalent for a left A-module M :

(a) M is locally Noetherian;

(b) every finitely generated module in σ[M ] is Noetherian;
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(c) any direct sum of M-injective modules is M-injective;

(d) every injective module in σ[M ] is a direct sum of uniform modules.

(2) The following are equivalent for a left A-module M :

(a) M is locally of finite length;

(b) every finitely generated module in σ[M ] has finite length;

(c) every injective module in σ[M ] is a direct sum of M-injective hulls
of simple modules.

(3) A module M is locally Artinian if and only if every finitely generated
module in σ[M ] is Artinian.

(4) A module M is semi-Artinian if and only if every module in σ[M ] has
a nonzero socle.

Definitions. A submodule K of M is said to be superfluous or small in M if,
for every submodule L ⊂M , K+L = M implies L = M . A small submodule
is denoted by K << M . An epimorphism π : P → N with P projective in
σ[M ] and Keπ << P is said to be a projective cover of N in σ[M ]. A module
is called local if it has a largest proper submodule.

3.9. Local modules. (Cf. [10, 19.7].)
For a projective module P ∈ σ[M ], the following are equivalent:

(a) P is local;

(b) P is a projective cover of a simple module in σ[M ];

(c) End(AP ) is a local ring.

Definitions. Let U be a submodule of the A-module M . A submodule
V ⊂ M is called a supplement of U in M if V is minimal with the property
U + V = M . It is easy to see that V is a supplement of U if and only if
U + V = M and U ∩ V << V . Notice that supplements need not exist in
general. M is said to be supplemented provided each of its submodules has a
supplement.
Definitions. A module P ∈ σ[M ] is said to be semiperfect in σ[M ] if every
factor module of N has a projective cover in σ[M ]. P is perfect in σ[M ] if
any direct sum P (Λ) is semiperfect in σ[M ].

3.10. Semiperfect modules. (Cf. [10, 42.5, 42.12].)
For a projective module P in σ[M ], the following are equivalent:

(a) P is semiperfect in σ[M ];

(b) P is supplemented;

(c) every finitely P -generated module has a projective cover in σ[M ];

(d) (i) P/Rad(P ) is semisimple and Rad(P ) << P , and

(ii) decompositions of P/Rad(P ) can be lifted to P ;
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(e) every proper submodule is contained in a maximal submodule of P, and
every simple factor module of P has a projective cover in σ[M ];

(f) P is a direct sum of local modules and Rad(P ) << P .

3.11. Perfect modules. (Cf. [10, 43.2].)
For a projective module P in σ[M ], the following are equivalent:

(a) P is perfect in σ[M ];

(b) P is semiperfect and, for any set Λ, Rad(P (Λ)) << P (Λ);

(c) every P -generated module has a projective cover in σ[M ].

Definition. We call σ[M ] a (semi)perfect category if every (simple) module
in σ[M ] has a projective cover in σ[M ].

3.12. Semiperfect and perfect categories.

(1) For an A-module M the following are equivalent:

(a) σ[M ] is semiperfect;

(b) σ[M ] has a generating set of local projective modules;

(c) in σ[M ] every finitely generated module has a projective cover.

(2) For M the following are equivalent:

(a) σ[M ] is perfect;

(b) σ[M ] has a projective generator that is perfect in σ[M ].

Proof. (1) (a) ⇒ (b) The projective covers of all simple objects in σ[M ]
are local and form a generating set of σ[M ] (by [10, 18.5]). Notice that local
modules are supplemented.

(b)⇒ (c) Any finite direct sum of supplemented modules is supplemented.
Hence, for every finitely generated N ∈ σ[M ], there exists an epimorphism
P → N with some supplemented projective module P ∈ σ[M ]. By 3.10,
every factor module of P has a projective cover in σ[M ], and so does N .

(c) ⇒ (a) is trivial.
(2) (a) ⇒ (b) Let P be the direct sum of projective covers of a representa-

tive set of the simple modules in σ[M ]. Then P is a projective generator and
every factor module of P (Λ) has a projective cover, and hence P is perfect.

(b) ⇒ (a) is obvious. tu

3.13. Left perfect rings. (Cf. [10, 43.9].)
For A the following are equivalent:

(a) A is a perfect module in AM;

(b) A/Jac(A) is left semisimple and Jac(A) is right t-nilpotent;

(c) every left A-module has a projective cover;



3. The category σ[M ] 27

(d) A satisfies the descending chain condition (dcc) on cyclic right ideals.

3.14. (f-)semiperfect rings. A ring A is said to be semiperfect if A is
semiperfect as a left A-module or – equivalently – as a right A-module. More
generally, A is called f-semiperfect (or semiregular) if A/Jac(A) is von Neu-
mann regular and idempotents lift modulo Jac(A). Note that A is semiperfect
if and only if finitely generated left and right A-modules have projective cov-
ers, and A is f-semiperfect if and only if every finitely presented left (and
right) A-module has a projective cover (see [10, 42.11]). From [10, 42.12,
22.1] we recall:

3.15. (f-)semiperfect endomorphism rings. Put S = AEnd(M).

(1) Assume M to be projective in σ[M ]. Then:

(i) S is semiperfect if and only if M is finitely generated and semiper-
fect.

(ii) If M is semiperfect, then S is f-semiperfect.

(iii) If S is f-semiperfect, then Rad(M) << M and M is a direct sum
of cyclic modules.

(2) If M is self-injective, then S is f-semiperfect.

(3) If M is self-injective and Soc(M) �M , then

Jac(S) = AHom(M/Soc(M),M).

3.16. Weak QF modules. If AM is faithful, the following are equivalent:

(a) AM is a weak QF module;

(b) (i) AM is weakly AM-injective and MS is weakly MS-injective, and

(ii) A is dense in EndS(M);

(c) MS is a weak QF module and A is dense in EndS(M);

(d) AM and MS are weak cogenerators in σ[AM ] and σ[MS], respectively.

For any weak QF module AM , Soc AM = SocMS.

A locally Noetherian weak QF module M is an injective cogenerator
in σ[M ] (by [10, 16.5]). A Noetherian weak QF module is called a quasi-
Frobenius or QF module. A ring is a QF ring if it is QF as a left (or right)
module.

Caution: “quasi Frobenius” is used in different ways in the literature.
Let σf [M ] denote the full subcategory of σ[M ] whose objects are sub-

modules of finitely M -generated modules. With this notation σf [SS] is the
category of submodules of finitely generated right S-modules. This type of
category is of particular interest in studying dualities.
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3.17. Morita dualities.

(1) The following are equivalent:

(a) AHom(−,M): σf [M ] → σf [SS] is a duality;

(b) AM is an injective cogenerator in σ[M ], and MS is an injective
cogenerator in MS;

(c) AM is linearly compact, finitely cogenerated, and an injective co-
generator in σ[M ].

(2) If M is an injective cogenerator in σ[M ], the following are equivalent:

(a) AM is Artinian;

(b) AM is semi-Artinian and MS is S-injective;

(c) MS is a Σ-injective cogenerator in MS;

(d) S is right Noetherian.

Next we consider relative properties of A-modules related to a fixed ring
morphism φ : B → A. In this case, any left A-module M is naturally a
left B-module and there is an interplay between the properties of M as an
A-module and those of M as a B-module.

3.18. (A,B)-finite modules. The module M is said to be (A,B)-finite
if every finitely generated A-submodule of M is finitely generated as a B-
module. σ[M ] is said to be (A,B)-finite if every module in σ[M ] is (A,B)-
finite.

Let σ[M ] be (A,B)-finite.

(i) If B is a right perfect ring, then every module in σ[M ] has the dcc on
finitely generated A-submodules.

(ii) If B is left Noetherian, then every module in σ[M ] is locally Noetherian.

(iii) If B is left Artinian, then every module in σ[M ] has locally finite length.

For the following observations we refer to [11, Section 20].

3.19. Relative notions. An exact sequence K
f→ M

g→ N in AM is called
(A,B)-exact if Im f is a direct summand of M as a left B-module.

LetM,P,Q be left A-modules. P is called (M,B)-projective if AHom(P,−)
is exact with respect to all (A,B)-exact sequences in σ[M ]. This is the case
if and only if every (A,B)-exact sequence L→ P → 0 in σ[M ] splits.

Q is called (M,B)-injective if AHom(−, Q) is exact with respect to all
(A,B)-exact sequences in σ[M ]. This happens if and only if every (A,B)-
exact sequence 0 → Q→ L in σ[M ] splits.

Over a semisimple ring B, (M,B)-projective and (M,B)-injective are syn-
onymous to projective and injective in σ[M ], respectively.
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3.20. (A,B)-projectives and (A,B)-injectives.

(1) For any B-module X, A⊗B X is (A,B)-projective.

(2) P ∈ AM is (A,B)-projective if and only if the map A ⊗B P → P ,
a⊗ p 7→ ap, splits in AM.

(3) For any B-module Y , HomB(A, Y ) is (A,B)-injective.

(4) Q ∈ AM is (A,B)-injective if and only if the map Q → HomB(A,Q),
q 7→ [a 7→ aq], splits in AM.

The module M is called (A,B)-semisimple if every (A,B)-exact sequence
in σ[M ] splits. The ring A is said to be left (A,B)-semisimple if A is (A,B)-
semisimple as a left A-module.

3.21. (A,B)-semisimple modules. The following are equivalent:

(a) M is (A,B)-semisimple;

(b) every A-module (in σ[M ]) is (M,B)-projective;

(c) every A-module (in σ[M ]) is (M,B)-injective.
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4 External properties of σ[M ]

So far we dealt with the internal structure of the category σ[M ]. It is also of
interest to look at the properties of σ[M ] as a class of modules in AM.

Let T be any associative ring (without a unit). A left T -module N is
called s-unital if u ∈ Tu for every u ∈ N . T itself is called left s-unital if
it is s-unital as a left T -module. For an ideal T ⊂ A, every A-module is a
T -module and we observe the elementary properties:

4.1. s-unital T -modules. For any subring T ⊂ A the following assertions
are equivalent:

(a) M is an s-unital T -module;

(b) for any m1, . . . ,mk ∈ N , there exists t ∈ T with mi = tmi for all i ≤ k;

(c) for any set Λ, N (Λ) is an s-unital T -module.

Proof. (a) ⇒ (b) We proceed by induction. Assume the assertion holds
for k−1 elements. Choose tk ∈ T such that tknk = nk and put ai = mi−mkni,
for all i ≤ k. By assumption there exists t′ ∈ T satisfying ai = t′ai, for all
i ≤ k − 1. Then t := t′ + tk − t′tk ∈ T is an element satisfying the condition
in (b). The remaining assertions are easily verified. tu

4.2. Flat factor rings. For an ideal T ⊂ A the following are equivalent:

(a) A/T is a flat right A-module;

(b) for every left ideal I of A, TI = T ∩ I;
(c) every injective left A/T -module is A-injective;

(d) for every A-module AL ⊂ AN , TL = TN ∩ L;

(e) T is left s-unital.

Under these conditions T is a flat right A-module, and, for any N ∈A M, the
canonical map T ⊗A N → TN is an isomorphism.

Proof. The equivalence of (a) and (b) is shown in [10, 36.6].
(a) ⇒ (c) Put D := A/T . Let N be an injective D-module and L ⊂ A a

left ideal. By (a), the sequence 0 → D ⊗A L→ D ⊗A A is exact in DM and
there is a commutative diagram with exact rows and canonical isomorphisms,

DHom(D ⊗A A,N) //

'
��

DHom(D ⊗A L,N)

'
��

// 0

AHom(A,DHom(D,N)) //

'
��

AHom(L,DHom(D,N)) //

'
��

0

AHom(A,N) //
AHom(L,M) // 0 .
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Since N is an injective D-module, the first row is exact and so are the others,
that is, N is injective as an A-module.

(c) ⇒ (a) Let N be a cogenerator in DM that is A-injective. For a left
ideal L ⊂ A there is an exact sequence 0 → K → D⊗A L→ D⊗A A in DM,
and we want to prove K = 0. Consider the exact sequence

DHom(D ⊗A A,N) → DHom(D ⊗A L,N) → DHom(K,N) → 0.

Now in the above diagram the bottom row is exact (N is A-injective). This
implies that the top row is also exact, that is, DHom(K,N) = 0. Since N is
a cogenerator in DM, we conclude K = 0.

The remaining implications are straightforward to verify. tu

4.3. s-unital modules over ideals. Let AM be faithful. For an ideal T ⊂ A
the following are equivalent:

(a) M is an s-unital T -module;

(b) for every N ∈ σ[M ], N = TN ;

(c) for every N ∈ σ[M ], the canonical map ϕN : T ⊗A N → N is an
isomorphism.

If T ∈ σ[M ], then (a)–(c) are equivalent to:

(d) T 2 = T and T is a generator in σ[M ].

Proof. The implications follow from 4.1 and 4.2. tu

4.4. Trace ideals. The trace of M in A, Tr(M,A), is called the trace ideal
of M , and the trace of σ[M ] in A, T M(A) = Tr(σ[M ], A), is called the trace
ideal of σ[M ]. Clearly Tr(M,A) ⊂ T M(A), and equality holds if M is a
generator in σ[M ], or else if A is a left self-injective algebra.

4.5. Trace ideals of M . Denote ∗M = AHom(M,A), and T = Tr(M,A) =
∗M(M). Any f ∈ ∗M defines an A-linear map

φf : M → S, m 7→ f(−)m.

∆ =
∑

f∈∗M Im φf is an ideal in S and M∆ ⊂ TM .

The following are equivalent:

(a) M = TM ;

(b) M = M∆;

(c) for any L ∈ AM, Tr(M,L) = TL.

If this holds, T and ∆ are idempotent ideals and ∆ = Tr(MS, S).
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Proof. (a) ⇔ (b) are obvious from the definitions.
(a) ⇔ (c) Clearly T is M -generated, and M = TM implies that M -

generated A-modules are T -generated.
Assume the conditions hold. By definition, ∆ ⊂ Tr(MS, S). For any S-

linear map g : M → S and m ∈ M , write m =
∑

imiδi, where mi ∈ M and
δi ∈ ∆, to obtain

g(m) = g(
∑

i
miδi) =

∑
i
g(mi)δi ∈ ∆,

thus showing Tr(MS, S) ⊂ ∆. tu

4.6. Canonical map. For any N ∈ MA there is a map

αN,M : N ⊗AM → HomA(∗M,N), n⊗m 7→ [f 7→ nf(m)],

which is injective if and only if

for any u ∈ N ⊗AM , (IN ⊗ f)(u) = 0 for all f ∈ ∗M , implies u = 0.

A module M is said to be locally projective if, for any diagram of left
A-modules with exact rows,

0 // F
i // M

g

��
L

f // N // 0,

where F is finitely generated, there exists h : M → L such that g◦i = f ◦h◦i.

4.7. Locally projective modules. With the notation from 4.5, the follow-
ing are equivalent:

(a) M is locally projective;

(b) αN,M is injective, for any (cyclic) right A-module N ;

(c) for each m ∈M , m ∈ ∗M(m)M ;

(d) for any m1, . . . ,mk ∈ M there exist x1, . . . , xn ∈ M , f1, . . . , fn ∈ ∗M ,
such that

mj =
∑

i
fi(mj)xi, for j = 1, . . . , k;

(e) M = TM , and M is an s-unital right ∆-module.

Proof. (a) ⇒ (d) Put N = M and L = A(Λ) in the defining diagram.
(d) ⇒ (a) follows by the fact that A is projective as left A-module.
(b) ⇒ (c) Assume αN,M to be injective for cyclic right A-modules N . For

any m ∈M put J = ∗M(m) and consider the monomorphism

φ : M/JM ' A/J ⊗AM
αN,M−→ HomA(∗M,A/J).
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For x ∈M and f ∈ ∗M , φ(x+JM)(f) = f(x)+J , and hence φ(m+JM) = 0.
By injectivity of φ this implies m ∈ JM .

(d) ⇒ (b) Let N ∈ MA and let v =
∑r

j=1 nj ⊗mj ∈ N ⊗A M . Choose
x1, . . . , xn ∈ M and f1, . . . , fn ∈ ∗M such that mj =

∑
i fi(mj)xi, for j =

1, . . . , r. Then

v =
∑

i,j nj ⊗ fi(mj)xi =
∑

i αN,M(v)(fi)⊗ xi,

and hence v = 0 if αN,M(v) = 0, that is, αN,M is injective.
(c) ⇔ (d) ⇔ (e) For m ∈ M , m ∈ ∗M(m)M means that there are

x1, . . . , xn ∈M and f1, . . . , fn ∈ ∗M such that

m =
∑

i fi(m)xi = m[
∑

i fi(−)xi] ∈ m∆,

showing that M is an s-unital right ∆-module (see 4.1). tu

4.8. T M as an exact functor. Putting T̃ = T M(A), the following assertions
are equivalent:

(a) the functor T M : AM → σ[M ] is exact;

(b) σ[M ] is closed under extensions and the class {X ∈ AM | T M(X) = 0}
is closed under factor modules;

(c) for every N ∈ σ[M ], T̃N = N ;

(d) M is an s-unital T̃ -module.

Proof. (a) ⇒ (b) Let T M be exact. For any exact sequence in AM as a
bottom row, there is a commutative diagram with exact rows,

0 // T M(K) //

��

T M(L) //

��

T M(N)

��

// 0

0 // K // L // N // 0 .

In case T M(K) = K and T M(N) = N this implies T M(L) = L, showing that
σ[M ] is closed under extensions. Moreover T M(L) = 0 implies T M(N) = 0
as required.

(b) ⇒ (c) Since σ[M ] is closed under extensions, T M(A/T ) = 0. For any
N ∈ σ[M ], N/T̃N is generated by A/T̃ , and so by (b), T M(N/T̃N) = 0 and
hence N = T̃N .

(c) ⇒ (a) First observe that the hypothesis implies T M(X) = TX, for
any X ∈ AM. Consider an exact sequence in AM, 0 → K → L → N → 0.
Since TA is flat (see 4.2), tensoring with T̃ ⊗A − yields an exact sequence
0 → T̃K → T̃L→ T̃N → 0.

(c) ⇔ (d) is shown in 4.3. tu
We say σ[M ] is closed under small epimorphisms if, for any epimorphism

f : P → N in AM, where Ke f << P and N ∈ σ[M ], we obtain P ∈ σ[M ].
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4.9. Corollary. Assume that the functor T M : AM → σ[M ] is exact.

(1) σ[M ] is closed under small epimorphisms.

(2) If P is finitely presented in σ[M ], then P is finitely presented in AM.

(3) If P is projective in σ[M ], then P is projective in AM.

Proof. (1) Put T̃ = T M(A). Consider an exact sequence 0 → K →
P → N → 0 in AM, where K << P and N ∈ σ[M ]. From this we obtain the
following commutative diagram with exact rows:

0 // K //

��

P //

=

��

N //

��

0

0 // K + T̃P // P // P/(K + T̃P ) // 0.

Clearly P/(K + T̃P ) ∈ σ[M ] and by condition 4.8(b), T̃ (P/(K + T̃P )) = 0.
This implies P = K + T̃P , that is, P ∈ σ[M ].

(2) It is enough to show this for any cyclic module P ∈ σ[M ] that is
finitely presented in σ[M ]. For this we construct the following commutative
diagram with exact rows (applying T M):

0 // L0
//

��

L1
//

��

P //

=

��

0

0 // I //

��

A //

��

P // 0

I/L0
' // A/L1,

where L0 and L1 are suitable finitely generated modules in σ[M ]. So I/L0 is
finitely generated, and hence so is I and P is finitely presented in AM.

(3) This is shown with a similar diagram as in the proof of (2). tu

4.10. Corollary. Suppose that σ[M ] has a generator that is locally projective
in AM. Then T M : AM → σ[M ] is an exact functor.

Proof. Let P ∈ σ[M ] be a locally projective generator. Then clearly
σ[M ] = σ[P ] and T̃ = T M(A) = Tr(P,A). By 4.5 and 4.7, T̃ 2 = T̃ and
T̃P = P . So T̃ generates P and 4.8 applies. tu

4.11. Projective covers in σ[M ]. Let σ[M ] be locally Noetherian and sup-
pose that A is f-semiperfect. Then the following are equivalent:

(a) the functor T M : AM → σ[M ] is exact;

(b) σ[M ] has a generator that is (locally) projective in AM;
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(c) there are idempotents {eλ}Λ in A such that the Aeλ are in σ[M ] and
form a generating set in σ[M ];

(d) σ[M ] is a semiperfect category.

Proof. (a) ⇒ (c) Let S be any simple module in σ[M ]. S is finitely
presented in σ[M ] and hence in AM (by 4.9(2)). Since A is f-semiperfect, S
has a projective cover P in AM (see 3.14). By 4.9(1), P ∈ σ[M ] and clearly
P ' Ae for some idempotent e ∈ A. Now a representing set of simple modules
in σ[M ] yields the required family of idempotents.

(c) ⇒ (b) is obvious and (b) ⇒ (a) follows from 4.10.
(c) ⇔ (d) This is clear by 3.12. tu

A submodule N ⊂ M is said to be fully invariant if it is invariant under
endomorphisms of M , that is, N is an (A, S)-submodule. The ring of (A, S)-
endomorphisms of M is the centre of S (e.g., [11, 4.2]).

4.12. Big cogenerators. An M -injective module Q ∈ σ[M ] is said to be a
big injective cogenerator in σ[M ] if every cyclic module in σ[M ] is isomorphic
to a submodule of Q(N). Clearly every big injective cogenerator in σ[M ] is a
cogenerator as well as a subgenerator in σ[M ]. Such modules always exist:

Let {Nλ}Λ be a representing set of the cyclic modules in σ[M ]. Then the
M-injective hull of

⊕
ΛNλ is a big injective cogenerator in σ[M ].

If M is locally of finite length, every injective cogenerator in σ[M ] is big.

4.13. Correspondence relations. Let Q be a big injective cogenerator in
the category σ[M ].

(1) For every N ∈ σ[M ], σ[N ] = σ[Tr(N,Q)].

(2) The assignment σ[N ] 7→ Tr(N,Q) yields a bijective correspondence be-
tween the subcategories of type σ[N ] of σ[M ] and the fully invariant
submodules of Q.

(3) If σ[N ] is closed under essential extensions (injective hulls) in σ[M ],
then Tr(N,Q) is an A-direct summand of Q.

(4) If M is locally Noetherian and Tr(N,Q) is an A-direct summand of Q,
then σ[N ] is closed under essential extensions in σ[M ].

(5) N ∈ σ[M ] is semisimple if and only if Tr(N,Q) ⊂ Soc(AQ).

Proof. Since Q is M -injective, Tr(σ[N ], Q) = Tr(N,Q).
(1) Tr(N,Q) is a fully invariant submodule that, by definition, belongs

to σ[N ]. Consider any finitely generated L ∈ σ[N ]. Then, by assumption,
L ⊂ Qk, for some k ∈ N, and hence L ⊂ Tr(L,Q)k ⊂ Tr(N,Q)k. This implies
N ∈ σ[Tr(N,Q)].

Parts (2) and (5) are immediate consequences of (1).
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(3) If σ[N ] is closed under essential extensions in σ[M ], then Tr(N,Q) is
an A-direct sumand in Q (and hence is injective in σ[M ]).

(4) Let M be locally Noetherian and Tr(N,Q) a direct summand of Q.
Consider any N -injective module L in σ[N ]. Then L is a direct sum of N -
injective uniform modules U ∈ σ[M ]. Clearly U is (isomorphic to) a direct
summand of Tr(N,Q) and hence of Q; that is, U is M -injective and so L is
M -injective, too. tu

4.14. Sum and decomposition of subcategories. For any K,L ∈ σ[M ]
we write σ[K] ∩ σ[L] = 0, provided σ[K] and σ[L] have no nonzero module
in common. Given a family {Nλ}Λ of modules in σ[M ], define∑

Λ
σ[Nλ] := σ[

⊕
Λ
Nλ].

Moreover, we write

σ[M ] =
⊕

Λ
σ[Nλ],

provided, for every module L ∈ σ[M ], L =
⊕

ΛT Nλ(L) (internal direct sum).
This decomposition of σ[M ] is known as a σ-decomposition. The category
σ[M ] is σ-indecomposable provided it has no nontrivial σ-decomposition.

4.15. σ-decomposition of modules. For a decomposition M =
⊕

ΛMλ,
the following are equivalent (cf. [12]):

(a) for any distinct λ, µ ∈ Λ, Mλ and Mµ have no nonzero isomorphic
subfactors;

(b) for any distinct λ, µ ∈ Λ, σ[Mλ] ∩ σ[Mµ] = 0;

(c) for any L ∈ σ[M ], L =
⊕

Λ T Nλ(L).

If these conditions hold, we call M =
⊕

ΛMλ a σ-decomposition and in this
case

σ[M ] =
⊕

Λ
σ[Mλ].

4.16. Corollary. Let σ[M ] =
⊕

Λ σ[Nλ] be a σ-decomposition of σ[M ]. Then
the trace functor T M is exact if and only if the trace functors T Nλ are exact,
for all λ ∈ Λ.

4.17. Corollary. If M is a projective generator or an injective cogenerator
in σ[M ], then any fully invariant decomposition of M is a σ-decomposition.

Proof. Let M =
⊕

ΛMλ be a fully invariant decomposition. If M is a
projective generator in σ[M ], then every submodule of Mλ is generated by
Mλ. Since theMλ are projective in σ[M ], any nonzero (iso)morphism between
(sub)factors of Mλ and Mµ yields a nonzero morphism between Mλ and Mµ.
So the assertion follows from 4.15.
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Now suppose that M is an injective cogenerator in σ[M ]. Then every
subfactor of Mλ must be cogenerated by Mλ. From this it follows that for
λ 6= µ, there are no nonzero maps between subfactors of Mλ and Mµ and so
4.15 applies. tu

As an example, consider the Z-module Q/Z =
⊕

p primeZp∞ and the de-
composition of the category of torsion Abelian groups as a direct sum of the
categories of p-groups,

σ[Q/Z] =
⊕

p prime
σ[Zp∞ ].

Notice that, although Q/Z is an injective cogenerator in MZ with a non-
trivial σ-decomposition, MZ is σ-indecomposable. This is possible since Q/Z
is not a subgenerator in MZ.
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Coalgebras and comodules

Coalgebras and comodules are obtained by dualising the notions of algebras
and modules. Throughout, R denotes a commutative and associative ring
with a unit.

5 Coalgebras

The main aim of this section is to introduce and give examples of coalgebras
and explain the (dual) relationship between algebras and coalgebras.

5.1. Coalgebras. An R-coalgebra is an R-module C with R-linear maps

∆ : C → C ⊗R C and ε : C → R,

called (coassociative) coproduct and counit, respectively, with the properties

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆, and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆,

which can be expressed by commutativity of the diagrams

C
∆ //

∆
��

C ⊗R C

IC⊗∆
��

C ⊗R C
∆⊗IC// C ⊗R C ⊗R C

C
∆ //

IC

&&MMMMMMMMMMM

∆
��

C ⊗R C

ε⊗IC
��

C ⊗R C IC⊗ε
// C .

A coalgebra (C,∆, ε) is said to be cocommutative if ∆ = tw ◦∆, where

tw : C ⊗R C → C ⊗R C, a⊗ b 7→ b⊗ a,

is the twist map.

5.2. Sweedler’s Σ-notation. For an elementwise description of the maps
we use the Σ-notation, writing for c ∈ C

∆(c) =
k∑
i=1

ci ⊗ c̃i =
∑

c1 ⊗ c2.

The first version is more precise; the second version, introduced by Sweedler,
is very handy in explicit calculations. Notice that c1 and c2 do not represent

38
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single elements but families c1, . . . , ck and c̃1, . . . , c̃k of elements of C that are
by no means uniquely determined. Properties of c1 can only be considered in
context with c2. With this notation, the coassociativity of ∆ is expressed by∑

∆(c1)⊗ c2 =
∑

c1 1 ⊗ c1 2 ⊗ c2 =
∑

c1 ⊗ c2 1 ⊗ c2 2 =
∑

c1 ⊗∆(c2),

and, hence, it is possible and convenient to shorten the notation by writing

(∆⊗ IC)∆(c) = (IC ⊗∆)∆(c) =
∑
c1 ⊗ c2 ⊗ c3,

(IC ⊗ IC ⊗∆)(IC ⊗∆)∆(c) =
∑
c1 ⊗ c2 ⊗ c3 ⊗ c4,

and so on. The conditions for the counit are described by∑
ε(c1)c2 = c =

∑
c1ε(c2).

Cocommutativity is equivalent to
∑
c1 ⊗ c2 =

∑
c2 ⊗ c1.

R-coalgebras are closely related or dual to algebras. Indeed, the module
of R-linear maps from a coalgebra C to any R-algebra is an R-algebra.

5.3. The algebra HomR(C,A). For any R-linear map ∆ : C → C ⊗R C
and an R-algebra A, HomR(C,A) is an R-algebra by the convolution product

f ∗ g = µ ◦ (f ⊗ g) ◦∆, i.e., f ∗ g(c) =
∑

f(c1)g(c2),

for f, g ∈ HomR(C,A) and c ∈ C. Furthermore,

(1) ∆ is coassociative if and only if HomR(C,A) is an associative R-algebra,
for any R-algebra A.

(2) C is cocommutative if and only if HomR(C,A) is a commutative R-
algebra, for any commutative R-algebra A.

(3) C has a counit if and only if HomR(C,A) has a unit, for all R-algebras
A with a unit.

Proof. (1) Let f, g, h ∈ HomR(C,A) and consider the R-linear map

µ̃ : A⊗R A⊗R A→ A, a1 ⊗ a2 ⊗ a3 7→ a1a2a3.

By definition, the products (f ∗ g) ∗ h and f ∗ (g ∗ h) in HomR(C,A) are the
compositions of the maps

C ⊗R C
∆⊗IC

((QQQQQQQQQQQQ

C

∆
::tttttttttt

∆ $$JJJJJJJJJJ C ⊗R C ⊗R C
f⊗g⊗h // A⊗R A⊗R A

µ̃ // A .

C ⊗R C
IC⊗∆

66mmmmmmmmmmmm
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It is obvious that coassociativity of ∆ yields associativity of HomR(C,A).
To show the converse, we see from the above diagram that it suffices to

prove that, (at least) for one associative algebra A and suitable f, g, h ∈
HomR(C,A), the composition µ̃ ◦ (f ⊗ g ⊗ h) is a monomorphism. So let
A = T (C), the tensor algebra of the R-module C, and f = g = h, the
canonical mapping C → T (C). Then µ̃ ◦ (f ⊗ g ⊗ h) is just the embedding
C ⊗ C ⊗ C = T3(C) → T (C).

(2) If C is cocommutative and A is commutative,

f ∗ g (c) =
∑

f(c1)g(c2) =
∑

g(c1)f(c2) = g ∗ f (c),

so that HomR(C,A) is commutative. Conversely, assume that HomR(C,A) is
commutative for any commutative A. Then

µ ◦ (f ⊗ g)(∆(c)) = µ ◦ (f ⊗ g)(tw ◦∆(c)).

This implies ∆ = tw ◦∆ provided we can find a commutative algebra A and
f, g ∈ HomR(C,A) such that µ ◦ (f ⊗ g) : C ⊗R C → A is injective. For this
take A to be the symmetric algebra S(C ⊕ C). For f and g we choose the
mappings

C → C ⊕ C, x 7→ (x, 0), C → C ⊕ C, x 7→ (0, x),

composed with the canonical embedding C ⊕ C → S(C ⊕ C).
With the canonical isomorphism h : S(C) ⊗ S(C) → S(C ⊕ C) and the

embedding λ : C → S(C), we form h−1 ◦ µ ◦ (f ⊗ g) = λ⊗ λ. Since λ(C) is a
direct summand of S(C), we obtain that λ⊗ λ is injective and so µ ◦ (f ⊗ g)
is injective.

(3) It is easy to check that the unit in HomR(C,A) is

C
ε−→ R

ι−→ A, c 7→ ε(c)1A.

For the converse, consider the R-module A = R ⊕ C and define a unital
R-algebra

µ : A⊗R A→ A, (r, a)⊗ (s, b) 7→ (rs, rb+ as).

Suppose there is a unit element in HomR(C,A),

e : C → A = R⊕ C, c 7→ (ε(c), λ(c)),

with R-linear maps ε : C → R, λ : C → C. Then, for f : C → A, c 7→ (0, c),
multiplication in HomR(C,A) yields

f ∗ e : C → A, c 7→ (0, (IC ⊗ ε) ◦∆(c)).
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By assumption, f = f ∗ e and hence IC = (IC ⊗ ε) ◦∆, one of the conditions
for ε to be a counit. Similarly, the other condition is derived from f = e ∗ f .

Clearly ε is the unit in HomR(C,R), showing the uniqueness of a counit
for C. tu

Note in particular that C∗ = HomR(C,R) is an algebra with the convolu-
tion product known as the dual or convolution algebra of C.

Notation. From now on, C (usually) will denote a coassociative R-coalgebra
(C,∆, ε), and A will stand for an associative R-algebra with unit (A, µ, ι).

Many properties of coalgebras depend on properties of the base ring R.
The base ring can be changed in the following way.

5.4. Scalar extension. Let C be an R-coalgebra and S an associative com-
mutative R-algebra with unit. Then C ⊗R S is an S-coalgebra with the co-
product

∆̃ : C ⊗R S
∆⊗IS // (C ⊗R C)⊗R S

' // (C ⊗R S)⊗S (C ⊗R S)

and the counit ε⊗ IS : C ⊗R S → S. If C is cocommutative, then C ⊗R S is
cocommutative.

Proof. By definition, for any c⊗ s ∈ C ⊗R S,

∆̃(c⊗ s) =
∑

(c1 ⊗ 1S)⊗S (c2 ⊗ s).

It is easily checked that ∆̃ is coassociative. Moreover,

(ε⊗ IS ⊗ IC⊗RS) ◦ ∆̃(c⊗ s) =
∑

ε(c1)c2 ⊗ s = c⊗ s,

and similarly (IC⊗RS ⊗ ε ⊗ IS) ◦ ∆̃ = IC⊗RS is shown. Obviously cocommu-
tativity of ∆ implies cocommutativity of ∆̃. tu

To illustrate the notions introduced above we consider some examples.

5.5. R as a coalgebra. The ring R is (trivially) a coassociative, cocommu-
tative coalgebra with the canonical isomorphism R → R ⊗R R as coproduct
and the identity map R→ R as counit.

5.6. Free modules as coalgebras. Let F be a free R-module with basis
(fλ)Λ, Λ any set. Then there is a unique R-linear map

∆ : F → F ⊗R F, fλ 7→ fλ ⊗ fλ,

defining a coassociative and cocommutative coproduct on F . The counit is
provided by the linear map ε : F → R, fλ 7−→ 1.
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5.7. Semigroup coalgebra. Let G be a semigroup. A coproduct and counit
on the semigroup ring R[G] can be defined by

∆1 : R[G] → R[G]⊗R R[G], g 7→ g ⊗ g, ε1 : R[G] → R, g 7→ 1.

If G has a unit e, then another possibility is

∆2 : R[G] → R[G]⊗R R[G], g 7→
{
e⊗ e if g = e,
g ⊗ e+ e⊗ g if g 6= e.

ε2 : R[G] → R, g 7→
{

1 if g = e,
0 if g 6= e.

Both ∆1 and ∆2 are coassociative and cocommutative.

5.8. Polynomial coalgebra. A coproduct and counit on the polynomial
ring R[X] can be defined as algebra homomorphisms by

∆1 : R[X] → R[X]⊗R R[X], X i 7→ X i ⊗X i,

ε1 : R[X] → R, X i 7→ 1, i = 0, 1, 2, . . . .

or else by

∆2 : R[X] → R[X]⊗R R[X], 1 7→ 1, X i 7→ (X ⊗ 1 + 1⊗X)i,

ε2 : R[X] → R, 1 7→ 1, X i 7→ 0, i = 1, 2, . . . .

Again, both ∆1 and ∆2 are coassociative and cocommutative.

5.9. Coalgebra of a projective module. Let P be a finitely generated
projective R-module with dual basis p1, . . . , pn ∈ P and π1, . . . , πn ∈ P ∗.
There is an isomorphism

P ⊗R P
∗ → EndR(P ), p⊗ f 7→ [a 7→ f(a)p],

and on P ∗ ⊗R P the coproduct and counit are defined by

∆ : P ∗ ⊗R P → (P ∗ ⊗R P )⊗R (P ∗ ⊗R P ), f ⊗ p 7→
∑
i

f ⊗ pi ⊗ πi ⊗ p,

ε : P ∗ ⊗R P → R, f ⊗ p 7→ f(p).

By properties of the dual basis,

(IP⊗RP ∗ ⊗ ε)∆(f ⊗ p) =
∑
i

f ⊗ piπi(p) = f ⊗ p,

showing that ε is a counit, and coassociativity of ∆ is proved by the equality

(IP⊗RP ∗⊗∆)∆(f⊗p) =
∑

i,j
f⊗pi⊗πi⊗pj⊗πj⊗p = (∆⊗IP⊗RP ∗)∆(f⊗p).



6. Coalgebra morphisms 43

The dual algebra of P ∗ ⊗R P is (anti)isomorphic to EndR(P ) by the bi-
jective maps

(P ∗ ⊗R P )∗ = HomR(P ∗ ⊗R P,R) ' HomR(P, P ∗∗) ' EndR(P ),

which yield a ring isomorphism or anti-isomorphism, depending from which
side the morphisms are acting.

For P = R we obtain R = R∗, and R∗ ⊗R R ' R is the trivial coalgebra.
As a more interesting special case we may consider P = Rn. Then P ∗ ⊗R P
can be identified with the matrix ring Mn(R), and this leads to the

5.10. Matrix coalgebra. Let {eij}1≤i,j≤n be the canonical R-basis for
Mn(R), and define the coproduct and counit

∆ : Mn(R) →Mn(R)⊗RMn(R), eij 7→
∑

k
eik ⊗ ekj,

ε : Mn(R) → R, eij 7→ δij .

The resulting coalgebra is called the (n, n)-matrix coalgebra over R, and we
denote it by M c

n(R).

Notice that the matrix coalgebra may also be considered as a special case
of a semigroup coalgebra in 5.7.

From a given coalgebra one can construct the

5.11. Opposite coalgebra. Let ∆ : C → C ⊗R C define a coalgebra. Then

∆tw : C
∆−→ C ⊗R C

tw−→ C ⊗R C, c 7→
∑

c2 ⊗ c1,

where tw is the twist map, defines a new coalgebra structure on C known
as the opposite coalgebra with the same counit. The opposite coalgebra is
denoted by Ccop. Note that a coalgebra C is cocommutative if and only if C
coincides with its opposite coalgebra (i.e., ∆ = ∆tw).

5.12. Duals of algebras. Let (A, µ, ι) be an R-algebra and assume RA to
be finitely generated and projective. Then there is an isomorphism

A∗ ⊗R A
∗ → (A⊗R A)∗, f ⊗ g 7→ [a⊗ b 7→ f(a)g(b)],

and the functor HomR(−, R) = (−)∗ yields a coproduct

µ∗ : A∗ → (A⊗R A)∗ ' A∗ ⊗R A
∗

and a counit (as the dual of the unit of A)

ε := ι∗ : A∗ → R, f 7→ f(1A).

This makes A∗ an R-coalgebra that is cocommutative provided µ is commu-
tative. If RA is not finitely generated and projective, the above construction
does not work. However, under certain conditions the finite dual of A has a
coalgebra structure.
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6 Coalgebra morphisms

Morphisms are defined as R-linear map between coalgebras that respect the
coalgebra structures (coproducts and counits).

6.1. Coalgebra morphisms. Given R-coalgebras C and C ′, an R-linear
map f : C → C ′ is said to be a coalgebra morphism provided the diagrams

C
f //

∆
��

C ′

∆′

��
C ⊗R C

f⊗f // C ′ ⊗R C
′ ,

C
f //

ε
%%LLLLLLLLLL C ′

ε′

��
R

are commutative. Explicitly, this means that

∆′ ◦ f = (f ⊗ f) ◦∆, and ε′ ◦ f = ε,

that is, for all c ∈ C,∑
f(c1)⊗ f(c2) =

∑
f(c)1 ⊗ f(c)2, and ε′(f(c)) = ε(c).

Given an R-coalgebra C and an S-coalgebra D, where S is a commuta-
tive ring, a coalgebra morphism between C and D is defined as a pair (α, γ)
consisting of a ring morphism α : R → S and an R-linear map γ : C → D
such that

γ′ : C ⊗R S → D, c⊗ s 7→ γ(c)s,

is an S-coalgebra morphism. Here we consider D as an R-module (induced
by α) and C ⊗R S is the scalar extension of C.

As shown in 5.3, for an R-algebra A, the contravariant functor HomR(−, A)
turns coalgebras to algebras. It also turns coalgebra morphisms into algebra
morphisms.

6.2. Duals of coalgebra morphisms. For R-coalgebras C and C ′, an R-
linear map f : C → C ′ is a coalgebra morphism if and only if

Hom(f, A) : HomR(C ′, A) → HomR(C,A)

is an algebra morphism, for any R-algebra A.

Proof. Let f be a coalgebra morphism. Putting f ∗ = HomR(f, A), we
compute for g, h ∈ HomR(C ′, A)

f ∗(g ∗ h) = µ ◦ (g ⊗ h) ◦∆′ ◦ f = µ ◦ (g ⊗ h) ◦ (f ⊗ f) ◦∆

= (g ◦ f) ∗ (h ◦ f) = f ∗(g) ∗ f ∗(h).
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To show the converse, assume that f ∗ is an algebra morphism, that is,

µ ◦ (g ⊗ h) ◦∆′ ◦ f = µ ◦ (g ⊗ h) ◦ (f ⊗ f) ◦∆,

for any R-algebra A and g, h ∈ HomR(C ′, A). Choose A to be the tensor alge-
bra T (C) of the R-module C and choose g, h to be the canonical embedding
C → T (C). Then µ◦(g⊗h) is just the embedding C⊗RC → T2(C) → T (C),
and the above equality implies

∆′ ◦ f = (f ⊗ f) ◦∆,

showing that f is a coalgebra morphism. tu

6.3. Coideals. The problem of determining which R-submodules of C are
kernels of a coalgebra map f : C → C ′ is related to the problem of describing
the kernel of f ⊗ f (in the category of R-modules MR). If f is surjective, we
know that Ke (f ⊗ f) is the sum of the canonical images of Ke f ⊗R C and
C ⊗R Ke f in C ⊗R C. This suggests the following definition.

The kernel of a surjective coalgebra morphism f : C → C ′ is called a
coideal of C.

6.4. Properties of coideals. For an R-submodule K ⊂ C and the canonical
projection p : C → C/K, the following are equivalent:

(a) K is a coideal;

(b) C/K is a coalgebra and p is a coalgebra morphism;

(c) ∆(K) ⊂ Ke (p⊗ p) and ε(K) = 0.

If K ⊂ C is C-pure, then (c) is equivalent to:

(d) ∆(K) ⊂ C ⊗R K +K ⊗R C and ε(K) = 0.

If (a) holds, then C/K is cocommutative provided C is also.

Proof. (a) ⇔ (b) is obvious.
(b) ⇒ (c) There is a commutative exact diagram

0 // K //

��

C
p //

∆

��

C/K

∆̄
��

//

��

0

0 // Ke (p⊗ p) // C ⊗R C
p⊗p // C/K ⊗R C/K // 0,

where commutativity of the right square implies the existence of a morphism
K → Ke (p⊗p), thus showing ∆(K) ⊂ Ke (p⊗p). For the counit ε̄ : C/K →
R of C/K, ε̄ ◦ p = ε and hence ε(K) = 0

(c) ⇒ (b) Under the given conditions, the left-hand square in the above
diagram is commutative and the cokernel property of p implies the existence
of ∆̄. This makes C/K a coalgebra with the properties required.

(c) ⇔ (d) If K ⊂ C is C-pure, Ke (p⊗ p) = C ⊗R K +K ⊗R C. tu
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6.5. Factorisation theorem. Let f : C → C ′ be a morphism of R-
coalgebras. If K ⊂ C is a coideal and K ⊂ Ke f , then there is a commutative
diagram of coalgebra morphisms

C
p //

f ##G
GGGGGGGG C/K

f̄

��
C ′ .

Proof. Denote by f̄ : C/K → C ′ the R-module factorisation of f : C →
C ′. It is easy to show that the diagram

C/K
f̄ //

∆̄
��

C ′

∆′

��
C/K ⊗R C/K

f̄⊗f̄ // C ′ ⊗R C
′

is commutative. This means that f̄ is a coalgebra morphism. tu

6.6. The counit as a coalgebra morphism. View R as a trivial R-
coalgebra as in 5.5. Then, for any R-coalgebra C,

(1) ε is a coalgebra morphism;

(2) if ε is surjective, then Ke ε is a coideal.

Proof. (1) Consider the diagram

C
ε //

∆

��

R

'
��

c � //
_

��

ε(c)
_

��
C ⊗R C

ε⊗ε // R⊗R R
∑
c1 ⊗ c2

� //
∑
ε(c1)⊗ ε(c2) .

The properties of the counit yield∑
ε(c1)⊗ ε(c2) =

∑
ε(c1)ε(c2)⊗ 1 = ε(

∑
c1ε(c2))⊗ 1 = ε(c)⊗ 1,

so the above diagram is commutative and ε is a coalgebra morphism.
(2)This is clear by (1) and the definition of coideals. tu

6.7. Subcoalgebras. An R-submodule D of a coalgebra C is called a sub-
coalgebra provided D has a coalgebra structure such that the inclusion map
is a coalgebra morphism.
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Notice that a pure R-submodule D ⊂ C is a subcoalgebra provided
∆D(D) ⊂ D ⊗R D ⊂ C ⊗R C and ε|D : D → R is a counit for D. In-
deed, since D is a pure submodule of C, we obtain

∆D(D) = D ⊗R C ∩ C ⊗R D = D ⊗R D ⊂ C ⊗R C,

so that D has a coalgebra structure for which the inclusion is a coalgebra
morphism, as required.

From the above observations we obtain:

6.8. Image of coalgebra morphisms. The image of any coalgebra map
f : C → C ′ is a subcoalgebra of C ′.

6.9. Coproduct of coalgebras. For a family {Cλ}Λ of R-coalgebras, put
C =

⊕
ΛCλ, the coproduct in MR, iλ : Cλ → C the canonical inclusions, and

consider the R-linear maps

Cλ
∆λ−→ Cλ ⊗ Cλ ⊂ C ⊗ C, ε : Cλ → R.

By the properties of coproducts of R-modules there exist unique maps

∆ : C → C ⊗R C with ∆ ◦ iλ = ∆λ, ε : C → R with ε ◦ iλ = ελ.

(C,∆, ε) is called the coproduct (or direct sum) of the coalgebras Cλ. It is
obvious that the iλ : Cλ → C are coalgebra morphisms.

C is coassociative (cocommutative) if and only if all the Cλ have the
corresponding property. This follows – by 5.3 – from the ring isomorphism

HomR(C,A) = HomR(
⊕

ΛCλ, A) '
∏

ΛHomR(Cλ, A),

for any R-algebra A, and the observation that the left-hand side is an asso-
ciative (commutative) ring if and only if every component in the right-hand
side has this property.

Universal property of C =
⊕

ΛCλ. For a family {fλ : Cλ → C ′}Λ of coal-
gebra morphisms there exists a unique coalgebra morphism f : C → C ′ such
that, for all λ ∈ Λ, there are commutative diagrams of coalgebra morphisms

Cλ
iλ //

fλ ##F
FFFFFFF C

f

��
C ′ .

Recall that for the definition of the tensor product of R-algebras A,B, the
twist map tw : A⊗R B → B ⊗R A, a⊗ b 7→ b⊗ a is needed. It also helps to
define the
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6.10. Tensor product of coalgebras. Let C and D be two R-coalgebras.
Then the composite map

C ⊗R D
∆C⊗∆D// (C ⊗R C)⊗R (D ⊗R D)

IC⊗tw⊗ID // (C ⊗R D)⊗R (C ⊗R D)

defines a coassociative coproduct on C ⊗R D, and with the counits εC of C
and εD of D the map εC⊗εD : C⊗RD → R is a counit of C⊗RD. With these
maps, C ⊗R D is called the tensor product coalgebra of C and D. Obviously
C ⊗R D is cocommutative provided both C and D are cocommutative.

6.11. Tensor product of coalgebra morphisms. Let f : C → C ′ and
g : D → D′ be morphisms of R-coalgebras. The tensor product of f and g
yields a coalgebra morphism

f ⊗ g : C ⊗R D → C ′ ⊗R D
′.

Proof. The fact that f and g are coalgebra morphisms implies commu-
tativity of the top square in the diagram

C ⊗R D
f⊗g //

∆C⊗∆D

��

C ′ ⊗R D
′

∆C′⊗∆D′
��

C ⊗R C ⊗R D ⊗R D
f⊗f⊗g⊗g //

IC⊗tw⊗ID
��

C ′ ⊗R C
′ ⊗R D

′ ⊗R D
′

IC′⊗tw⊗ID′
��

C ⊗R D ⊗R C ⊗R D
f⊗g⊗f⊗g // C ′ ⊗R D

′ ⊗R C
′ ⊗R D

′ ,

while the bottom square obviously is commutative by the definitions. Com-
mutativity of the outer rectangle means that f ⊗ g is a coalgebra morphism.

tu

To define the comultiplication for the tensor product of two R-coalgebras
C,D in 6.10, the twist map tw : C ⊗R D → D ⊗R C was used. Notice that
any such map yields a formal comultiplication on C ⊗R D, whose properties
strongly depend on the properties of the map chosen (see [3, 2.14]).
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7 Comodules

As before, R denotes a commutative ring, MR the category of R-modules,
and C, more precisely (C,∆, ε), stands for a (coassociative) R-coalgebra (with
counit). We first introduce right comodules over C.

7.1. Right C-comodules. For M ∈ MR, an R-linear map %M : M →
M ⊗R C is called a right coaction of C on M or simply a right C-coaction.
To denote the action of %M on elements of M we write %M(m) =

∑
m0⊗m1.

A C-coaction %M is said to be coassociative and counital provided the
diagrams

M
%M

//

%M

��

M ⊗R C

IM⊗∆
��

M ⊗R C
%M⊗IC //M ⊗R C ⊗R C,

M
%M
//

IM %%JJJJJJJJJJ M ⊗R C

IM⊗ε
��
M

are commutative. Explicitly, this means that, for all m ∈M ,∑
%M(m0)⊗m1 =

∑
m0 ⊗∆(m1), m =

∑
m0ε(m1).

In view of the first of these equations we can shorten the notation and write

(IM ⊗∆) ◦ %M(m) =
∑

m0 ⊗m1 ⊗m2,

and so on, in a way similar to the notation for a coproduct. Note that
the elements with subscript 0 are in M while all the elements with positive
subscripts are in C.

An R-module with a coassociative and counital right coaction is called a
right C-comodule.

Recall that any semigroup induces a coalgebra (R[G],∆1, ε1) (see 5.7) and
for this the comodules have the following form.

7.2. Graded modules. Let G be a semigroup. Considering R with the trivial
grading, an R-module M is G-graded if and only if it is an R[G]-comodule.

Proof. Let M =
⊕

GMg be a G-graded module. Then a coaction of
(R[G],∆1, ε1) on M is defined by

%M : M −→M ⊗R R[G], mg 7→ m⊗ g.

It is easily seen that this coaction is coassociative and, for any m ∈M ,

(IM ⊗ ε1)%
M(m) = (IM ⊗ ε1)(

∑
g∈G

mg ⊗ g) =
∑
g∈G

mg = m.
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Now assume that M is a right R[G]-comodule and for all m ∈ M write
%M(m) =

∑
g∈Gmg ⊗ g. By coassociativity,∑

g∈G

(mg)h ⊗ h⊗ g =
∑
g∈G

mg ⊗ g ⊗ g,

which implies (mg)h = δg,hmg and also %M(mg) = mg ⊗ g. Then Mg =
{mg |m ∈ M} is an independent family of R-submodules of M . Now couni-
tality of M implies

m = (IM ⊗ ε1)(
∑
g∈G

mg ⊗ g) =
∑
g∈G

mg,

and hence M =
⊕

GMg. tu

7.3. Comodule morphisms. Let M , N be right C-comodules. An R-linear
map f : M → N is called a comodule morphism (or (C-)colinear map) if and
only if the diagram

M
f //

%M

��

N

%N

��
M ⊗R C

f⊗IC // N ⊗R C

is commutative. Explicitly, this means that %N ◦ f = (f ⊗ IC) ◦ %M ; that is,
for all m ∈M we require∑

f(m)0 ⊗ f(m)1 =
∑

f(m0)⊗m1.

Clearly the sum of two C-morphisms is again a C-morphism and the
set HomC(M,N) of C-morphisms from M to N is an R-module, which is
determined by the exact sequence in MR,

0 → HomC(M,N) → HomR(M,N)
γ−→ HomR(M,N ⊗R C),

where γ(f) := %N ◦ f − (f ⊗ IC) ◦ %M .
The class of right comodules over C together with the colinear maps form

an additive category which we denote by MC .

7.4. Left C-comodules and their morphisms are defined symmetrically by
R-linear maps M% : M → C⊗RM . Form ∈M we write M%(m) =

∑
m−1⊗m0,

and coassociativity is expressed as∑
m−1 ⊗ M%(m0) =

∑
∆(m−1)⊗m0 =

∑
m−2 ⊗m−1 ⊗m0,

where the final expression is a notation. The condition for the counit reads
m =

∑
ε(m−1)m0.

The R-module of left C-morphisms is denoted by CHom (M,N) and left
C-comodules and their morphisms again form an additive category that is
denoted by CM.
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An example of a left and right C-comodule is provided by C itself. In
both cases coaction is given by ∆ (the regular coaction).

7.5. Kernels and cokernels in MC. Let f : M → N be a morphism in
MC . The cokernel g of f in MR yields the exact commutative diagram

M
f //

%M

��

N
g //

%N

��

L // 0

M ⊗R C
f⊗IC // N ⊗R C

g⊗IC // L⊗R C // 0,

which can be completed commutatively in MR by some %L : L→ L⊗R C for
which we obtain the diagram

N
%N
//

g

��

N ⊗R C
%N⊗IC //
IN⊗∆

//

g⊗IC
��

N ⊗R C ⊗R C

g⊗IC⊗IC
��

L
%L
// L⊗R C

%L⊗IC //
IL⊗∆

// L⊗R C ⊗R C .

The outer rectangle is commutative for the upper as well as for the lower
morphisms, and hence

(%L ⊗ IC) ◦ %L ◦ g = (IL ⊗∆) ◦ %L ◦ g .

Now, surjectivity of g implies (%L ⊗ IC) ◦ %L = (IL ⊗ ∆) ◦ %L, showing that
%L is coassociative. Moreover,

(IL ⊗ ε) ◦ %L ◦ g = (IL ⊗ ε) ◦ (g ⊗ IC) ◦ %N = g,

which shows that (IL ⊗ ε) ◦ %L = IL. Thus %L is counital, and so it makes L
a comodule such that g is a C-morphism. This shows that cokernels exist in
the category MC .

Dually, for the kernel h of f in MR there is a commutative diagram

0 // K
h // M

f //

%M

��

N

%N

��
0 // K ⊗R C

h⊗IC //M ⊗R C
f⊗IC // N ⊗R C ,

where the top sequence is always exact while the bottom sequence is exact
under special conditions. If this is the case, the diagram can be extended
commutatively by a coaction %K : K → K ⊗R C.

If moreover f is C⊗RC-flat then - dual to the proof for cokernels - it can be
shown that %K is coassociative and counital. Thus kernels of C-morphisms
are induced from kernels in MR provided certain additional conditions are
imposed.
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7.6. C-subcomodules. Let M be a right C-comodule. An R-submodule
K ⊂ M is called a C-subcomodule of M provided K has a right comodule
structure such that the inclusion is a comodule morphism.

If K is a C ⊗R C-pure submodule of M , then K is a subcomodule of M
provided %M(K) ⊂ K ⊗R C ⊂M ⊗R C.

7.7. Coproducts in MC. Let {Mλ, %
M
λ }Λ be a family of C-comodules. Put

M =
⊕

ΛMλ, the coproduct in MR, iλ : Mλ → M the canonical inclusions,
and consider the linear maps

Mλ

%M
λ−→Mλ ⊗R C ⊂M ⊗R C.

Note that the inclusions iλ are R-splittings, so that Mλ⊗R C ⊂M ⊗R C is a
pure submodule. By the properties of coproducts of R-modules there exists
a unique coaction

%M : M →M ⊗R C, such that %M ◦ iλ = %Mλ ,

which is coassociative and counital since all the %Mλ are, and thus it makes
M a C-comodule for which the iλ : Mλ → M are C-morphisms with the
following universal property:

Let {fλ : Mλ → N}Λ be a family of morphisms in MC. Then there exists
a unique C-morphism f : M → N such that, for each λ ∈ Λ, the following
diagram of C-morphisms commutes:

Mλ
iλ //

fλ ""F
FFFFFFF M

f

��
N .

Similarly to the coproduct, the direct limit of direct families of C-como-
dules is derived from the direct limit in MR.

7.8. Comodules and tensor products. Let M be in MC and consider any
morphism f : X → Y of R-modules. Then:

(1) X ⊗RM is a right C-comodule with the coaction

IX ⊗ %M : X ⊗RM −→ X ⊗RM ⊗R C,

and the map f ⊗ IM : X ⊗RM → Y ⊗RM is a C-morphism.

(2) In particular, X ⊗R C has a right C-coaction

IX ⊗∆ : X ⊗R C −→ X ⊗R C ⊗R C,

and the map f ⊗ IC : X ⊗R C → Y ⊗R C is a C-morphism.
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(3) For any index set Λ, R(Λ)⊗R C ' C(Λ) as comodules and there exists a
surjective C-morphism

C(Λ′) →M ⊗R C, for some Λ′.

(4) The structure map %M : M → M ⊗R C is a comodule morphism, and
hence M is a subcomodule of a C-generated comodule.

Proof. (1) and (2) are easily verified from the definitions.
(3) Take a surjective R-linear map h : R(Λ′) →M . Then, by (2),

h⊗ IC : R(Λ′) ⊗R C →M ⊗R C

is a surjective comodule morphism.
(4) By coassociativity, %M is a comodule morphism (where M ⊗R C has

the comodule structure from (1)). Note that ρM is split by IM ⊗ ε as an R-
module; thus M is a pure submodule of M⊗RC and hence is a subcomodule.

tu
Similarly to the classical Hom-tensor relations (see 1.12) we obtain

7.9. Hom-tensor relations in MC. Let X be any R-module.

(1) For any M ∈ MC, the R-linear map

ϕ : HomC(M,X ⊗R C) → HomR(M,X), f 7→ (IX ⊗ ε) ◦ f,

is bijective, with inverse map h 7→ (h⊗ IC) ◦ %M .

(2) For any M,N ∈ MC, the R-linear map

ψ : HomC(X⊗RM,N) → HomR(X,HomC(M,N)), g 7→ [x 7→ g(x⊗−)],

is bijective, with inverse map h 7→ [x⊗m 7→ h(x)(m)].

Proof. (1) For any f ∈ HomC(M,X ⊗R C) the diagram

M
f //

%M

��

X ⊗R C

IX⊗∆
��

=

((QQQQQQQQQQQQQ

M ⊗R C f⊗IC
// X ⊗R C ⊗R CIX⊗ε⊗IC

// X ⊗R C

is commutative, that is,

f = (IX ⊗ ε⊗ IC) ◦ (f ⊗ IC) ◦ %M = (ϕ(f)⊗ IC) ◦ %M .

This implies that ϕ is injective.
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Since %M is a C-morphism, so is (h⊗ IC) ◦ %M , for any h ∈ HomR(M,X).
Therefore

ϕ((h⊗ IC) ◦ ρM) = (IX ⊗ ε) ◦ (h⊗ IC) ◦ %M = h ◦ (IM ⊗ ε) ◦ %M = h,

implying that ϕ is surjective.
(2) The Hom-tensor relations for modules provide one with an isomor-

phism of R-modules,

ψ : HomR(X ⊗RM,N) → HomR(X,HomR(M,N)). (∗)

For any x ∈ X, by commutativity of the diagram

M
x⊗− //

%M

��

X ⊗RM

IX⊗%M

��

m � //
_

��

x⊗m_

��
M ⊗R C

(x⊗−)⊗IC// X ⊗RM ⊗R C, %M(m) � // x⊗ %M(m) ,

the map x ⊗ − is a C-morphism. Hence, for any g ∈ HomC(X ⊗R M,N),
the composition g ◦ (x⊗−) is a C-morphism. On the other hand, there is a
commutative diagram, for all h ∈ HomR(X,HomC(M,N)),

X ⊗RM //

IX⊗%M

��

N

%N

��

x⊗m � //
_

��

h(x)(m)
_

��
X ⊗RM ⊗R C // N ⊗R C , x⊗%M(m) � // (h(x)⊗IC) ◦ %M(m) .

This shows that ψ−1(h) lies in HomC(X ⊗R M,N) and therefore implies
that ψ in (∗) restricts to the bijective map ψ : HomC(X ⊗R M,N) →
HomR(X,HomC(M,N)), as required. tu

Unlike for A-modules, the R-dual of a right C-comodule need not be a
left C-comodule unless additional conditions are imposed. To specify such
sufficient conditions, first recall that, for a finitely presented R-module M
and a flat R-module C, there is an isomorphism (compare 2.9)

νM : C ⊗R HomR(M,R) → HomR(M,C), c⊗ h 7→ c⊗ h(−) .

7.10. Comodules finitely presented as R-modules. Let RC be flat and
M ∈ MC such that RM is finitely presented. Then M∗ = HomR(M,R) is a
left C-comodule by the structure map

M∗
% : M∗ → HomR(M,C) ' C ⊗RM

∗, g 7→ (g ⊗ IC) ◦ %M .
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Proof. The comodule property of M∗ follows from the commutativity of
the following diagram (with obvious maps), the central part of which arises
from the coassociativity of C (tensor over R):

M∗ ' //

��

HomC(M,C) //

��

HomC(M,C⊗C)
' //

��

C⊗M∗

∆⊗IM∗

��
C⊗M∗ ' // HomC(M,C⊗C) // HomC(M,C⊗C⊗C)

' // C⊗C⊗M∗ .

tu
For X = R and M = C, the isomorphism ϕ describes the comodule

endomorphisms of C.

7.11. Comodule endomorphisms of C.

(1) There is an algebra anti-isomorphism ϕ : EndC(C) → C∗, f 7→ ε ◦ f ,
with the inverse map h 7→ (h ⊗ IC) ◦ ∆ and so h ∈ C∗ acts on c ∈ C
from the right by

c↼h = (h⊗ IC)∆(c) =
∑

h(c1)c2.

(2) There is an algebra isomorphism ϕ′ : CEnd(C) → C∗, f 7→ ε ◦ f, with
the inverse map h 7→ (IC ⊗ h) ◦∆ and so h ∈ C∗ acts on c ∈ C from
the left by

h⇀c = (IC ⊗ h)∆(c) =
∑

c1h(c2).

(3) For any f ∈ C∗ and c ∈ C,

∆(f⇀c) =
∑
c1 ⊗ (f⇀c2),

∆(c↼f) =
∑

(c1↼f)⊗ c2,

∆(f⇀c↼g) =
∑

(c1↼g)⊗ (f⇀c2),∑
c1 ⊗ (c2↼f) =

∑
(f⇀c1)⊗ c2.

(4) The coproduct ∆ yields the embedding

C∗ ' HomC(C,C) → HomC(C,C ⊗R C) ' EndR(C).

Proof. (1) By 7.9(1), ϕ is R-linear and bijective. Take any f , g ∈
EndC(C), recall that (f ⊗ IC) ◦ ∆ = ∆ ◦ f , and consider the convolution
product applied to any c ∈ C,

(ε ◦ f) ∗ (ε ◦ g)(c) =
∑
ε(f(c1)) ε(g(c2))

= ε ◦ g [(ε⊗ IC) ◦ (f ⊗ IC) ◦∆(c)]

= ε ◦ g [(ε⊗ IC) ◦∆ ◦ f(c)] = ε ◦ (g ◦ f)(c) .
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This shows that ϕ is an anti-isomorphism.
(2) For all f, g ∈ CEnd (C), (IC ⊗ g) ◦∆ = ∆ ◦ g, and hence

(ε ◦ f) ∗ (ε ◦ g)(c) =
∑
ε(f(c1)) ε(g(c2))

= ε ◦ f [(IC ⊗ ε) ◦ (IC ⊗ g) ◦∆(c)]

= ε ◦ g [(IC ⊗ ε) ◦∆ ◦ g(c)] = ε ◦ (f ◦ g)(c) .

(3) By definition,

∆(f⇀c) = ∆(
∑
c1f(c2) =

∑
c11 ⊗ c12f(c2)

=
∑
c1 ⊗ c21f(c22) =

∑
c1 ⊗ (f⇀c2).

The remaining assertions are shown similarly.
(4) This follows from the Hom-tensor relations 7.9 for M = C = X . tu

Notice that in 7.11(1) the comodule morphisms are written on the left of
the argument. By writing morphisms of right comodules on the right side, we
obtain an isomorphism between C∗ and the comodule endomorphism ring.

The next theorem summarises observations on the category of comodules.

7.12. The category MC.

(1) The category MC has direct sums and cokernels, and C is a subgener-
ator.

(2) MC is a Grothendieck category provided that C is a flat R-module.

(3) The functor −⊗RC : MR → MC is right adjoint to the forgetful functor
(−)R : MC → MR.

(4) For any monomorphism f : K → L of R-modules,

f ⊗ IC : K ⊗R C → L⊗R C

is a monomorphism in MC.

(5) For any family {Mλ}Λ of R-modules, (
∏

ΛMλ) ⊗R C is the product of
the Mλ ⊗R C in MC.

Proof. (1) The first assertions follow from 7.5 and 7.7. By 7.8(4), any
comodule M is a subcomodule of the C-generated comodule M ⊗R C.

(2) By 7.5, MC has kernels provided C is a flat R-module. This implies
that the intersection of two subcomodules and the preimage of a (sub)co-
module is again a comodule. It remains to show that MC has (a set of)
generators. For any right C-comodule M , there exists a surjective comodule
map g : C(Λ) →M ⊗RC (see 7.8). Then L := g−1(M) ⊂ C(Λ) is a subcomod-
ule. Furthermore, for any m ∈ M there exist k ∈ N and an element x in the
comodule Ck ∩ L ⊂ Ck such that g(x) = m. Therefore m ∈ g(Ck ∩ L). This
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shows that M is generated by comodules of the form Ck ∩ L, k ∈ N. Hence
the subcomodules of Ck, k ∈ N, form a set of generators of MC .

(3) For all M ∈ MC and X ∈ MR, let ϕM,X denote the isomorphism
constructed in 7.9(1). We need to show that ϕM,X is natural in M and X.
First take any right C-comodule N and any g ∈ HomC(M,N). Then, for all
f ∈ HomC(N,X ⊗R C),

(ϕM,X ◦ HomC(g,X ⊗R C))(f) = (IX ⊗ ε) ◦ HomC(g,X ⊗R C)(f)

= (IX ⊗ ε) ◦ f ◦ g
= HomR(g,X)((IX ⊗ ε) ◦ f)

= (HomR(g,X) ◦ ϕN,X)(f).

Similarly, take any R-module Y and g ∈ HomR(X, Y ). Then, for any map
f ∈ HomC(M,X ⊗R C),

(ϕM,Y ◦ HomC(M, g ⊗ IC))(f) = (IY ⊗ ε) ◦ (HomC(M, g ⊗ IC)(f))

= (IY ⊗ ε) ◦ (g ⊗ IC) ◦ f
= (g ⊗ ε) ◦ f = g ◦ (IX ⊗ ε) ◦ f
= (HomR(M, g) ◦ ϕM,X)(f).

This proves the naturality of ϕ and thus the adjointness property. Note that
the unit of this adjunction is provided by the coaction %M : M → M ⊗R C,
while the counit is IX ⊗ ε : X ⊗R C → X.

(4) Any functor that has a left adjoint preserves monomorphisms (cf. [3,
38.21]). Note that monomorphisms in MC need not be injective maps, unless

RC is flat.
(5) By (3), for all X ∈ MC there are isomorphisms

HomC(X, (
∏

ΛMλ)⊗R C) ' HomR(X,
∏

ΛMλ)

'
∏

Λ HomR(X,Mλ)

'
∏

Λ HomC(X,Mλ ⊗R C).

These isomorphisms characterise (
∏

ΛMλ)⊗R C as product of the Mλ ⊗R C
in MC . tu

7.13. C as a flat R-module. The following are equivalent:

(a) C is flat as an R-module;

(b) every monomorphism in MC is injective;

(c) every monomorphism U → C in MC is injective;

(d) the forgetful functor MC → MR respects monomorphisms.
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Proof. (a) ⇒ (b) Consider a monomorphism f : M → N . Since

RC is flat, the inclusion i : Ke f → M is a morphism in MC (by 7.5) and
f ◦ i = f ◦ 0 = 0 implies i = 0, that is, Ke f = 0.

(b) ⇒ (c) and (b) ⇔ (d) are obvious.
(c) ⇒ (a) For every ideal J ⊂ R, the canonical map J ⊗R C → R⊗R C is

a monomorphism in MC by 7.12(4), and hence it is injective by assumption.
This implies that RC is flat (see 1.16). tu

Recall that a monomorphism i : N → L in MR is a coretraction provided
there exists p : L→ N in MR with p ◦ i = IN .

7.14. Relative injective comodules. A right C-comodule M is said to be
relative injective or (C,R)-injective if, for every C-comodule map i : N → L
that is an R-module coretraction, and for every morphism f : N → M in
MC , there exists a right C-comodule map g : L→M such that g ◦ i = f . In
other words, we require that every diagram in MC

N
i //

f   B
BB

BB
BB

B L

M

can be completed commutatively by some C-morphism g : L→M , provided
there exists an R-module map p : L→ N such that p ◦ i = IN .

7.15. (C,R)-injectivity. Let M be a right C-comodule.

(1) The following are equivalent:

(a) M is (C,R)-injective;

(b) any C-comodule map i : M → L that is a coretraction in MR is
also a coretraction in MC;

(c) the coaction %M : M →M ⊗R C is a coretraction in MC.

(2) For any X ∈ MR, X ⊗R C is (C,R)-injective.

(3) If M is (C,R)-injective, then, for any L ∈ MC, the canonical sequence

0 // HomC(L,M)
i // HomR(L,M)

γ // HomR(L,M ⊗R C)

splits in MB, where B = EndC(L) and γ(f) = %M ◦ f − (f ⊗ IC) ◦ %L
(see 7.3).

In particular, EndC(C) ' C∗ is a C∗-direct summand in EndR(C).

Proof. (1) (a)⇒ (b) Suppose thatM is (C,R)-injective and takeN = M
and f = IM in 7.14 to obtain the assertion.
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(b) ⇒ (c) View M ⊗RC as a right C-comodule with the coaction IM ⊗∆,
and note that %M : M → M ⊗R C is a right C-comodule map that has an
R-linear retraction IM ⊗ ε. Therefore %M is a coretraction in MC .

(c) ⇒ (a) Suppose there exists a right C-comodule map h : M⊗RC →M
such that h ◦ ρM = IM , consider a diagram

N
i //

f   B
BB

BB
BB

B L

M

as in 7.14, and assume that there exists an R-module map p : L → N such
that p ◦ i = IN . Define an R-linear map g : L→M as a composition

g : L
%L
// L⊗R C

f◦p⊗IC// M ⊗R C
h //M .

Clearly, g is a right C-comodule map as a composition of C-comodule maps.
Furthermore,

g ◦ i = h ◦ (f ◦ p⊗ IC) ◦ %L ◦ i = h ◦ (f ◦ p ◦ i⊗ IC) ◦ %N

= h ◦ (f ⊗ IC) ◦ %N = h ◦ %M ◦ f = f,

where we used that both i and f are C-colinear. Thus the above diagram
can be completed to a commutative diagram in MC , and hence M is (C,R)-
injective.

(2) The coaction for X ⊗R C is given by %X⊗RC = IX ⊗∆, and it is split
by a right C-comodule map IX ⊗ ε⊗ IC . Thus X ⊗R C is (C,R)-injective by
part (1).

(3) Denote by h : M ⊗R C → M the splitting map of %M in MC . Then
the map

HomR(L,M) ' HomC(L,M ⊗R C) → HomC(L,M), f 7→ h ◦ (f ⊗ IC) ◦ %L,

splits the first inclusion in MB, and the map

HomR(L,M ⊗R C) → HomR(L,M), g 7→ h ◦ g

yields a splitting map HomR(L,M⊗RC) → HomR(L,M)/HomC(L,M), since
for any f ∈ HomR(L,M),

h ◦ γ(f) = f − h ◦ (f ⊗ IC) ◦ %L ∈ f + HomC(L,M).

tu
If RC is flat, MC is a Grothendieck category by 7.12, so exact sequences

are defined in MC and we can describe



60 Chapter 2. Coalgebras and comodules

7.16. Exactness of the HomC-functors. Assume RC to be flat and let
M ∈ MC. Then:

(1) HomC(−,M) : MC → MR is a left exact functor.

(2) HomC(M,−) : MC → MR is a left exact functor.

Proof. (1) From any exact sequence X → Y → Z → 0 in MC we derive
the commutative diagram (tensor over R)

0

��

0

��

0

��

0 // HomC(Z,M) //

��

HomC(Y,M) //

��

HomC(X,M)

��
0 // HomR(Z,M) //

��

HomR(Y,M) //

��

HomR(X,M)

��
0 // HomR(Z,M⊗C) // HomR(Y,M⊗C) // HomR(X,M⊗C),

where the columns are exact by the characterisation of comodule morphisms
(in 7.3). The second and third rows are exact by exactness properties of the
functors HomR. Now the diagram lemmata imply that the first row is exact,
too.

Part (2) is shown with a similar diagram. tu

An object Q ∈ MC is injective in MC if, for any monomorphism M → N
in MC , the canonical map HomC(N,Q) → HomC(M,Q) is surjective.

7.17. Injectives in MC. Assume RC to be flat.

(1) Q ∈ MC is injective if and only if HomC(−, Q) : MC → MR is exact.

(2) If X ∈ MR is injective in MR, then X ⊗R C is injective in MC.

(3) If M ∈ MC is (C,R)-injective and injective in MR, then M is injective
in MC.

(4) C is (C,R)-injective, and it is injective in MC provided that R is in-
jective in MR.

(5) If RM is flat and N is injective in MC, then HomC(M,N) is injective
in MR.

Proof. (1) The assertion follows by 7.16.
(2) This follows from the isomorphism in 7.9(1).
(3) Since M is R-injective, assertion (2) implies that M ⊗R C is injective

in MC . Moreover, by 7.15, M is a direct summand of M⊗RC as a comodule,
and hence it is also injective in MC .
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Part (4) is a special case of (2).
(5) This follows from the isomorphism in 7.9(2). tu
An object P ∈ MC is projective in MC if, for any epimorphism M → N

in MC , the canonical map HomC(P,M) → HomC(P,N) is surjective.

7.18. Projectives in MC. Consider any P ∈ MC.

(1) If P is projective in MC, then P is projective in MR.

(2) If RC is flat, the following are equivalent:

(a) P is projective in MC;

(b) HomC(P,−) : MC → MR is exact.

Proof. (1) For any epimorphism f : K → L in MR, K⊗RC
f⊗IC−→ L⊗RC

is an epimorphism in MC and the projectivity of P implies the exactness of
the top row in the commutative diagram

HomC(P,K ⊗R C) //

'
��

HomC(P,L⊗R C) //

'
��

0

HomR(P,K)
Hom(P,f) // HomR(P,L) ,

where the vertical maps are the functorial isomorphisms from 7.9(1). From
this we see that Hom(P, f) is surjective, proving that P is projective as an
R-module.

(2) This follows from left exactness of HomC(P,−) described in 7.16. tu
Note that, although there are enough injectives in MC , there are possibly

no projective objects in MC . This remains true even if R is a field.

7.19. Tensor product and HomC. Let RC be flat, and consider M,N ∈
MC and X ∈ MR such that

(i) MR is finitely generated and projective, and N is (C,R)-injective; or

(ii) MR is finitely presented and X is flat in MR.

Then there exists a canonical isomorphism

ν : X ⊗R HomC(M,N) −→ HomC(M,X ⊗R N), x⊗ h 7→ x⊗ h(−).

Proof. Consider the defining exact sequence for HomC (see 7.3),

(∗) 0 // HomC(M,N) // HomR(M,N) // HomR(M,N ⊗R C).

Tensoring with XR yields the commutative diagram (tensor over R)

0 // X⊗HomC(M,N) //

ν

��

X⊗HomR(M,N) //

'
��

X⊗HomR(M,N⊗C)

'
��

0 // HomC(M,X⊗N) // HomR(M,X⊗N) // HomR(M,X⊗N⊗C),
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where the bottom row is exact (again by 7.3) and the vertical isomorphisms
follow from the finiteness assumptions in (i) and (ii) (cf. 2.9).

If X is flat, the top row is exact. On the other hand, if N is (C,R)-
injective, the sequence (∗) splits by 7.15, and hence the top row is exact, too.
Therefore, in either case, the exactness of the diagram implies that ν is an
isomorphism, as required. tu
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8 C-comodules and C∗-modules

For any R-coalgebra C the dual R-module C∗ = HomR(C,R) is an associative
algebra. In this section we study the relationship between C-comodules and
C∗-modules.

8.1. C-comodules and C∗-modules.

(1) Any M ∈ MC is a (unital) left C∗-module by

⇀ : C∗ ⊗RM →M, f ⊗m 7→ (IM ⊗ f) ◦ %M(m) =
∑

m0f(m1).

(2) Any morphism h : M → N in MC is a left C∗-module morphism, that
is,

HomC(M,N) ⊂ C∗Hom (M,N).

(3) There is a faithful functor from MC to σ[C∗C], the full subcategory of

C∗M consisting of all C∗-modules subgenerated by C (cf. 3.1).

Proof. (1) By definition, for all f, g ∈ C∗ and m ∈ M , the actions
f⇀(g⇀m) and (f ∗ g)⇀m are the compositions of the maps in the top and
bottom rows of the following commutative diagram:

M ⊗R C
%M⊗IC

((QQQQQQQQQQQQQ

M

%M
99ssssssssss

%M %%KKKKKKKKKK M ⊗R C ⊗R C
IM⊗f⊗g //M .

M ⊗R C
IM⊗∆

66mmmmmmmmmmmmm

Clearly, for each m ∈M , ε⇀m = m, and thus M is a C∗-module.
(2) For any h : M → N in MC and f ∈ C∗, m ∈M , consider

h(f⇀m) =
∑
h(m0 f(m1)) = (IN ⊗ f) ◦ (h⊗ IC) ◦ %M(m)

= (IN ⊗ f) ◦ %N ◦ h(m) = f⇀h(m).

This shows that h is a C∗-linear map.
(3) By 7.12, C is a subgenerator in MC and hence all C-comodules are sub-

generated by C as C∗-modules (by (1),(2)); thus they are objects in σ[C∗C],
and hence (1)–(2) define a faithful functor MC → σ[C∗C]. tu

Now, the question arises when MC is a full subcategory of σ[C∗C] (or

C∗M), that is, when HomC(M,N) = HomC∗(M,N), for any M,N ∈ MC . In
answering this question the following property plays a crucial role.
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8.2. The α-condition. C is said to satisfy the α-condition if the map

αN : N ⊗R C → HomR(C∗, N), n⊗ c 7→ [f 7→ f(c)n],

is injective, for every N ∈ MR. By 4.7, the following are equivalent:

(a) C satisfies the α-condition;

(b) for any N ∈ MR and u ∈ N ⊗R C, (IN ⊗ f)(u) = 0 for all f ∈ C∗,
implies u = 0;

(c) C is locally projective as an R-module.

In particular, this implies that C is a flat R-module, and that it is cogen-
erated by R.

8.3. MC as a full subcategory of C∗M. The following are equivalent:

(a) MC = σ[C∗C];

(b) MC is a full subcategory of C∗M;

(c) for all M,N ∈ MC, HomC(M,N) = C∗Hom(M,N);

(d) RC is locally projective;

(e) every left C∗-submodule of Cn, n ∈ N, is a subcomodule of Cn.

If these conditions are satisfied, the inclusion functor MC → C∗M has a
right adjoint, and for any family {Mλ}Λ of R-modules,

(
∏

ΛMλ)⊗R C '
∏C

Λ(Mλ ⊗R C) ⊂
∏

Λ(Mλ ⊗R C),

where
∏C denotes the product in MC.

Proof. (a)⇔ (b)⇔ (c) follow by the fact that C is always a subgenerator
of CM (see 7.12) and the definition of the category σ[C∗C] (cf. 3.1).

(a) ⇒ (d) The equality obviously implies that monomorphisms in MC are
injective maps. Hence RC is flat by 7.12(4). For any N ∈ MR we prove the
injectivity of the map αN : N ⊗R C → HomR(C∗, N).

HomR(C∗, N) is a left C∗-module by

g · γ(f) = γ(f ∗ g), for γ ∈ HomR(C∗, N), f, g ∈ C∗,

and considering N ⊗R C as left C∗-module in the canonical way we have

αN(g⇀(n⊗ c))(f) =
∑
n f(c1)g(c2) = n f ∗ g(c) = [g · αN(n⊗ c)](f),

for all f, g ∈ C∗, n ∈ N , and c ∈ C. So αN is C∗-linear, and for any right
C-comodule L there is a commutative diagram

C∗Hom(L,N ⊗R C)
Hom(L,αN ) //

'
��

C∗Hom(L,HomR(C∗, N))

'
��

HomR(L,N) = // HomR(L,N).
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The first vertical isomorphism is obtained by assumption and the Hom-tensor
relations 7.9, explicitly,

C∗Hom(L,N ⊗R C) = HomC(L,N ⊗R C) ' HomR(L,N).

The second vertical isomorphism results from the canonical isomorphisms

C∗Hom(L,HomR(C∗, N)) ' HomR(C∗ ⊗C∗ L,N) ' HomR(L,N).

This shows that Hom(L, αN) is injective for any L ∈ MC , and so (the core-
striction of) αN is a monomorphism in MC . Since RC is flat, this implies
that αN is injective (by 7.13).

(d) ⇒ (e) We show that, for right C-comodules M , any C∗-submodule N
is a subcomodule. For this consider the map

ρN : N → HomR(C∗, N), n 7→ [f 7→ f⇀n].

The inclusion i : N →M yields the commutative diagram with exact rows

0 // N
i // M

p //

%M

��

M/N // 0

0 // N⊗RC
i⊗I //

αN,C

��

M⊗RC
p⊗I //

αM,C

��

M/N⊗RC //

αM/N,C

��

0

0 // HomR(C∗,N)
Hom(C∗,i)// HomR(C∗,M) // HomR(C∗,M/N),

where Hom(C∗, i)◦ρN = αM,C ◦%M ◦ i. Injectivity of αM/N,C implies (p⊗ I)◦
%M ◦ i = 0, and by the kernel property %M ◦ i factors through N → N ⊗R C,
thus yielding a C-coaction on N .

(e) ⇒ (a) First we show that every finitely generated C∗-module N ∈
σ[C∗C] is a C-comodule. There exist a C∗-submodule X ⊂ Cn, n ∈ N, and
an epimorphism h : X → N . By assumption, X and the kernel of h are
comodules and hence N is a comodule (see 7.5). So, for any L ∈ σ[C∗C],
finitely generated submodules are comodules and this obviously implies that
L is a comodule.

It remains to prove that, for M,N ∈ MC , any C∗-morphism f : M → N
is a comodule morphism. Im f ⊂ N and Ke f ⊂ M are C∗-submodules
and hence – as just shown – are subcomodules of N and M , respectively.
Therefore the corestriction M → Im f and the inclusion Im f → N both are
comodule morphisms and so is f (as the composition of two comodule maps).

For the final assertions, recall that the inclusion σ[C∗C] → C∗M has a
right adjoint functor (trace functor, see 3.1) and this respects products. So the
isomorphism follows from the characterisation of the products of the Mλ⊗RC
in MC (see 7.12). tu
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8.4. Coaction and C∗-modules. Let RC be locally projective. For any
R-module M , consider an R-linear map % : M → M ⊗R C. Define a left
C∗-action on M by

⇀ : C∗ ⊗RM →M, f ⊗m 7→ (IM ⊗ f) ◦ %(m).

Then the following are equivalent:

(a) % is coassociative and counital;

(b) M is a unital C∗-module by ⇀.

Proof. The implication (a) ⇒ (b) is shown in 8.1. Conversely, suppose
that M is a unital C∗-module by ⇀, that is,

(f ∗ g)⇀m = f⇀(g⇀m), for all f, g ∈ C∗, m ∈M.

By the definition of the action ⇀, this means that

(IM ⊗ f ⊗ g) ◦ (IM ⊗∆) ◦ %(m) = (IM ⊗ f ⊗ g) ◦ (%⊗ IC) ◦ %(m),

and from this RC locally projective implies (IM ⊗∆)◦%(m) = (%⊗ IC)◦%(m)
(see 8.2), showing that % is coassociative. Moreover, for any m ∈ M , m =
ε⇀m = (IM ⊗ ε) ◦ %(m). tu

8.5. Left C-comodules and right C∗-modules.

(1) Any M ∈ CM is a (unital) right C∗-module by

↼ : M ⊗R C
∗ →M, m⊗ f 7→ (f ⊗ IM) ◦ M%(m) =

∑
f(m−1)m0.

(2) Any morphism h : M → N in CM is a right C∗-module morphism, so

CHom (M,N) ⊂ HomC∗(M,N)

and there is a faithful functor CM → σ[CC∗ ] ⊂ MC∗.

(3) RC is locally projective if and only if CM = σ[CC∗ ].

Since C is a left and right C-comodule by the regular coaction, we can
study the structure of C as a (C∗, C∗)-bimodule.

8.6. C as a (C∗, C∗)-bimodule. C is a (C∗, C∗)-bimodule by

⇀ : C∗ ⊗ C → C, f ⊗ c 7→ f⇀c = (IC ⊗ f) ◦∆(c),

↼ : C ⊗ C∗ → C, c⊗ g 7→ c↼g = (g ⊗ IC) ◦∆(c) .

(1) For any f, g ∈ C∗, c ∈ C,

f ∗ g (c) = f(g⇀c) = g(c↼f).



8. C-comodules and C∗-modules 67

(2) C is faithful as a left and right C∗-module.

(3) Assume C to be cogenerated by R. Then for any central element f ∈ C∗

and any c ∈ C, f⇀c = c↼f .

(4) If C satisfies the α-condition, it is a balanced (C∗, C∗)-bimodule, that
is,

C∗End(C) = EndC(C) ' C∗ ' CEnd(C) = EndC∗(C) and

C∗EndC∗(C) = CEndC(C) ' Z(C∗),

where morphisms are written opposite to scalars and Z(C∗) denotes the
centre of C∗. In this case a pure R-submodule D ⊂ C is a subcoalgebra
if and only if D is a left and right C∗-submodule.

Proof. The bimodule property is shown by the equalities

(f⇀c)↼g = (g ⊗ IC ⊗ f) ◦ ((∆⊗ IC) ◦∆))(c)

= (g ⊗ IC ⊗ f) ◦ ((IC ⊗∆) ◦∆))(c) = f⇀(c↼g).

(1) From the definition it follows

f ∗ g (c) = (f ⊗ g) ◦∆(c) = (f ⊗ IC) ◦ (IC ⊗ g) ◦∆(c) = f(g⇀c)

= (IC ⊗ g) ◦ (f ⊗ IC) ◦∆(c) = g(c↼f).

(2) For f ∈ C∗, assume f⇀c = 0 for each c ∈ C. Then applying (1) yields
f(c) = ε(f⇀c) = 0, and hence f = 0.

(3) For any central element f ∈ C∗, by (1),

g(c↼f) = f ∗ g(c) = g ∗ f(c) = g(f⇀c),

for all c ∈ C, g ∈ C∗. Since C is cogenerated by R, this can only hold if, for
all c ∈ C, c↼f = f⇀c.

(4) The isomorphisms follow from 7.11, 8.3 and 8.5. Let D ⊂ C be a
pure R-submodule. If D is a subcoalgebra of C, then it is a right and left
subcomodule and hence a left and right C∗-submodule. Conversely, suppose
that D is a left and right C∗-submodule. Then the restriction of ∆ yields a
left and right C-coaction on D and, by 1.21,

∆(D) ⊂ D ⊗R C ∩ C ⊗D = D ⊗R D ,

proving that D is a subcoalgebra. tu
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8.7. When is MC = C∗M? The following are equivalent:

(a) MC = C∗M;

(b) the functor −⊗R C : MR → C∗M has a left adjoint;

(c) RC is finitely generated and projective;

(d) RC is locally projective and C is finitely generated as right C∗-module;

(e) CM = MC∗.

Proof. (a) ⇒ (b) is obvious (by 7.12(3)).
(b) ⇒ (c) Since − ⊗R C is a right adjoint, it preserves monomorphisms

(injective morphisms). Therefore, RC is flat. Moreover −⊗R C preserves
products, so for any family {Mλ}Λ in MR there is an isomorphism

(
∏

ΛMλ)⊗R C '
∏

Λ(Mλ ⊗R C),

which implies that RC is finitely presented and hence projective.
(c) ⇒ (d) Clearly, projective modules are locally projective, and C finitely

generated as an R-module implies that C is finitely generated as a right (and
left) C∗-module.

(d) ⇒ (a) By 8.6, C is a faithful left C∗-module that is finitely gener-
ated as a module over its endomorphism ring C∗. This implies that C is a
subgenerator in C∗M, that is, MC = σ[C∗C] = C∗M (see 3.6). tu

The comodules of the coalgebra associated to any finitely generated pro-
jective R-module are of fundamental importance.

8.8. Projective modules as comodules. Let P be a finitely generated
projective R-module with dual basis p1, . . . , pn ∈ P and π1, . . . , πn ∈ P ∗. Then
P is a right P ∗ ⊗R P -comodule with the coaction

%P : P → P ⊗R (P ∗ ⊗R P ), p 7→
∑

i pi ⊗ πi ⊗ p.

P is a subgenerator in MP ∗⊗RP , and there is a category isomorphism

MP ∗⊗RP ' MEndR(P ).

The dual P ∗ is a left P ∗ ⊗R P -comodule with the coaction

P% : P → (P ∗ ⊗R P )⊗R P, f 7→
∑

i f ⊗ pi ⊗ πi.

Proof. Coassociativity of %P follows from the equality

(I ⊗∆)%P (f ⊗ p) =
∑

i,j f ⊗ pi ⊗ πi ⊗ pj ⊗ πj ⊗ p = (%P ⊗ I)%P (f ⊗ p).

By properties of the dual basis, (IP ⊗ ε)%P (p) =
∑

i piπi(p) = p, so that P is
indeed a right comodule over P ∗⊗RP . There exists a surjective R-linear map
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Rn → P ∗ that yields an epimorphism P n ' Rn ⊗ P → P ∗ ⊗R P in MP ∗⊗RP .
So P generates P ∗ ⊗R P as a right comodule and hence is a subgenerator in
MP ∗⊗RP . Since P ∗⊗R P is finitely generated and projective as an R-module,
the category isomorphism follows by 8.7.

A simple computation shows that P ∗ is a left comodule over P ∗ ⊗R P . tu
As a special case, for any n ∈ N, Rn may be considered as a right comodule

over the matrix coalgebra M c
n(R) (cf. 5.10).

For an algebra A, any two elements a, b ∈ A define a subalgebra aAb ⊂ A,
and for an idempotent e ∈ A, eAe is a subalgebra with a unit. Dually, one
considers

8.9. Factor coalgebras. Let f, g, e ∈ C∗ with e ∗ e = e. Then:

(1) f⇀C↼g is a coalgebra (without a counit) and there is a coalgebra mor-
phism

C → f⇀C↼g, c 7→ f⇀c↼g.

(2) e⇀C↼e is a coalgebra with counit e and coproduct

e⇀c↼e 7→
∑

e⇀c1↼e⊗ e⇀c2↼e.

The kernel of C → e⇀C↼e is equal to (ε− e)⇀C + C↼(ε− e).

(3) If C is R-cogenerated, and e is a central idempotent, then e⇀C is a
subcoalgebra of C.

Proof. (1) For any f, g ∈ C∗ consider the left, respectively right, co-
module maps Lf : C → C, c 7→ f⇀c, and Rg : C → C, c 7→ c↼g. Construct
the commutative diagram

C
Lf //

∆
��

C
Rg //

∆
��

C

∆
��

C ⊗R C
IC⊗Lf// C ⊗R C

Rg⊗IC// C ⊗R C,

which leads to the identity ∆◦Rg◦Lf = (Rg⊗Lf )◦∆. Putting δ := Lf ◦Rg =
Rg ◦ Lf , we obtain the commutative diagram

C
∆ //

δ
��

C ⊗R C

Rg⊗Lf

��
δ(C) ∆ // Rg(C)⊗R Lf (C)

Lf⊗Rg // δ(C)⊗R δ(C).

Thus ∆δ = (Lf ⊗Rg) ◦∆ makes δ(C) a coalgebra. It is easily verified that

C
∆ //

δ
��

C ⊗R C

δ⊗δ
��

δ(C)
∆δ // δ(C)⊗R δ(C)
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is a commutative diagram, and hence δ is a coalgebra morphism.

(2) The form of the coproduct follows from (1). For c ∈ C, ε(e⇀c↼e) =
ε ∗ e(c↼e) = e(c) showing that e is the counit of e⇀C↼e.

For x ∈ C, e⇀x↼e = 0 implies x↼e = (ε− e)⇀(x↼e) ∈ (ε− e)⇀C, and so

x = x↼e+ x↼(ε− e) ∈ (ε− e)⇀C + C↼(ε− e).

This proves the stated form of the kernel.

(3) By 8.6, for a central idempotent e and c ∈ C, e⇀c↼e = e⇀c. Putting
f = g = e in (the proof of) (1) we obtain ∆e(e⇀C) ⊂ e⇀C ⊗ e⇀C. tu

8.10. Idempotents and comodules. Let e ∈ C∗ be an idempotent and
consider the coalgebra e⇀C↼e (as in 8.9).

(1) For any M ∈ MC, e⇀M is a right e⇀C↼e-comodule with the coaction

e⇀M → e⇀M ⊗R e⇀C↼e, e⇀m 7→
∑

e⇀m0 ⊗ e⇀m1↼e.

(2) For any f : M → N ∈ MC, f(e⇀M) = e⇀f(M), and so there is a
covariant functor

e⇀− : MC → Me⇀C↼e, M 7→ e⇀M.

(3) For any M ∈ MC, M∗ is a right C∗-module canonically and

HomR(e⇀M,R) = (e⇀M)∗ 'M∗ · e.

(4) The map −↼e : e⇀C → e⇀C↼e is a surjective right e⇀C↼e-comodule
morphism, and so e⇀C is a subgenerator in Me⇀C↼e.

(5) (e⇀C↼e)∗ ' e∗C∗ ∗e, and hence there is a faithful functor Me⇀C↼e →
e∗C∗∗eM.

(6) If RC is locally projective, then e⇀C↼e is a locally projective R-module
and

Me⇀C↼e = σ[e∗C∗∗e e⇀C] = σ[e∗C∗∗e e⇀C↼e].

Proof. (1), (3) and (4) are easily verified.

(2) By 8.1, right comodule morphisms are left C∗-morphisms.

(5) The isomorphism in (3) holds similarly for the right action of e on C
and from this the isomorphism in (5) follows.

(6) Clearly direct summands of locally projectives are locally projective,
and hence the assertion follows from (3) and 8.3. tu
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8.11. Finiteness Theorem. Assume RC to be locally projective.

(1) Let M ∈ MC. Every finite subset of M is contained in a subcomodule
of M that is finitely generated as an R-module.

(2) Any finite subset of C is contained in a (C∗, C∗)-sub-bimodule that is
finitely generated as an R-module.

(3) Minimal C∗-submodules and minimal (C∗, C∗)-sub-bimodules of C are
finitely generated as R-modules.

Proof. (1) Since any sum of subcomodules is again a subcomodule,
it is enough to show that each m ∈ M lies in a subcomodule that is finitely
generated as an R-module. Moreover, by the correspondence of subcomodules
and C∗-submodules, this amounts to proving that the submodule C∗

⇀m is
finitely generated as an R-module. Writing %M(m) =

∑k
i=1mi ⊗ ci, where

mi ∈ C∗
⇀m, ci ∈ C, we compute for every f ∈ C∗

f⇀m = (IM ⊗ f) ◦ %M(m) =
∑k

i=1mi f(ci) .

Hence C∗
⇀m is finitely generated by m1, . . . ,mk as an R-module.

(2) It is enough to prove the assertion for single elements c ∈ C. By (1),
C∗

⇀c is generated as an R-module by some c1, . . . , ck ∈ C. By symmetry,
each ci↼C

∗ is a finitely generated R-module. Hence C∗
⇀c↼C∗ is a finitely

generated R-module.

(3) This is an obvious consequence of (1) and (2). tu

A right C-comodule N is called semisimple (in MC) if every C-monomor-
phism U → N is a coretraction, and N is called simple if all these monomor-
phisms are isomorphisms. Semisimplicity of N is equivalent to the fact that
every right C-comodule is N -injective. (Semi)simple left comodules and bi-
comodules are defined similarly.

The coalgebra C is said to be left (right) semisimple if it is semisimple
as a left (right) comodule. C is called a simple coalgebra if it is simple as a
(C,C)-bicomodule.

8.12. Semisimple comodules. Assume that RC is flat.

(1) Any N ∈ MC is simple if and only if N has no nontrivial subcomodules.

(2) For N ∈ MC the following are equivalent:

(a) N is semisimple (as defined above);

(b) every subcomodule of N is a direct summand;

(c) N is a sum of simple subcomodules;

(d) N is a direct sum of simple subcomodules.
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Proof. (1) By 7.13, any monomorphism U → N is injective, and hence
it can be identified with a subcomodule. From this the assertion is clear.

(2) RC flat implies that the intersection of any two subcomodules is again
a subcomodule. Hence in this case the proof for modules (e.g., [10, 20.2]) can
be transferred to comodules. tu

8.13. Right semisimple coalgebras. For C the following are equivalent:

(a) C is a semisimple right C-comodule;

(b) RC is flat and every right subcomodule of C is a direct summand;

(c) RC is flat and C is a direct sum of simple right comodules;

(d) RC is flat and every comodule in MC is semisimple;

(e) RC is flat and every short exact sequence in MC splits;

(f) RC is projective and C is a semisimple left C∗-module;

(g) every comodule in MC is (C-)injective;

(h) every comodule in MC is projective;

(i) C is a direct sum of simple coalgebras that are right (left) semisimple;

(j) C is a semisimple left C-comodule.

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) Assume every monomorphism
i : U → C to be a coretraction. Then i is in particular an injective map, and
hence, by 7.13, RC is flat. Now the assertions follow by 8.12.

The implications (e) ⇒ (g) and (e) ⇒ (h) are obvious.
(h) ⇒ (f) By 7.18, any projective comodule is projective as an R-module.

In particular, C is a projective R-module, and hence MC = σ[C∗C] and all
modules in σ[C∗C] are projective. This characterises C as a semisimple C∗-
module (see 3.7).

The implication (f) ⇒ (a) is obvious since MC = σ[C∗C].
(g) ⇒ (a) This is obvious. Notice that, in view of (f), RC is projective,

and hence the C-injectivity of any comodule N implies that N is injective in
MC = σ[C∗C].

(f) ⇒ (i) Let C be a left semisimple C∗-module. Let {Ei}I be a minimal
representative set of simple C∗-submodules of C. Form the traces Di :=
TrC∗(Ei, C). By the structure theorem for semisimple modules (see 3.7),

C '
⊕

I
Di,

where the Di are minimal fully invariant C∗-submodules. Considering C∗

as an endomorphism ring acting from the right, this means that the Di are
minimal (C∗, C∗)-submodules. By 8.6, each Di is a minimal subcoalgebra of
C and every subcoalgebra of Di is a subcoalgebra of C. So every Di is a right
semisimple simple coalgebra.



8. C-comodules and C∗-modules 73

(i) ⇒ (f) It follows from the proof (a) ⇒ (f) that all simple comodules
of C are projective as R-modules and hence RC is also projective. Now the
assertion follows.

(f) ⇔ (j) By 3.7, the semisimple module C∗C is semisimple over its en-
domorphism ring, that is, CC∗ is also semisimple. Since CM = σ[CC∗ ], the
assertion follows from the preceding proof by symmetry. tu

8.14. Simple coalgebras. For C the following are equivalent:

(a) C is a simple coalgebra that is right (left) semisimple;

(b) RC is projective and C is a simple (C∗, C∗)-bimodule containing a min-
imal left (right) C∗-submodule;

(c) C is a simple coalgebra and a finite-dimensional vector space over R/m,
for some maximal ideal m ⊂ R.

Proof. (a) ⇒ (b) We know from 8.13 that RC is projective. Clearly
a simple right subcomodule is a simple left C∗-submodule. Let D ⊂ C be
a (C∗, C∗)-sub-bimodule. Then it is a direct summand as a left C∗-module,
and hence it is a subcoalgebra of C (by 8.6) and so D = C.

(b) ⇒ (c) Let D ⊂ C be a minimal left C∗-submodule. For any maximal
ideal m ⊂ R, mD ⊂ D is a C∗-submodule and hence mD = 0 or mD = D.
Since D is finitely generated as an R-module (by 8.11), mD = 0 for some
maximal m ⊂ R. Moreover, mC = mD↼C∗ = 0, and so C is a finite-
dimensional R/m-algebra.

(c) ⇒ (a) is obvious. Notice that in this case MC = C∗M (see 8.7). tu

The Finiteness Theorem 8.11 and the Hom-tensor relations 7.9 indicate
that properties of R have a strong influence on properties of C-comodules.

8.15. Coalgebras over special rings. Let RC be locally projective.

(1) If R is Noetherian, then C is locally Noetherian as a right and left
comodule, and in MC and CM direct sums of injectives are injective.

(2) If R is perfect, then in MC and CM any comodule satisfies the descend-
ing chain condition on finitely generated subcomodules.

(3) If R is Artinian, then in MC and CM every finitely generated comodule
has finite length.

Proof. All these assertions are special cases of 3.18. tu

Notice that, over Artinian (perfect) rings R, RC is locally projective if
and only if RC is projective (any flat R-module is projective).
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9 The rational functor

We know from Section 8 that there is a faithful functor from the category
of right C-comodules to the category of left C∗-modules. Now we want to
study an opposite problem provided the α-condition is satisfied: Suppose M
is a left C∗-module; does there exist a (maximal) part of M on which a right
C-coaction can be defined?

Throughout we RC to be locally projective.

9.1. Rational functor. For any left C∗-module M , define the rational sub-
module

RatC(M) = T C(M) =
∑

{Im f | f ∈ C∗Hom(U,M), U ∈ MC},

where T C is the trace functor C∗M → σ[C] (cf. 3.1). Clearly RatC(M) is the
largest submodule of M that is subgenerated by C, and hence it is a right
C-comodule. The induced functor (subfunctor of the identity)

RatC : C∗M → MC , M 7→ RatC(M),

is called the rational functor. Since RatC is a trace functor, it is right adjoint
to the inclusion MC → C∗M (see 3.1) and its properties depend on (torsion-
theoretic) properties of the class MC in C∗M. Of course RatC(M) = M for
M ∈ C∗M if and only if M ∈ MC , and MC = C∗M if and only if RC is
finitely generated and projective (see 8.7).

9.2. Rational elements. Let M be a left C∗-module. An element k ∈M is
said to be rational if there exists an element

∑
imi⊗ ci ∈M ⊗RC, such that

fk =
∑

i
mif(ci), for all f ∈ C∗.

This means that, from the diagram

M

ψM

��

m_

��
M ⊗R C

αM // HomR(C∗,M) m⊗ c � // [f 7→mf(c)], [f 7→fm] ,

we obtain ψM(k) = αM(
∑

imi ⊗ ci) (see 8.2). Since it is assumed that αM is
injective, the element

∑
imi ⊗ ci is uniquely determined.

9.3. Rational submodule. Let M be a left C∗-module.

(1) An element k ∈M is rational if and only if C∗k is a right C-comodule
with fk = f⇀k, for all f ∈ C∗.
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(2) RatC(M) = {k ∈M | k is rational}.

Proof. (1) Let k ∈ M be rational and
∑

imi ⊗ ci ∈ M ⊗R C such that
fk =

∑
imif(ci) for all f ∈ C∗. Put K := C∗k and define a map

% : K →M ⊗R C, fk 7→
∑

i
mi ⊗ f⇀ci.

For f, h ∈ C∗,

αM(
∑

i
mi ⊗ f⇀ci)(h) =

∑
i
mih(f⇀ci) = h ∗ f k = h · fk .

So the map % is well defined since fk = 0 implies αM(
∑

imi ⊗ f⇀ci) = 0,
and hence

∑
imi ⊗ f⇀ci = 0 by injectivity of αM . Moreover, it implies that

αM ◦ %(K) ⊂ HomR(C∗, K), and we obtain the commutative diagram with
exact rows

K

%

��
0 // K ⊗R C //

αK

��

M ⊗R C //

αM

��

M/K ⊗R C //

αM/K

��

0

0 // HomR(C∗, K) // HomR(C∗,M) // HomR(C∗,M/K) // 0,

where all the α are injective. By the kernel property we conclude that %
factors through some %K : K → K ⊗R C, and it follows by 8.4 that %K is
coassociative and counital, thus making K a comodule. tu

As a first application we consider the rational submodule of C∗∗. The
canonical map ΦC : C → C∗∗ is a C∗-morphism, since, for all c ∈ C, f, h ∈ C∗,

ΦC(f⇀c)(h) = h(f⇀c) =
∑

h(c1)f(c2) = ΦC(c)(h ∗ f) = fΦC(c)(h).

Hence the image of ΦC is a rational module. The next lemma shows that this
is equal to the rational submodule of C∗∗.

9.4. Rational submodule of C∗∗. ΦC : C → RatC(C∗∗) is an isomorphism.

Proof. Local projectivity of RC implies that ΦC is injective. Let % :
RatC(C∗∗) → RatC(C∗∗) ⊗R C denote the comodule structure map. For
γ ∈ RatC(C∗∗) write %(γ) =

∑
iγi ⊗ ci. Then, for any f ∈ C∗,

γ(f) = f · γ(ε) =
∑

i
f(ci)γi(ε) = f(

∑
i
γi(ε)ci),

where
∑

i γi(ε)ci ∈ C. So γ ∈ Im ΦC , proving that ΦC is surjective. tu
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The rational submodule of C∗C
∗ is a two-sided ideal in C∗ and is called

the left trace ideal. From the above observations and the Finiteness Theorem
it is clear that RatC(C∗) = C∗ if and only if RC is finitely generated.

Right rational C∗-modules are defined in a symmetric way, yielding the
right trace ideal CRat(C∗), which in general is different from RatC(C∗).

9.5. Characterisation of the trace ideal. Let T = RatC(C∗) be the left
trace ideal.

(1) Let f ∈ C∗ and assume that f⇀C is a finitely presented R-module.
Then f ∈ T .

(2) If R is Noetherian, then T can be described as

T1 = {f ∈ C∗ | C∗ ∗ f is a finitely generated R-module};
T2 = {f ∈ C∗ | Ke f contains a right C∗-submodule K, such that

C/K is a finitely generated R-module};
T3 = {f ∈ C∗ | f⇀C is a finitely generated R-module }.

Proof. Assertion (1) and the inclusion T ⊂ T1 in (2) follow from the
Finiteness Theorem 8.11.

[T1 ⊂ T2 ]: For f ∈ T1, let C∗∗f be finitelyR-generated by g1, . . . , gk ∈ C∗.
Consider the kernel of C∗ ∗ f ,

K :=
⋂
{Ke h |h ∈ C∗ ∗ f} =

k⋂
i=1

Ke gi .

Clearly K is a right C∗-submodule of C. Moreover, all the C/Ke gi are finitely
generated R-modules, and hence

C/K ⊂
k⊕
i=1

C/Ke gi

is a finitely generated R-module. This proves the inclusion T1 ⊂ T2.
[T2 ⊂ T3 ]: Let f ∈ T2. Since ∆(K) ⊂ C ⊗R K, f⇀K = 0 and f⇀C =

f⇀C/K is a finitely generated R-module, that is, f ∈ T3.
[T3 ⊂ T ]: For f ∈ T3, the rational right C∗-module f⇀C is a finitely

presented R-module. Then, by 7.10, (f⇀C)∗ is a rational left C∗-module.
Since ε(f⇀c) = f(c) for all c ∈ C, we conclude f ∈ (f⇀C)∗ and hence f ∈ T .

tu

Before concentrating on properties of the trace ideal we consider density
for any subalgebras of C∗. From the Density Theorem we know that for any
C-dense subalgebra T ⊂ C∗ the categories MC and σ[TC] can be identified.
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9.6. Density in C∗. For an R-submodule U ⊂ C∗, the following assertions
are equivalent:

(a) U is dense in C∗ in the finite topology (of RC);

(b) U is a C-dense subset of C∗ (in the finite topology of EndR(C)).

If C is cogenerated by R, then (a), (b) imply:

(c) KeU = {x ∈ C |u(x) = 0 for all u ∈ U} = 0.

If R is a cogenerator in MR, then (c) ⇒ (b).

Proof. (a) ⇔ (b) It can be derived from 7.11 that the finite topologies
in C∗ and EndC(C) can be identified.

(a) ⇒ (c) Let C be cogenerated by R. Then, for any 0 6= x ∈ C, there
exists f ∈ C∗ such that f(x) 6= 0. Then, for some u ∈ U , u(x) = f(x) 6= 0,
that is, x 6∈ KeU , and hence KeU = 0.

(c) ⇒ (b) Let R be a cogenerator in MR. Let f ∈ C∗ and x1, . . . , xn ∈ C.
Suppose that

f⇀(x1, . . . , xn) 6∈ U⇀(x1, . . . , xn) ⊂ Cn.

Then there exists an R-linear map g : Cn → R such that

g(f⇀(x1, . . . , xn)) 6= 0 and g(U⇀(x1, . . . , xn)) = 0.

For each u ∈ U (by 8.6),

0 =
∑

i
gi(u⇀xi) =

∑
i
u(xi↼gi) = u(

∑
i
xi↼gi),

where gi : C → Cn g−→ R, and this implies
∑

i xi↼gi = 0 and

0 6= g(f⇀(x1, . . . , xn)) =
∑

i
gi(f⇀xi) =

∑
i
f(xi↼gi) = f(

∑
i
xi↼gi) = 0,

contradicting the choice of g. tu

9.7. Dense subalgebras of C∗. For a subalgebra T ⊂ C∗ the following are
equivalent:

(a) RC is locally projective and T is dense in C∗;

(b) MC = σ[TC].

If T is an ideal in C∗, then (a),(b) are equivalent to:

(c) C is an s-unital T -module and C satisfies the α-condition.

Proof. (a) ⇔ (b) There are embeddings MC ⊂ σ[C∗C] ⊂ σ[TC]. Now
MC = σ[C∗C] is equivalent to the α-condition while σ[TC] = σ[C∗C] corre-
sponds to the density property.

(a) ⇔ (c) For an ideal T the density property is equivalent to s-unitality
of the T -module C. tu

Combining the properties of the trace functor observed in 4.8 with the
characterisation of dense ideals in 4.3, we obtain:
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9.8. The rational functor exact. Let T = RatC(C∗). The following state-
ments are equivalent:

(a) the functor RatC : C∗M → MC is exact;

(b) MC is closed under extensions in C∗M and the class

{X ∈ C∗M | RatC(X) = 0}

is closed under factor modules;

(c) for every N ∈ MC (with N ⊂ C), TN = N ;

(d) for every N ∈ MC, the canonical map T⊗C∗N → N is an isomorphism;

(e) C is an s-unital T -module;

(f) T 2 = T and T is a generator in MC;

(g) TC = C and C∗/T is flat as a right C∗-module;

(h) T is a left C-dense subring of C∗.

9.9. Corollary. Assume that RatC is exact and let T = RatC(C∗) ⊂ C∗.

(1) MC is closed under small epimorphisms in C∗M.

(2) If P is finitely presented in MC, then P is finitely presented in C∗M.

(3) If P is projective in MC, then P is projective in C∗M.

(4) For any M ∈ MC, the canonical map C∗Hom(C∗,M) → C∗Hom(T,M)
is injective.

Proof. (1)–(3) follow from Corollary 4.9.
(4) By density, for every f ∈ C∗Hom(C∗,M), f(ε) = tf(ε) = f(t) for

some t ∈ T , and hence f(T ) = 0 implies f(C∗) = 0. tu
Notice that the exactness of RatC , that is, the density of RatC(C∗) in C∗,

also has some influence on left C-comodules.

9.10. Corollary. Assume that RatC is exact and let T = RatC(C∗) ⊂ C∗.

(1) For any N ∈ CM, the canonical map HomC∗(C
∗, N) → HomC∗(T,N)

is injective.

(2) CRat(C∗) ⊂ T and equality holds if and only if T ∈ CM.

Proof. (1) By the preceding remark, C is also s-unital as a right T -
module and hence the proof of Corollary 9.9(4) applies.

(2) By the density of T ⊂ C∗, X↼T = X, for each X ∈ CM (see 4.3).
This implies

HomC∗(X,C
∗) = HomC∗(X↼T,C∗) = HomC∗(X,C

∗ ∗ T ) = HomC∗(X,T );

hence CRat(C∗) ⊂ T and CRat(C∗) = T provided T ∈ CM. tu
The assertion in 4.10 yields here:
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9.11. Corollary. Suppose that MC has a generator that is (locally) projective
in C∗M. Then RatC : C∗M → MC is an exact functor.

Except when RC is finitely generated (i.e., RatC(C∗) = C∗) the trace
ideal does not contain a unit element. However, if C is a direct sum of finitely
generated left (and right) C∗-submodules, the trace ideal has particularly nice
properties.

9.12. Trace ideal and decompositions. Let T := RatC(C∗) and T ′ :=
CRat(C∗).

(1) If C is a direct sum of finitely generated right C∗-modules, then T is
C-dense in C∗ and there is an embedding

γ : T ′ →
⊕

Λ
T ′ ∗ eλ ⊂ T,

for a family of orthogonal idempotents {eλ}Λ in T .

(2) If C is a direct sum of finitely generated right C∗-modules and of finitely
generated left C∗-modules, then T = T ′ and T is a projective generator
both in MC and CM.

Proof. (1) Under the given conditions there exist orthogonal idempotents
{eλ}Λ in C∗ with C =

⊕
Λ eλ⇀C, where all eλ⇀C are finitely generated right

C∗-modules. By the Finiteness Theorem 8.11, the eλ⇀C are finitely generated
as R-modules, and they are R-projective as direct summands of C. Now it
follows from 9.5(1) that eλ ∈ T . Clearly C is an s-unital left T -module and
hence the density property follows (see 4.3).

Consider the assignment γ : T ′ →
⊕

Λ T
′ ∗ eλ, t 7→

∑
Λ t ∗ eλ. For any

t ∈ T ′, t ∗ C∗ is finitely R-generated and so t ∗ eλ = 0 for almost all λ ∈ Λ.
Hence γ is a well-defined map. Assume γ(t) = 0. Then, for any c ∈ C,
0 = t ∗ eλ(c) = t(eλ⇀c), for all λ ∈ Λ, implying t = 0.

(2) By symmetry, (1) implies T = T ′ and so T =
⊕

Λ T ∗ eλ and T =⊕
Ω fω ∗T , where the {fω}Ω are orthogonal idempotents in C∗, and the C↼fω

are finitely R-generated (hence fω ∈ T ′). Clearly each T ∗eλ is a projective left
T -module and fω ∗ T a projective right T -module. Now the density property
implies that T is a projective generator both in MC and in CM (see 9.8). tu

Notice that, in 9.12, eλ ∈ T ′ need not imply that C↼eλ is finitely R-
generated, unless we know that R is Noetherian (see 9.5).

9.13. Decompositions over Noetherian rings. Let R be Noetherian,
T = RatC(C∗) and T ′ = CRat(C∗). Then the following are equivalent:

(a) CC∗ and C∗C are direct sums of finitely generated C∗-modules;

(b) CC∗ is a direct sum of finitely generated C∗-modules and T = T ′;
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(c) C∗C is a direct sum of finitely generated C∗-modules and T = T ′;

(d) C = T⇀C and T = T ′ and is a ring with enough idempotents.

If these conditions hold, T is a projective generator both in MC and in CM.

Proof. (a) ⇒ (b) follows by 9.12.
(b) ⇒ (d) Let C =

⊕
Λ eλ⇀C, with orthogonal idempotents {eλ}Λ in

C∗, where all eλ⇀C are finitely R-generated. Then eλ ∈ T = T ′ and T =⊕
Λ T ∗ eλ. For any t ∈ T , the module t⇀C is finitely R-generated (by 9.5)

and so

t⇀C ⊂ e1⇀C ⊕ · · · ⊕ ek⇀C, for some idempotents ei ∈ {eλ}Λ.

This implies t = (e1+· · ·+ek)∗t ∈
⊕

Λ eλ∗T . So
⊕

Λ T ∗eλ = T =
⊕

Λ eλ∗T ,
showing that T is a ring with enough idempotents.

(d) ⇒ (a) If T =
⊕

Λ eλ ∗ T , then

C = T⇀C =
⊕

Λ
eλ⇀C,

and eλ ∈ T implies that eλ⇀C is finitely R-generated. So, by 9.12, T is dense
in C∗, implying C↼T = C. Now symmetric arguments yield the decomposi-
tion of C as a direct sum of finitely R-generated left C∗-modules.

(c) ⇔ (a) The statement is symmetric to (d) ⇔ (a).
If the conditions hold, the assertion follows by 9.12. tu

Fully invariant submodules of C that are direct summands are precisely
subcoalgebras that are direct summands, and they are of the form e⇀C, where
e is a central idempotent in C∗. Hence 9.13 yields:

9.14. Corollary. If R is Noetherian, the following are equivalent:

(a) C is a direct sum of finitely generated subcoalgebras;

(b) C is a direct sum of finitely generated (C∗, C∗)-sub-bimodules;

(c) T⇀C = C and T is a ring with enough central idempotents.
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10 Structure of comodules

Throughout this section we assume that C is an R-coalgebra with RC locally
projective (see 8.2).

Let N be a right C-comodule. Then a C-comodule Q is said to be N-
injective provided HomC(−, Q) turns any monomorphism K → N in MC into
a surjective map. We recall characterisations from 3.3.

10.1. Injectives in MC. (1) For Q ∈ MC the following are equivalent:

(a) Q is injective in MC;

(b) the functor HomC(−, Q) : MC → MR is exact;

(c) Q is C-injective (as left C∗-module);

(d) Q is N-injective for any (finitely generated) subcomodule N ⊂ C;

(e) every exact sequence 0 → Q→ N → L→ 0 in MC splits.

(2) Every injective object in MC is C-generated.

(3) Every object in MC has an injective hull.

A C-comodule P is N-projective if HomC(P,−) turns any epimorphism
N → L into a surjective map.

10.2. Projectives in MC. (1) For P ∈ MC the following are equivalent:

(a) P is projective in MC;

(b) the functor HomC(P,−) : MC → MR is exact;

(c) P is C(Λ)-projective, for any set Λ;

(d) every exact sequence 0 → K → N → P → 0 in MC splits.

(2) If P is finitely generated and C-projective, then P is projective in MC.

Notice that projectives need not exist in MC . As observed in 7.18, pro-
jective objects in MC (if they exist) are also projective in MR.

Over a Noetherian ring R, C is left and right locally Noetherian as a C∗-
module (by 8.15), and therefore we can apply 3.16 to obtain:

10.3. C as injective cogenerator in MC. If R is Noetherian, then the
following are equivalent:

(a) C is an injective cogenerator in MC;

(b) C is an injective cogenerator in CM;

(c) C is a cogenerator both in MC and CM.
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10.4. C as injective cogenerator in MC∗. If R is Artinian, then the
following are equivalent:

(a) C is an injective cogenerator in MC∗;

(b) C∗C is Artinian and an injective cogenerator in MC;

(c) C is an injective cogenerator in MC and C∗ is right Noetherian.

If these conditions hold, then C∗ is a semiperfect ring and every right
C∗-module that is finitely generated as an R-module belongs to CM.

Proof. Since R is Artinian, C has locally finite length as a C∗-module.
(a) ⇒ (b) Assume C to be an injective cogenerator in MC∗ . Then, by

10.3, C is an injective cogenerator in MC . Now 3.17 implies that C∗C is
Artinian.

(b) ⇒ (a) and (b) ⇔ (c) follow again from 3.17.
Assume the conditions hold. C∗ is f-semiperfect, being the endomorphism

ring of a self-injective module (see 3.15). So C∗/Jac(C∗) is von Neumann
regular and right Noetherian, and hence right (and left) semisimple. This
implies that C∗ is semiperfect.

Let L ∈ MC∗ be finitely generated as an R-module. Then L is finitely
cogenerated as a C∗-module, and hence it is finitely cogenerated by C. This
implies L ∈ CM. tu

The decomposition of left semisimple coalgebras as a direct sum of (inde-
composable) subcoalgebras (see 8.13) can be extended to more general situ-
ations. Recall that a relation on any family of (co)modules {Mλ}Λ is defined
by setting (cf. [3, 44.11])

Mλ ∼Mµ if there exist nonzero morphisms Mλ →Mµ or Mµ →Mλ,

and the smallest equivalence relation determined by ∼ is given by

Mλ ≈Mµ if there exist λ1, . . . , λk ∈ Λ,
such that Mλ = Mλ1 ∼ · · · ∼Mλk

= Mµ .

10.5. σ-decomposition of coalgebras. Let R be a Noetherian ring.

(1) There exist a σ-decomposition C =
⊕

ΛCλ and a family of orthogonal
central idempotents {eλ}Λ in C∗ with Cλ = C↼eλ, for each λ ∈ Λ.

(2) Each Cλ is a subcoalgebra of C, C∗
λ ' C∗ ∗ eλ, σ[C∗Cλ] = σ[C∗λCλ], and

MC =
⊕

Λ
σ[C∗Cλ] =

⊕
Λ
MCλ .

(3) MC is indecomposable if and only if, for any two injective uniform
L,N ∈ MC, L ≈ N holds.
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(4) Assume that R is Artinian. Then MC is indecomposable if and only if,

for any two simple E1, E2 ∈ σC∗ [C], Ê1 ≈ Ê2 holds.

Proof. (1),(2) By the Finiteness Theorem 8.11, C is a locally Noetherian
C∗-module. Now the decomposition of MC (=σ[C∗C]) follows from module
theory (see 44.14. in [3]).

Clearly the resulting σ-decomposition of C is a fully invariant decompo-
sition, and hence it can be described by central idempotents in the endomor-
phism ring (= C∗; see [3, 44.1]). Fully invariant submodules Cλ ⊂ C are in
particular R-direct summands in C and hence are subcoalgebras (by 8.6). It
is straightforward to verify that HomR(Cλ, R) = C∗

λ ' C∗ ∗ eλ is an algebra
isomorphism. This implies σ[C∗Cλ] = σ[C∗λCλ] = MCλ .

(3) is a special case of [3, 44.14].

(4) follows from [3, 44.14](3). Notice that Ê1 ≈ Ê2 can be described by
extensions of simple modules (see [3, 44.11]). (The assertion means that the
Ext quiver of simple modules in MC is connected.) tu

Transferring [3, 44.7] we obtain:

10.6. Corollary. Let C be a coalgebra with σ-decomposition C =
⊕

ΛCλ.
Then the left rational functor RatC is exact if and only if the left rational
functors RatCλ are exact, for each Cλ.

Even for coalgebras C over fields there need not be any projective comod-
ules in MC . We discuss the existence of (enough) projectives in MC and the
projectivity of C in MC or in C∗M.

Definition. A coalgebra C is called right semiperfect if every simple right
comodule has a projective cover in MC . If RC is locally projective, this is
obviously equivalent to the condition that every simple module in σ[C∗C] has
a projective cover in σ[C∗C] (by 8.3), that is, MC = σ[C∗C] is a semiperfect
category.

Notice that a right semiperfect coalgebra C need not be a semiperfect left
C∗-module as defined in 3.10. The following characterisations can be shown.

10.7. Right semiperfect coalgebras. The following are equivalent:

(a) C is a right semiperfect coalgebra;

(b) MC has a generating set of local projective modules;

(c) every finitely generated module in MC has a projective cover.

If R is a perfect ring, then (a)-(c) are equivalent to:

(d) MC has a generating set of finitely generated C-projective comodules.

Proof. See 41.14., 41.16 and 41.22 in [3]. tu
As an obvious application of 10.5 we obtain:
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10.8. σ-decomposition of semiperfect coalgebras. Let R be Noetherian
and C with σ-decomposition C =

⊕
ΛCλ. Then C is a right semiperfect

coalgebra if and only if the Cλ are right semiperfect coalgebras, for all λ ∈ Λ.

We finally turn to the question of when C itself is projective in MC or

C∗M. Since C is a balanced (C∗, C∗)-bimodule, we can use standard module
theory to obtain some properties of C as a locally projective C∗-module.

10.9. C locally projective as C∗-module.

(1) If C is locally projective as a left C∗-module, then C is a generator in
CM.

(2) If C is locally projective as a left and right C∗-module, then both RatC

and CRat are exact.

Proof. (1) If C∗C is locally projective, then, by [3, 42.10], CC∗ is a
generator in σ[CC∗ ] = CM.

(2) Assume that both C∗C and CC∗ are locally projective. Then, by (1),

C∗C is a locally projective generator in σ[C∗C], and, by 9.11, RatC is an exact
functor. Similar arguments show that CRat is exact. tu

10.10. C projective in MC. Assume that C is projective in MC.

(1) If C∗ is an f-semiperfect ring, or C is C-injective, then C is a direct
sum of finitely generated left C∗-modules.

(2) If C∗ is a right self-injective ring, then C is a generator in CM.

(3) If C∗ is a semiperfect ring, then RC is finitely generated.

Proof. (1) This is a decomposition property of projective modules with
f-semiperfect endomorphism rings (see [3, 41.19]). If C is self-injective, then
C∗ is f-semiperfect.

(2) As a self-injective ring, C∗ is f-semiperfect. By 9.12, (1) implies that C
is s-unital over the right trace ideal T ′, and so T ′ is a generator (by 9.8). More-
over, right injectivity of C∗ implies that T ′ = Tr(CM, C∗) = Tr(CC∗ , C

∗), and
so C generates T ′ (see [3, 42.7] for the definition of a trace).

(3) This follows from (1) and [3, 41.19]. tu



11. Coalgebras over QF rings 85

11 Coalgebras over QF rings

Recall that a QF ring R is an Artinian injective cogenerator in MR. We
consider R-coalgebras C with RC locally projective. If R is a QF ring, then
this is equivalent to C being projective as an R-module.

11.1. Coalgebras over QF rings. If R is a QF ring, then:

(1) C is a (big) injective cogenerator in MC.

(2) Every comodule in MC is a subcomodule of some direct sum C(Λ).

(3) C∗ is an f-semiperfect ring.

(4) K := SocC∗C � C and Jac(C∗) = HomR(C/K,R).

(5) C∗ is right self-injective if and only if C is flat as left C∗-module.

Proof. (1),(2) By 7.17, C is injective in MC . Over a QF ring R, every
R-module M is contained in a free R-module R(Λ). This yields, for any right
C-comodule, an injection %M : M →M ⊗R C ⊂ R(Λ) ⊗R C ' C(Λ).

(3) The endomorphism ring of any self-injective module is f-semiperfect
(see 3.15).

(4) By 8.15, C∗C is locally of finite length and hence has an essential socle.
By the Hom-tensor relations (see 7.9),

Jac(C∗) = HomC(C/K,C) ' HomR(C/K,R).

(5) For any N ∈ MC∗ , there is an isomorphism HomR(N ⊗C∗ C,R) '
HomC∗(N,HomR(C,R)) = HomC∗(N,C

∗) (cf. [3, 40.18]). So, if C∗ is right
self-injective, the functor HomR(−⊗C∗ C,R) : MC∗ → MR is exact. Since R
is a cogenerator in MR, this implies that − ⊗C∗ C is exact, that is, C∗C is
flat. Similar arguments yield the converse conclusion. tu

By 4.17, For any injective cogenerator, fully invariant decompositions
(coalgebra decompositions) are σ-decompositions (see [3, 44.8]). Consequently,
10.5 yields:

11.2. σ-decomposition of C. If R is a QF ring, then:

(1) C has fully invariant decompositions with σ-indecomposable summands.

(2) Each fully invariant decomposition (= decomposition into coalgebras) is
a σ-decomposition.

(3) C is σ-indecomposable if and only if C has no nontrivial fully invariant
decomposition, that is, C∗ has no nontrivial central idempotents.

(4) If C is cocommutative, then C =
⊕

ΛÊλ is a fully invariant decompo-
sition, where {Eλ}Λ is a minimal representing set of simple comodules

in MC, and Êλ denotes the injective hull of Eλ.
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Proof. By 11.1, C is an injective cogenerator in σ[C∗C], and so (1), (2)
and (3) follow from 4.17 and 10.5. In (4), C∗ is a commutative algebra by
assumption, and so the assertion follows from [3, 43.7]. tu

Over QF rings there is a bijective correspondence between closed subcat-
egories of MC and (C∗, C∗)-sub-bimodules in C. However, the latter need
not be pure R-submodules of C, and hence they may not be subcoalgebras.
Recall that injectivity of C in MC implies Tr(σ[N ], C) = Tr(N,C), for any
N ∈ MC .

11.3. Correspondence relations. Let R be a QF ring and N ∈ MC. Then:

(1) σ[N ] = σ[Tr(N,C)].

(2) The map σ[N ] 7→ Tr(N,C) yields a bijective correspondence between
closed subcategories of MC and (C∗, C∗)-sub-bimodules of C.

(3) σ[N ] is closed under essential extensions (injective hulls) in MC if and
only if Tr(N,C) is a C∗-direct summand of C∗C. In this case Tr(N,C)
is a subcoalgebra of C.

(4) N is a semisimple comodule if and only if Tr(N,C) ⊂ Soc(C∗C).

(5) If R is a semisimple ring, then Tr(N,C) is a subcoalgebra of C.

Proof. Since R is a QF ring, C∗C has locally finite length and is an
injective cogenerator in MC . Hence (1)–(4) follow from 4.13. Furthermore, if
R is semisimple, the (C∗, C∗)-sub-bimodule Tr(N,C) is an R-direct summand
in C and so is a subcoalgebra by 8.6. This proves assertion (5). tu

Since over a QF ring R any R-coalgebra C is an injective cogenerator in
MC and CM (by 11.1), the results from 10.4 simplify to the following.

11.4. C injective in MC∗. If R is QF, the following are equivalent:

(a) C is injective in MC∗;

(b) C is an injective cogenerator in MC∗;

(c) C∗C is Artinian;

(d) C∗ is a right Noetherian ring.

Proof. In view of the preceding remark the equivalence of (b), (c) and
(d) follows from 10.4. The implication (b) ⇒ (a) is trivial, and (a) ⇒ (c)
needs an argument from module theory (see [3, 8.3]). tu

For finitely generated comodules, injectivity and projectivity in MC may
extend to injectivity, resp. projectivity, in C∗M.
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11.5. Finitely presented modules over QF rings. Let R be a QF ring
and M ∈ MC.

(1) If M is projective in MC, then M∗ is C-injective as a right C∗-module
and RatC(M∗) is injective in CM.

(2) If M is finitely generated as an R-module, then:

(i) if M is injective in MC, then M∗ is projective in MC∗.

(ii) M is injective in MC if and only if M is injective in C∗M.

(iii) M is projective in MC if and only if M is projective in C∗M.

Proof. (1) Consider any diagram with exact row in CM,

0 // K //

f
��

N

M∗ ,

where N is finitely generated as an R-module. Applying (−)∗ = HomR(−, R)
we obtain – with the canonical map ΦM : M →M∗∗ – the diagram

M // M∗∗

f∗

��
N∗ // K∗ // 0 ,

where the lower row is in MC and hence can be extended commutatively by
some right comodule morphism g : M → N∗. Again applying (−)∗ - and

recalling that the composition M∗ ΦM∗−→M∗∗∗ (ΦM )∗−→ M∗ yields the identity (by
[3, 40.23]) - we see that g∗ extends f to N . This proves that M∗ is N -injective
for all modules N ∈ CM that are finitely presented as R-modules.

In particular, by the Finiteness Theorem 8.11, every finitely generated
C∗-submodule of C is finitely generated - hence finitely presented – as an
R-module. So M∗ is N -injective for all these modules, and hence it is C-
injective as a right C∗-module (see 10.1). Notice that M∗ need not be in CM
(not rational). It is straightforward to show that RatC(M∗) is an injective
object in CM.

(2)(i) We know that M ⊂ Rk, for some k ∈ N, and so there is a monomor-

phism in MC , M
%M
//M ⊗R C // Rk ⊗R C ' Ck , that splits in MC and

hence in C∗M (by 8.1). So the dual sequence (C∗)k →M∗ → 0 splits in MC∗ ,
and hence M∗ is projective in MC∗ .

(ii) Let M be injective in MC . Then M∗ is projective in MC∗ (by (i)).
Consider any monomorphism in M → X in C∗M. Then X∗ → M∗ → 0 is
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exact and splits in MC∗ , and hence, in the diagram

0 //M //

'
��

X

��
0 //M∗∗ // X∗∗ ,

the bottom row splits in C∗M and as a consequence so does the upper row,
proving that M is injective in C∗M.

(iii) Let M be projective in MC . Since M∗ is in CM (by 7.10), we know
from (1) that it is injective in CM. Now we conclude, by the right-hand
version of (i), that M 'M∗∗ is projective in C∗M. tu

As shown in 11.5, for coalgebras over QF rings, finitely generated projec-
tive modules in MC are in fact projective in C∗M. This is the key to the
fact that in this case right semiperfect coalgebras are characterised by the
exactness of the left trace functor (so also by all the equivalent properties of
the trace functor given in 9.8).

11.6. Right semiperfect coalgebras over QF rings. Let R be QF and
T = RatC(C∗). Then the following are equivalent:

(a) C is a right semiperfect coalgebra;

(b) MC has a generating set of finitely generated modules that are projective
in C∗M;

(c) injective hulls of simple left C-comodules are finitely generated as R-
modules;

(d) the functor RatC : C∗M → MC is exact;

(e) T is left C-dense in C∗;

(f) KeT = {x ∈ C |T (x) = 0} = 0.

Proof. (a) ⇔ (b) If C is right semiperfect, there exists a generating set
of finitely generated projective modules in MC (see 10.7). By 11.5, all these
are projective in C∗M. The converse conclusion is immediate.

(a) ⇒ (c) Let U be a simple left C-comodule with injective hull U → Û
in CM. Applying HomR(−, R) we obtain a small epimorphism in C∗M,

Û∗ → U∗ → 0,

where U∗ is a simple left C∗-module. Moreover, since R is QF, we know that
Û is a direct summand of CC∗ , and so Û∗ is a direct summand of C∗, and
hence is projective in C∗M. By assumption there exists a projective cover
P → U∗ in MC . Since P is finitely generated as anR-module and projective
in MC , it is also projective in C∗M (by 11.5), and hence Û∗ ' P . So Û∗ is

finitely generated as an R-module and so is Û .
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(c) ⇒ (a) Let V ⊂ C be a simple left C∗-submodule. Then V ∗ is a
simple right C∗-module in CM. Let V ∗ → K be its injective hull in CM. By
assumption, K is a finitely generated R-module, and so K∗ is a projective
C∗-module (by 11.5) and K∗ → V ∗∗ ' V is a projective cover in MC .

(b) ⇒ (d) The assumption implies that MC has a generator that is pro-
jective in C∗M, and the assertion follows from 9.11.

(d) ⇔ (e) ⇔ (f) These equivalences follow from 9.8 and 9.6.
(d) ⇒ (c) Let V ⊂ C be a simple left C∗-submodule. Then U = V ∗ is

a simple left C-comodule and there is a projective cover Û∗ → V in C∗M
(see proof (a) ⇒ (c)). By 9.9, (d) implies that MC is closed under small

epimorphisms and hence Û∗ ∈ MC . tu
The conditions on left C∗-modules (right C-comodules) posed in the pre-

ceding theorem imply remarkable properties of the left C-comodules.

11.7. Left side of right semiperfect coalgebras. Let C be right semiper-
fect, R a QF ring and T = RatC(C∗). Then:

(1) the injective hull of any X ∈ CM is finitely R-generated, provided X is
finitely R-generated.

(2) For every X ∈ CM that is finitely R-generated, HomC∗(T,X) ' X.

(3) For every M ∈ CM, the trace of MC in M∗ is nonzero.

(4) Any module in CM has a maximal submodule and has a small radical.

Proof. (1) Let X ∈ CM be finitely generated as an R-module. Then
X has finite uniform dimension, and so its injective hull in CM is a finite
direct sum of injective hulls of simple modules, which are finitely generated
by 11.6(c).

(2) By (1), the C-injective hull X̂ of X is finitely R-generated and hence
is C∗-injective (see 11.5). So any f ∈ HomC∗(T,X) can be uniquely extended

to some h : C∗ → X̂ and h(ε) ∈ X̂, which is s-unital over T (see 9.10). Hence

h(ε) ∈ h(ε) · C∗ = h(ε) · T = h(T ) = f(T ) ⊂ X,

showing that h ∈ HomC∗(C
∗, X) ' X.

(3) For every simple submodule S ⊂M with injective hull Ŝ in CM, there
are commutative diagrams

0 // S //

i
��

M

j����
��

��
��

M∗ // S∗

Ŝ
,

Ŝ∗

j∗

OO

i∗

=={{{{{{{{
,

where i is injective and j is nonzero. By 7.10, Ŝ∗ belongs to MC and so does
its nonzero image under j∗.
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(4) Let M ∈ CM. By (3), there exists a simple submodule Q ⊂ M∗ with
Q ∈ MC . Then KeQ = {m ∈M |Q(m) = 0} is a maximal C∗-submodule of
M . This shows that all modules in CM have maximal submodules, and hence
every proper submodule of M is contained in a maximal C∗-submodule. This
implies that Rad(M) is small in M . tu

11.8. Finiteness properties. Let R be a QF ring.

(1) If C is right semiperfect and there are only finitely many nonisomorphic
simple right C-comodules, then RC is finitely generated.

(2) If C is right semiperfect and any two nonzero subalgebras have non-zero
intersection (i.e., C is irreducible), then RC is finitely generated.

(3) RC is finitely generated if and only if MC has a finitely generated pro-
jective generator.

(4) C∗ is an algebra of finite representation type if and only if there are only
finitely many nonisomorphic finitely generated indecomposable modules
in MC.

Proof. (1) Since CC∗ is self-injective, the socle of CC∗ is a finitely gener-
ated R-module by [3, 41.23]. Hence Soc(CC∗) has finite uniform dimension,
and since Soc(CC∗) � C, C is a finite direct sum of injective hulls of simple
modules in CM that are finitely generated R-modules by 11.7.

(2) Under the given condition there exists only one simple right C-como-
dule (up to isomorphisms), and the assertion follows from (1).

(3) If RC is finitely generated, then MC = C∗M. Conversely, assume
there exists a finitely generated projective generator P in MC . Then P is
semiperfect and there are only finitely many simples in MC . Now (1) applies.

(4) One implication is obvious. Assume there are only finitely many non-
isomorphic finitely generated indecomposables in MC . Since C is subgener-
ated by its finitely generated submodules, this implies that MC has a finitely
generated subgenerator. Now [10, 54.2] implies that there is a progenerator
in MC , and hence RC is finitely generated by (3). tu

Unlike in the case of associative algebras, right semiperfectness is a strictly
one-sided property for coalgebras – it need not imply left semiperfectness. The
next proposition describes coalgebras that are both right and left semiperfect.

11.9. Left and right semiperfect coalgebras. Let R be a QF ring, T =
RatC(C∗) and T ′ = CRat(C∗). The following are equivalent:

(a) C is a left and right semiperfect coalgebra;

(b) all left C-comodules and all right C-comodules have projective covers;

(c) T = T ′ and is dense in C∗;

(d) C∗C and CC∗ are direct sums of finitely generated C∗-modules.
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Under these conditions, T is a ring with enough idempotents, and it is a
generator in MC.

Proof. (b) ⇒ (a) is obvious.
(a)⇒ (b) By [3, 41.16], all finitely generated projective modules in MC are

semiperfect in MC . According to 3.10 and 3.11, a direct sum of projective
semiperfect modules in MC is semiperfect provided it has a small radical.
Since this is the case by 11.7, we conclude that every module in MC has a
projective cover. Similar arguments apply to the category CM.

(a) ⇔ (c) This is obvious by the characterisation of exactness of the ra-
tional functor in 9.8 and 11.6.

(c) ⇔ (d) follows from 9.12.
The final assertions follow from 9.12 and 9.8. tu

For cocommutative coalgebras we can combine 11.9 with 11.2(4).

11.10. Cocommutative semiperfect coalgebras. Let R be QF and C
cocommutative. The following are equivalent:

(a) C is semiperfect;

(b) C is a direct sum of finitely generated C∗-modules;

(c) C is a direct sum of finitely R-generated subcoalgebras;

(d) every uniform subcomodule (C∗-submodule) of C is finitely R-generated.

The trace functors combined with the dual functor (−)∗ define covariant
functors CRat ◦ (−)∗ : MC → CM and RatC ◦ (−)∗ : CM → MC . Over QF
rings, these functors clearly are exact if and only if CRat, respectively RatC ,
is exact, that is, C is left or right semiperfect. In this case they yield dualities
between subcategories of MC and CM.

Over a QF ring, projective comodules in MC that are finitely generated as
left C∗-modules are also projective in C∗M (see 11.5). Moreover, any direct
sum of copies of C is C-injective as a left and right C∗-module.

11.11. Projective coalgebras over QF rings. If R is QF, the following
are equivalent:

(a) C is a submodule of a free left C∗-module;

(b) C (or every right C-comodule) is cogenerated by C∗ as a left C∗-module;

(c) there exists a family of left nondegenerate C-balanced bilinear forms
C × C → R;

(d) in MC every (indecomposable) injective object is projective;

(e) C is projective in MC;

(f) C is projective in C∗M.
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If these conditions are satisfied, then C is a left semiperfect coalgebra and C
is a generator in CM.

Proof. (a) ⇔ (b) By 8.15, C is a direct sum of injective hulls of simple
modules in MC . If C is cogenerated by C∗, then each of these modules is
contained in a copy of C∗, and hence C is contained in a free C∗-module.
Recall from 11.1 that C is a cogenerator in MC and hence C∗ cogenerates
any N ∈ MC provided it cogenerates C.

(b) ⇔ (c) This is shown in [3, 6.6(2)].
(c) ⇒ (f) Let U be a simple left C∗-submodule of C with injective hull

Û ⊂ C in MC . Then Û is a finitely generated R-module by [3, 6.6(3)]. Now

we conclude from 11.5 that Û is injective in C∗M. Being cogenerated by C∗,
we observe in fact that Û is a direct summand of C∗, and hence it is projective
in C∗M. This implies that C is projective in C∗M.

(f) ⇒ (a) and (f) ⇒ (e) are obvious, and so is (d) ⇔ (e) (by 11.1).

(e) ⇒ (f) C is a direct sum of injective hulls Û ⊂ C of simple submodules

U ⊂ C. By (e), Û is projective in MC . Since it has a local endomorphism
ring, we know from 3.9 that it is finitely generated as a C∗-module and hence
finitely generated as an R-module (by 8.11). Now we conclude from 11.5 that

Û is projective in C∗M and so is C.
Finally, assume these conditions hold. By the proof of 11.11, the injective

hulls of simple modules in MC are finitely generated R-modules. By 10.7,
this characterises left semiperfect coalgebras, implying that the right trace
ideal T ′ := CRat(C∗) is a generator in CM. Now, by 11.5(1), T ′ is injective
in CM, and hence it is generated by C and therefore C is a generator in CM.
tu

11.12. Corollary. Let R be QF and C projective in MC. Then the following
are equivalent:

(a) C∗C contains only finitely many nonisomorphic simple submodules;

(b) Soc(C∗C) is finitely generated as an R-module;

(c) C∗ is a semiperfect ring;

(d) RC is finitely generated.

Proof. (a) ⇒ (b) By the Finiteness Theorem, the homogeneous compo-
nents of the socle of C are finitely generated a R-modules.

(b) ⇒ (c) We know that C∗ is f-semiperfect. Clearly Soc(C∗C) � C, and
hence C has a finite uniform dimension as a left C∗-module. This implies
that C∗ is semiperfect.

(c) ⇒ (a) For any semiperfect ring there are only finitely many simple left
(or right) modules (up to isomorphisms).

(c) ⇒ (d) is shown in 10.10(3).
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(d) ⇒ (b) follows from the fact that R is Noetherian. tu

From 11.1 we know that, over a QF ring R, C is always an injective cogen-
erator in MC . Which additional properties make C a projective generator?

11.13. C as a projective generator in MC. Let R be QF and T =
RatC(C∗). The following are equivalent:

(a) C is projective as left and right C-comodule;

(b) C is a projective generator in MC;

(c) C is a projective generator in CM;

(d) C = TC and T has enough idempotents and is an injective cogenerator
in MC.

Proof. (a) ⇒ (b) This is obtained from 11.11 and 10.9.
(b) ⇒ (a) By 11.11, C is projective as a left C∗-module and hence C∗ is

C-injective as a right C∗-module (by 11.5). To show that C is projective as
a right C∗-module we show that C∗ cogenerates C as a right C∗-module. For
this it is enough to prove that each simple submodule U ⊂ CC∗ is embedded
in C∗. By 8.11, U is a finitely generated R-module. Clearly U∗ is a simple
module in MC , and hence there is a C∗-epimorphism C → U∗. From this we
obtain an embedding U ' U∗∗ ⊂ C∗, which proves our assertion.

(a) ⇔ (c) is clear by symmetry.
(a) ⇒ (d) From the above discussion we know that C is a left and right

semiperfect coalgebra. Hence T is a ring with enough idempotents and MC =
σ[C∗T ] by 11.9. Since C is projective, C ⊂ T (Λ), and hence T is a cogenerator
in MC . T is injective in MC by 11.5.

(d) ⇒ (b) Since T is projective in MC , injective hulls of simple modules
in MC are projective, and so C is projective in MC . T is injective, and hence
it is generated by C. By our assumptions T is a generator in MC and so is
C. tu

In case C is finitely R-generated, MC = C∗M and we obtain:

11.14. C as a projective generator in C∗M. If R is QF, the following
are equivalent:

(a) C is a projective generator in C∗M;

(b) C is a generator in C∗M;

(c) C is a generator in MC and RC is finitely generated;

(d) C∗ is a QF algebra and RC is finitely generated.

Proof. (a) ⇒ (b) is obvious.
(b) ⇒ (c) As a generator in C∗M, C is finitely generated as a module over

its endomorphism ring C∗, and hence RC is finitely generated.



94 Chapter 2. Coalgebras and comodules

(c) ⇒ (d) Clearly C∗ is left (and right) Artinian. By assumption, C is an
injective generator in C∗M. This implies that C∗ is self-injective and hence
QF.

(d) ⇒ (a) As a QF ring, C∗ is an injective cogenerator in MC = C∗M.
From this it is easy to see that C is a projective generator in C∗M. tu
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12 Bialgebras

In this section we are concerned with the compatibility of algebra and coal-
gebra structures on a given R-module. In particular, we define bialgebras and
study their most elementary properties.

12.1. Bialgebras. An R-module B that is an algebra (B, µ, ι) and a coal-
gebra (B,∆, ε) is called a bialgebra if ∆ and ε are algebra morphisms or,
equivalently, µ and ι are coalgebra morphisms. For ∆ to be an algebra mor-
phism one needs commutativity of the diagrams

B ⊗R B
µ //

∆⊗∆
��

B

∆

��

(B ⊗R B)⊗R (B ⊗R B)

IB⊗tw⊗IB
��

(B ⊗R B)⊗R (B ⊗R B)
µ⊗µ// B ⊗R B,

R
ι //

'
��

B

∆
��

R⊗R R
ι⊗ι // B ⊗R B,

where tw denotes the twist map. Similarly, ε is an algebra morphism if and
only if the following two diagrams

B ⊗R B
µ //

ε⊗ε
��

B

ε

��
R⊗R R

' // R,

B
ε

��@
@@

@@
@@

R

ι
??~~~~~~~
= // R

are commutative. The same set of diagrams makes µ and ι coalgebra mor-
phisms. For the units 1B ∈ B, 1R ∈ R and for all a, b ∈ B, the above diagrams
explicitly mean that

∆(1B) = 1B ⊗ 1B, ε(1B) = 1R,

∆(ab) = ∆(a)∆(b), ε(ab) = ε(a)ε(b).

Note that this implies that, in any R-bialgebra B, R is a direct summand
of B as an R-module and hence B is a generator in MR.

12.2. Bialgebra morphisms. An R-linear map f : B → B′ of bialgebras is
called a bialgebra morphism if f is both an algebra and a coalgebra morphism.

An R-submodule I ⊂ B is a sub-bialgebra if it is a subalgebra as well as a
subcoalgebra. I is a bi-ideal if it is both an ideal and a coideal.

Let f : B → B′ be a bialgebra morphism. Then:

(1) If f is surjective, then Ke f is a bi-ideal in B.

(2) Im f is a subcoalgebra of B′.
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A remarkable feature of a bialgebra B is that the tensor product of B-
modules is again a B-module. First, recall that an R-module N is a B-module
if there is an algebra morphism B → EndR(N).

12.3. Tensor product of B-modules. Let K,L be right modules over an
R-bialgebra B.

(1) K ⊗R L has a right B-module structure by the map

B
∆−→ B ⊗R B → EndR(K)⊗R EndR(L) → EndR(K ⊗R L) ;

we denote this module by K ⊗b
R L. The right action of B is given by

! : K ⊗R L⊗R B −→ K ⊗R L, k ⊗ l ⊗ b 7→ (k ⊗ l)∆b,

where the product on the right side is taken componentwise, that is,

(k ⊗ l)!b := (k ⊗ l) ∆b =
∑
kb1 ⊗ lb2 .

(2) For any morphisms f : K → K ′, g : L→ L′ in MB, the tensor product
map f ⊗ g : K ⊗b

R L→ K ′ ⊗b
R L

′ is a morphism in MB.

Proof. (1) follows easily from the definitions. Assertion (2) is equivalent
to the commutativity of the following diagram:

K ⊗b
R L⊗R B

f⊗g⊗IB//

!
��

K ′ ⊗b
R L

′ ⊗R B

!
��

K ⊗b
R L

f⊗g // K ′ ⊗b
R L

′,

which follows immediately from B-linearity of f and g. tu
Of course similar constructions apply to left B-modules K,L, in which

case the left B-multiplication is given by

! : B ⊗R K ⊗R L −→ K ⊗R L, b⊗ k ⊗ l 7→ ∆b(k ⊗ l) .

Explicitly, the product comes out as b!(k ⊗ l) =
∑
b1k ⊗ b2l.

Dually, the tensor product of comodules has a special comodule structure.

12.4. Tensor product of B-comodules. Let K,L be right comodules over
an R-bialgebra B.

(1) K ⊗R L has a right B-comodule structure by the map (tensor over R)

%K⊗L : K ⊗ L
tw23◦(%K⊗%L)// K ⊗ L⊗B ⊗B

IK⊗IL⊗µ // K ⊗ L⊗B,

where tw23 = IK⊗ tw⊗IB. This comodule is denoted by K⊗c
RL. Thus,

explicitly, for all k ⊗ l ∈ K ⊗c
R L,

%K⊗RL(k ⊗ l) =
∑

k0 ⊗ l0 ⊗ k1l1.
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(2) For any morphisms f : K → K ′, g : L→ L′ in MB, the tensor product
map f ⊗ g : K ⊗c

R L→ K ′ ⊗c
R L

′ is a morphism in MB.

Proof. (1) This is proved by computing for all k ∈ K, l ∈ L,

(IK ⊗ IL ⊗∆) ◦ %K⊗RL(k ⊗ l) =
∑
k0 ⊗ l0 ⊗∆(k1l1)

=
∑
k0 ⊗ l0 ⊗ k11l11 ⊗ k12l12

=
∑
k00 ⊗ l00 ⊗ k01l01 ⊗ k11l11

= (%K⊗RL ⊗ IB) ◦ %K⊗RL(k ⊗ l).

To prove (2), take any k ∈ K, l ∈ L and compute

%K
′⊗RL

′ ◦ (f ⊗ g)(k ⊗ l) =
∑
f(k)0 ⊗ g(l)0 ⊗ f(k)1g(l)1

=
∑
f(k0)⊗ g(l0)⊗ k1l1

= (f ⊗ g ⊗ IB) ◦ %K⊗RL(k ⊗ l).

This shows that f ⊗ g is a comodule morphism, as required. tu

The coaction constructed in 12.4 is known as a diagonal coaction of a
bialgebra B on the tensor product of its comodules.

In contrast to coalgebras, for a bialgebra B, any R-module K can be
considered as B-comodule by K → K ⊗R B, k 7→ k ⊗ 1B (trivial coaction).
In particular, the ring R is a right B-comodule, and this draws attention to
those maps B → R that are comodule morphisms.

Definition. An element t ∈ B∗ is called a left integral on B if it is a left
comodule morphism.

Recall that the rational part of B∗ is denoted by RatB(B∗) = T and
%T : T → T ⊗R B denotes the corresponding coaction.

12.5. Left integrals on B. Let B be an R-bialgebra and t ∈ B∗.

(1) The following are equivalent:

(a) t is a left integral on B;

(b) (IB ⊗ t) ◦∆ = ι ◦ t.
If B is cogenerated by R as an R-module, then (a) is equivalent to:

(c) For every f ∈ B∗, f ∗ t = f(1B)t.

(2) Assume that RB is locally projective.

(i) If t ∈ T , then t is a left integral on B if and only if %T (t) = t⊗1B.

(ii) If R is Noetherian or if t(B) = R, then any left integral t on B
is rational, that is, t ∈ T .
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Proof. (1) (a) ⇔ (b) The map t is left colinear if and only if there is a
commutative diagram

B
t //

∆
��

R

ι

��
B ⊗R B

IB⊗t // B

b
� //

_

��

t(b)
_

��
∆(b) � // (IB ⊗ t) ◦∆(b) = t(b)1B.

The commutativity of this diagram is expressed by condition (b).
(b) ⇔ (c) For any f ∈ B∗ and b ∈ B,

f ∗ t(b) = (f ⊗ t) ◦∆(b) = f((IB ⊗ t) ◦∆(b)),

f(1B)t(b) = f(t(b)1B) = f(ι ◦ t(b)).

From this (b) ⇒ (c) is obvious. If B is cogenerated by R, then (c) ⇒ (b).
(2)(i) If t ∈ T , that is, t is rational, then f ∗ t = (IT ⊗ f) ◦ %T (t), for any

f ∈ B∗, and (1)(c) implies

(IT ⊗ f)(%T (t)) = (IT ⊗ f)(t⊗ 1B).

By local projectivity (α-condition; see 8.2) this means %T (t) = t ⊗ 1B. The
converse conclusion is obvious.

(ii) By (1)(c), B∗ ∗ t ⊂ R 1B. If R is Noetherian, this implies that B∗ ∗ t is
finitely presented as an R-module, and by 9.5(2) this implies that the element
t ∈ RatB(B∗) = T . If t(B) = R, then t⇀B = (IB ⊗ t)∆(B) = ι ◦ t(B) = R 1B
is finitely presented as an R-module and t ∈ T by 9.5(1). tu

Throughout B will denotes an R-bialgebra with product µ, coproduct ∆,
unit map ι and counit ε.

12.6. B-Hopf modules. An R-module M is called a right B-Hopf module
if M is

(i) a right B-module with an action %M : M ⊗R B →M ,

(ii) a right B-comodule with a coaction %M : M →M ⊗R B,

(iii) for all m ∈M, b ∈ B, %M(mb) = %M(m)∆(b).

Condition (iii) means that %M : M →M⊗b
RB is B-linear and is equivalent

to the requirement that the multiplication %M : M ⊗c
R B →M is B-colinear,

or to the commutativity of either of the diagrams

M ⊗R B
%M⊗IB//

%M

��

M ⊗b
R B ⊗R B

!
��

M
%M

// M ⊗R B ,

M ⊗c
R B

%M⊗cB
//

%M

��

M ⊗c
R B ⊗R B

%M⊗IB
��

M
%M

// M ⊗R B .
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An R-linear map f : M → N between right B-Hopf modules is a Hopf
module morphism if it is both a right B-module and a right B-comodule
morphism. Denoting these maps by

HomB
B(M,N) = HomB(M,N) ∩ HomB(M,N),

there are characterising exact sequences in MR,

0 → HomB
B(M,N) → HomB(M,N)

γ−→ HomB(M,N ⊗b
R B),

where γ(f) = %N ◦ f − (f ⊗ IB) ◦ %M or, equivalently,

0 → HomB
B(M,N) → HomB(M,N)

δ−→ HomB(M ⊗c
R B,N),

where δ(g) = %N ◦ (g ⊗ IB)− g ◦ %M .

Left B-Hopf modules and the corresponding morphisms are defined simi-
larly, and it is obvious that B is both a right and a left B-Hopf module.

12.7. Trivial B-Hopf modules. Let K be any R-module.

(1) K ⊗R B is a right B-Hopf module with the canonical structures

IK⊗∆ : K⊗RB → (K⊗RB)⊗RB, IK⊗µ : (K⊗RB)⊗RB → K⊗RB.

(2) For any R-linear map f : K → K ′, the map f⊗IB : K⊗RB → K ′⊗RB
is a B-Hopf module morphism.

Proof. We know that K ⊗R B is both a right B-module, and a co-
module and the compatibility conditions are obvious from the properties of
a bialgebra. It is clear that f ⊗ IB is B-linear as well as B-colinear. tu

12.8. B-modules and B-Hopf modules. Let N be any right B-module.

(1) The right B-module N⊗b
RB is a right B-Hopf module with the canonical

comodule structure

IN ⊗∆ : N ⊗b
R B → (N ⊗b

R B)⊗R B, n⊗ b 7→ n⊗∆b.

(2) For any B-linear map f : N → N ′, the map f⊗IB : N⊗b
RB → N ′⊗b

RB
is a B-Hopf module morphism.

(3) The map

γN : N ⊗R B → N ⊗b
R B, n⊗ b 7→ (n⊗ 1B)∆(b) = (n⊗ 1B)!b

is a B-Hopf module morphism.
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Proof. (1) To show that IN ⊗ ∆ is B-linear one needs to check the
commutativity of the following diagram:

N ⊗b
R B ⊗R B

IN⊗∆⊗IB //

!
��

(N ⊗b
R B)⊗b

R B ⊗R B

!
��

N ⊗b
R B

IN⊗∆ // (N ⊗b
R B)⊗b

R B .

Evaluating this diagram at any a, b ∈ B and n ∈ N yields

(IN ⊗∆) ((n⊗ b)∆(a)) =
∑
na1 ⊗ (ba2)1 ⊗ (ba2)2

=
∑
na1 ⊗ b1a2 ⊗ b2a3

= ((IN ⊗∆)(n⊗ b)) ∆(a),

by the multplicativity of ∆ and the definition of the diagonal B-action on
(N ⊗b

R B)⊗b
R B (cf. 12.3).

(2) It was shown in 7.8 that f⊗IB is a comodule morphism, and we know
from 12.3 that it is a B-module morphism.

(3) Clearly γN is B-colinear, and for any c ∈ B,

γN(n⊗ bc) = (n⊗ 1B)∆(bc) = (n⊗ 1B)(∆b)(∆c) = γN(n⊗ b)∆(c),

showing that γN is right B-linear. tu

12.9. B-comodules and B-Hopf modules. Let L be a right B-comodule.

(1) The right B-comodule L⊗c
RB is a right B-Hopf module with the canon-

ical module structure

IL ⊗ µ : L⊗c
R B ⊗R B → L⊗c

R B, n⊗ b⊗ a 7→ n⊗ ba.

(2) For any B-colinear map f : L→ L′, the map f⊗IB : L⊗c
RB → L′⊗c

RB
is a B-Hopf module morphism.

(3) There is a B-Hopf module morphism

γL : L⊗c
R B → L⊗R B, l ⊗ b 7→ %L(l)(1B ⊗ b).

Proof. (1) To prove the colinearity of IL ⊗ µ one needs to show the
commutativity of the diagram

L⊗c
R B ⊗c

R B
IL⊗µ //

%L⊗cB⊗cB

��

L⊗c
R B

%L⊗cB

��
L⊗c

R B ⊗c
R B ⊗R B

IL⊗µ⊗IB // L⊗c
R B ⊗R B ,
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which follows from the multiplicativity of ∆.
(2) Clearly f ⊗ IB is B-linear, and, as shown in 12.4, it is also B-colinear.
(3) Obviously γL is right B-linear, and colinearity follows from the com-

mutativity of the diagram (which is easily checked)

L⊗c
R B

γL
//

%L⊗B

��

L⊗R B

IL⊗∆

��
L⊗c

R B ⊗R B
γL⊗I // L⊗R B ⊗R B

l ⊗ b
� //

_

��

∑
l0 ⊗ l1b_

��∑
l0 ⊗ b1 ⊗ l1b2

� //
∑
l0 ⊗ l1b1 ⊗ l2b2.

This completes the proof. tu
Right B-Hopf modules together with B-Hopf module morphisms form a

category that is denoted by MB
B.

12.10. The category MB
B. Let B be an R-bialgebra.

(1) The right B-Hopf module B ⊗b
R B is a subgenerator in MB

B.

(2) The right B-Hopf module B ⊗c
R B is a subgenerator in MB

B.

(3) For any M ∈ MB
B, N ∈ MB,

HomB
B(M,N ⊗b

R B) → HomB(M,N), f 7→ (IN ⊗ ε) ◦ f,

is an R-module isomorphism with inverse map h 7→ (h⊗ IB) ◦ %M .

(4) For any M ∈ MB
B, N ∈ MB,

HomB
B(N ⊗c

R B,M) → HomB(N,M), f 7→ f(−⊗ 1B),

is an R-module isomorphism with inverse map h 7→ %M ◦ (h⊗ IB).

(5) For any K,L ∈ MR,

HomB
B(K ⊗R B,L⊗R B) → HomR(K,L), f 7→ (IL ⊗ ε) ◦ f(−⊗ 1B),

is an R-module isomorphism with inverse map h 7→ h⊗ IB.

Proof. (1) Let M ∈ MB
B. For a B-module epimorphism f : B(Λ) →M ,

f ⊗ IB : B(Λ) ⊗b
R B →M ⊗b

R B

is an epimorphism in MB
B (by 12.8), and so M ⊗b

R B is generated by

B(Λ) ⊗b
R B '

(
B ⊗b

R B
)(Λ)

.

Moreover, %M : M →M⊗b
RB is a (B-splitting) Hopf module monomorphism,

and so M is subgenerated by B ⊗b
R B.
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(2) For any M ∈ MB
B, there is a comodule epimorphism B(Λ) →M ⊗RB,

and from this we obtain a Hopf module epimorphism

(B ⊗c
R B)(Λ) ' B(Λ) ⊗c

R B → (M ⊗R B)⊗c
R B.

Moreover, there is a Hopf module monomorphism %M ⊗ IB : M ⊗c
R B →

(M ⊗R B)⊗c
R B and a Hopf module epimorphism M ⊗c

R B →M , and hence
M is subgenerated by B ⊗c

R B.

(3) There is a commutative diagram with exact rows (⊗ means ⊗b
R),

0 // HomB
B(M,N⊗B) //

���
�
�

HomB(M,N⊗B)

(IN⊗ε)◦−
��

β1 // HomB(M⊗B,N⊗B)

(IN⊗ε)◦−
��

0 // HomB(M,N) // HomR(M,N)
β2 // HomR(M⊗B,N),

where β1(f) = f ◦ %M − %N⊗B ◦ (f ⊗ IB) and β2(g) = g ◦ %M − %N ◦ (g ⊗ IB).
As shown in 7.9, the second and third vertical maps are isomorphisms and
hence the first one is also an isomorphism.

(4) Consider the commutative diagram with exact rows (⊗ for ⊗c
R),

0 // HomB
B(N⊗B,M) //

���
�
�

HomB(N⊗B,M)
γ1 //

−◦(−⊗1B)

��

HomB(N⊗B,M⊗B)

−◦(−⊗1B)

��
0 // HomB(N,M) // HomR(N,M)

γ2 // HomR(N,M⊗B),

where γ1(f) = %M ◦ f − (f ⊗ IB) ◦ %N⊗B and γ2(g) = %M ◦ g − (g ⊗ IB) ◦ %N .
The second and third vertical maps are isomorphisms and hence the first one
is an isomorphism, too.

(5) View K as a trivial B-comodule. Then K ⊗c
R B ' K ⊗R B, and, by

(4) and 7.9, HomB
B(K ⊗R B,L ⊗R B) ' HomB(K,L ⊗R B) ' HomR(K,L),

as required. tu

12.11. MB
B for BR flat. Let B be flat as an R-module and M,N ∈ MB

B.
Then:

(1) MB
B is a Grothendieck category.

(2) The functor HomB
B(M,−) : MB

B → MR is left exact.

(3) The functor HomB
B(−, N) : MB

B → MR is left exact.

Proof. (1) For any morphism f : M → N in MB
B, Ke f is a B-submodule

as well as a B-subcomodule (since BR flat) and hence Ke f ∈ MB
B.
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(2) Any exact sequence 0 → X → Y → Z in MB
B induces the commutative

diagram with exact columns

0

��

0

��

0

��

0 // HomB
B(M,X) //

��

HomB
B(M,Y ) //

��

HomB
B(M,Z)

��
0 // HomB(M,X) //

��

HomB(M,Y ) //

��

HomB(M,Z)

��
0 // HomB(M,X⊗b

RB) // HomB(M,Y ⊗b
RB) // HomB(M,Z⊗b

RB).

The columns are simply the defining sequences of HomB
B(M,−) in 12.6. The

second and third rows are exact because of the left exactness of HomB(M,−)
and −⊗R B. Now the diagram lemmata imply that the first row is exact.

(3) This is shown with a similar diagram that uses − ⊗c
R B instead of

−⊗b
R B. tu

12.12. Coinvariants of comodules. For M ∈ MB, the coinvariants of B
in M are defined as

M coB :=
{
m ∈M | %M(m) = m⊗ 1B

}
= Ke (%M − (−⊗ 1B)).

This is clearly an R-submodule of M and there is an isomorphism

HomB(R,M) →M coB, f 7→ f(1),

where R is considered as a B-comodule. In particular, this implies that
BcoB = R1B. Furthermore, for any R-module K,

HomB(K,M) ' HomR(K,M coB),

where K is considered as a trivial B-comodule.

The last isomorphism follows by the fact that f ∈ HomB(K,M) is equiv-
alent to the commutativity of the diagram

K
f //

−⊗1B

��

M

%M

��

k
� //

_

��

f(k)
_

��
K ⊗R B

f⊗IB //M ⊗R B k ⊗ 1B
� // f(k)⊗ 1B = %M(f(k)) .
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12.13. Coinvariants of Hopf modules. For any M ∈ MB
B, the map

νM : HomB
B(B,M) →M coB, f 7→ f(1B),

is an R-module isomorphism with the inverse ωM : m 7→ [b 7→ mb]. Further-
more, the diagram

HomB
B(B,M)⊗R B //

νM⊗IB
��

M f ⊗ b � //

��

f(b)

M coB ⊗R B //M f(1B)⊗ b // f(1B)b

is commutative. In particular, HomB
B(B,B)

'−→ BcoB = R 1B is a ring iso-
morphism.

Proof. The isomorphism νM is obtained from the following commutative
diagram of R-module maps with exact rows:

0 // HomB
B(B,M) //

���
�
�

HomB(B,M)
γ1 //

'
��

HomB(B,M ⊗R B)

'
��

0 //M coB // M
γ2 //M ⊗R B,

where γ1(f) = %M ◦ f − (f ⊗ IB) ◦ ∆, that is, the top row is the defining
sequence of HomB

B(B,M), and γ2(m) = %M(m)−m⊗ 1B. tu

12.14. Coinvariants of trivial Hopf modules.

(1) For any K ∈ MR, HomB
B(B,K ⊗R B) ' K as R-modules.

(2) For all L ∈ MR and M ∈ MB
B, there are R-module isomorphisms

HomB
B(L⊗RB,M) ' HomR(L,M coB) and EndBB(B⊗RB) ' EndR(B).

(3) There is an adjoint pair of functors

−⊗R B : MR → MB
B, HomB

B(B,−) : MB
B → MR,

and HomB
B(B,−⊗R B) ' IMR

.

Proof. (1) Consider R as a B-comodule as in 12.10(4). Then the Hom-
tensor relation 7.9(1) implies

HomB
B(B,K ⊗R B) ' HomB

B(R⊗c
R B,K ⊗R B) ' HomB(R,K ⊗R B) ' K.

(2) Combining 12.10(4) and 12.12, one obtains the chain of isomorphisms

HomB
B(L⊗R B,M) ' HomB(L,M) ' HomR(L,M coB).

(3) By 12.13, the adjointness is just an interpretation of the isomorphism
in (2), and, by (1), the composition of the two functors is isomorphic to the
identity functor on MR. tu
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12.15. Coinvariants and B-modules. For any N ∈ MB, the map

ν ′N⊗B : HomB
B(B,N ⊗b

R B) → N, f 7→ (IN ⊗ ε) ◦ f(1B) ,

is an R-isomorphism with the inverse n 7→ [b 7→
∑
nb1 ⊗ b2]. Furthermore,

the diagram

HomB
B(B,N ⊗b

R B)⊗R B //

ν′N⊗B⊗IB
��

N ⊗b
R B

N ⊗R B
γN // N ⊗b

R B

g ⊗ b � //

��

g(b)

(IN⊗ε)g(1B)⊗b � // g(1B)∆b ,

where γN is described in 12.8(3), is commutative. This yields in particular

(B ⊗b
R B)coB ' HomB

B(B,B ⊗b
R B) ' B ,

and the commutative diagram

HomB
B(B,B ⊗b

R B)⊗R B //

��

B ⊗b
R B

B ⊗R B
γB // B ⊗b

R B

h⊗ a
� //

��

h(a)

(IB ⊗ ε)h(1B)⊗ a � // h(1B)∆a.

Proof. By 12.10, HomB
B(B,N ⊗b

R B) ' HomB(B,N) ' N and commu-
tativity of the diagrams is shown by a straightforward computation. tu

12.16. Invariants. Let A be an R-algebra A and ϕ : A → R a ring mor-
phism. Considering R as a left A-module, one may ask for the A-morphisms
from R→M , where M ∈ AM. Define the invariants of M by

AM = {m ∈M | am = ϕ(a)m for all a ∈ A}.

Then the map AHom(R,M) → AM , f 7→ f(1), is an R-module isomorphism.

12.17. Invariants for bialgebras. For any bialgebra B, the counit ε is a
ring morphism and hence induces a left and right B-module structure on R.
Therefore, for any left B-module M , the invariants of M corresponding to ε
come out as

BM = {m ∈M | bm = ε(b)m for all b ∈ B}.

Furthermore, the map BHom(R,M) → BM , f 7→ f(1), is an R-module iso-
morphism. The left invariants BB of B are called left integrals in B,

BHom (R,B) ' BB = {c ∈ B | bc = ε(b)c for all b ∈ B}.

Right invariants and right integrals in B are defined symmetrically .
On the other hand, for the dual algebra B∗, the map ϕ : B∗ → R,

f 7→ f(1B), is a ring morphism. Coinvariants of right B-comodules are closely
related to invariants of left B∗-modules corresponding to ϕ.
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12.18. Invariants and coinvariants. Let B be a bialgebra that is locally
projective as an R-module (cf. 8.2).

(1) For any M ∈ MB, B∗M = M coB.

(2) For the trace ideal T = RatB(B∗), B∗T = T coB.

(3) If BR is finitely generated, then B∗B∗ = (B∗)coB.

Proof. (1) Let m ∈ B∗M and f ∈ B∗. From f⇀m =
∑
m0f(m1) we

conclude
(IM ⊗ f)%M(m) = (IM ⊗ f)(m⊗ 1B).

Now local projectivity of B implies that %M(m) = m⊗1B, that is, m ∈M coB,
as required. Conversely, take any m ∈M coB and compute

f⇀m = (IM ⊗ f)%M(m) = mf(1B) = mϕ(f).

This shows that m ∈ B∗M , and therefore B∗M = M coB.
(2) From the definition of the trace ideal we know that T ∈ MB; hence

the assertion follows from (1).
(3) If BR is finitely generated and projective, then T = B∗ and the asser-

tion follows from (2). tu
Every Hopf module M ∈ MB

B is a right B-comodule, and hence it is a left
B∗-module (in the canonical way). This yields an action of Bop⊗RB

∗ on M ,

Bop ⊗R B
∗ ⊗RM →M, (a⊗ f)⊗m 7→ (a⊗ f)%M(m) =

∑
m0af(m1).

This action is obviously an R-linear map, but it does not make M a module
with respect to the canonical algebra product in Bop ⊗R B

∗. On the other
hand, there exists a different multiplication on Bop ⊗R B

∗ that makes M a
module over the new algebra. Denote this product by “?”. For all a ∈ B,
f, g ∈ B∗, and m ∈M , a product ? has to satisfy the associative law

[(a⊗ f)?(b⊗ g)](m) = (a⊗ f)((b⊗ g)m) =
∑

(a⊗ f)(m0bg(m1))

=
∑
m0b1a f(m1b2)g(m2)

=
∑
m0b1a (b2⇁f) ∗ g(m1)

= [
∑
b1a⊗ (b2⇁f) ∗ g](m).

From this we can see how the multiplication ? on Bop ⊗R B
∗ should be con-

structed in order to possess the desired properties.

12.1. Smash product Bop#B∗. Consider an algebra Bop#B∗, which is
isomorphic to the tensor product Bop ⊗R B

∗ as an R-module and has the
product

(a#f)(b#g) := ((∆b)(a#f)) (1B#g) =
∑

b1a#(b2⇁f) ∗ g,
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where a#f = a⊗f is the notation. Then Bop#B∗ is an associative R-algebra
with unit 1B#ε, and the maps

Bop → Bop#B∗, a 7→ a#ε,
B∗ → Bop#B∗, f 7→ 1B#f,

are injective ring morphisms, making every left B#B∗-module a right B-
module and a left B∗-module. The algebra Bop#B∗ is called a smash product.

Every M ∈ MB
B is a left Bop#B∗-module, and therefore MB

B is embedded
in σBop#B∗ [B ⊗b

R B] ⊂ Bop#B∗M. If BR is locally projective, then

MB
B = σB#B∗ [B ⊗b

R B] = σB#B∗ [B ⊗c
R B].

In particular, MB
B = Bop#B∗M provided that BR is finitely generated and

projective.

Proof. The first assertions are immediate consequences of the action
considered above and the definition of the product #. The local projectivity
implies that the right B-comodule structures correspond to left B∗-module
structures.

If BR is finitely generated and projective, then there is a right coaction
(see 7.10) B∗ → EndR(B) ' B∗ ⊗R B, g 7→ (IB∗ ⊗ g) ◦∆. The map

B∗ ⊗c
R B → Bop#B∗, f ⊗ b 7→ b#f,

is an isomorphism of leftBop#B∗-modules. Indeed, note that, for any b, x ∈ B
and f, g ∈ B∗,∑

(b⇁f)(g0(x)g1) = (b⇁f)(IB ⊗ g)∆(x) = (b⇁f) ∗ g(x).

Using these identities we compute

(a#f)(g ⊗ b) = (a⊗ f)%B
∗⊗B(g ⊗ b) =

∑
g0 ⊗ b1af(g1b2)

7→
∑
b1a#(b2⇁f)(g1)g0 =

∑
b1a#(b2⇁f) ∗ g

= (a#f)(b#g),

that is, the map defined above is a morphism of left Bop#B∗-modules. Clearly
it is an isomorphism. Therefore, Bop#B∗ ∈ MB

B and hence MB
B = Bop#B∗M.

tu
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13 Antipodes and Hopf algebras

13.1. The ring (EndR(B), ∗ ). For any R-bialgebra B, (EndR(B), ∗) is an
associative R-algebra with product, for f, g ∈ EndR(B),

f ∗ g = µ ◦ (f ⊗ g) ◦∆,

and unit ι ◦ ε, that is, ι ◦ ε(b) = ε(b)1B, for any b ∈ B (cf. 5.3). If B is com-
mutative and cocommutative, then (EndR(B), ∗) is a commutative algebra.

Definitions. An element S ∈ EndR(B) is called a left (right) antipode if it is
left (right) inverse to IB with respect to the convolution product on EndR(B),
that is, S ∗ IB = ι ◦ ε (resp. IB ∗ S = ι ◦ ε). In case S is a left and right
antipode, it is called an antipode. The corresponding conditions are

µ ◦ (S ⊗ IB) ◦∆ = ι ◦ ε, µ ◦ (IB ⊗ S) ◦∆ = ι ◦ ε.

Explicitly, for all b ∈ B, an antipode S satisfies the following equalities:∑
S (b1) b2 = ε(b)1B =

∑
b1S (b2) .

Left and right antipodes need not be unique, whereas an antipode is unique
whenever it exists. A bialgebra with an antipode is called a Hopf algebra.

Antipodes are related to the right Hopf module morphism

γB : B ⊗R B → B ⊗b
R B, a⊗ b 7→ (a⊗ 1B)∆b =

∑
ab1 ⊗ b2.

Notice that γB is also a left B-module morphism in an obvious way.

13.2. Existence of antipodes. Let B be an R-bialgebra.

(1) B has a right antipode if and only if γB has a left inverse in BM.

(2) If B has a left antipode, then γB has a right inverse in BM.

(3) γB is an isomorphism if and only if B has an antipode.

Proof. (1) If β is a left inverse of γB, for all b ∈ B, 1B ⊗ b = β ◦
γB(1B⊗ b) = β(∆b) holds. This implies that ι◦ ε(b) = (IB⊗ ε)◦β(∆b). Then
S = (IB ⊗ ε) ◦ β(1B ⊗−) : B → B is a right antipode since

µ ◦ (IB ⊗S) ◦∆(b) =
∑

b1((IB ⊗ ε)β(1B ⊗ b2)) = (IB ⊗ ε) ◦ β(∆b) = ι ◦ ε(b),

where we used that β is left B-linear.
Now suppose that S : B → B is a right antipode. Then

β : B ⊗b
R B → B ⊗R B, a⊗ b 7→ (a⊗ 1B)(S ⊗ IB)(∆b) =

∑
aS(b1)⊗ b2,
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is a left inverse of γB, since for any b ∈ B,

β ◦ γB(1B ⊗ b) = β(∆b) = (µ⊗ IB) ◦ (IB ⊗ S ⊗ IB) ◦ (IB ⊗∆)(∆b)

= (µ⊗ IB) ◦ (IB ⊗ S ⊗ IB) ◦ (∆⊗ IB)(∆b)

=
∑
µ ◦ (S ⊗ IB)(∆b1)⊗ b2

=
∑
ε(b1)1B ⊗ b2 = 1B ⊗ b .

(2) Let S be a left antipode, that is, µ◦ (S⊗ IB)(∆b) = ι◦ ε(b), for b ∈ B.
Then

β : B ⊗b
R B → B ⊗R B, 1B ⊗ b 7→ (S ⊗ IB)(∆b) =

∑
S(b1)⊗ b2,

is a right inverse of γB, since

γB ◦ β(1B ⊗ b) = γB((S ⊗ IB)(∆b)) =
∑
S(b1)b2 ⊗ b3

=
∑
ε(b1)1B ⊗ b2 = 1B ⊗ b .

(3) Suppose that γB is bijective. Take any f ∈ EndR(B) and observe that
if µ ◦ (IB ⊗ f)(∆b) = 0, for all b ∈ B, then f = 0. Indeed, any element in
B ⊗R B can be written as a sum of elements of the form (a⊗ 1B)(∆b) and

µ ◦ (IB ⊗ f)((a⊗ 1B)(∆b)) = a(µ((IB ⊗ f)(∆b))) = 0,

implying µ(IB ⊗ f)(B ⊗R B) = Bf(B) = 0, and so f = 0, as claimed.
By (1), there exists a right antipode S, and for this we compute

µ ◦ (IB ⊗ µ ◦ (S ⊗ IB) ◦∆)(∆b)

= µ ◦ (IB ⊗ µ) ◦ (IB ⊗ S ⊗ IB) ◦ (IB ⊗∆)(∆b)

= µ ◦ (µ⊗ IB) ◦ (IB ⊗ S ⊗ IB) ◦ (∆⊗ IB)(∆b)

=
∑
ε(b1)b2 = b = µ ◦ (IB ⊗ ι ◦ ε)(∆b).

By the preceding observation this implies µ◦(S⊗IB)◦∆ = ι◦ε, thus showing
that S is also a left antipode. tu

13.3. Properties of antipodes. Let H be a Hopf algebra with antipode S.
Then:

(1) S is an algebra anti-morphism, that is, for all a, b ∈ H, S(ab) =
S(b)S(a), and S ◦ ι = ι.

(2) S is a coalgebra anti-morphism, that is, tw ◦ (S ⊗ S) ◦∆ = ∆ ◦ S and
ε ◦ S = ε.

(3) If S is invertible as a map, then, for any b ∈ H,∑
S−1(b2)b1 = ε(b)1H =

∑
b2S

−1(b1) .



110 Chapter 2. Coalgebras and comodules

Proof. (1) Consider the convolution algebra H̃ := (HomR(H⊗RH,H), ∗̃)
corresponding to the canonical coalgebra structure ∆H⊗RH on H ⊗R H with
the counit ε̃ = ε⊗ ε. In particular, the unit in H̃ comes out as

ι̃ : H ⊗R H
ε⊗ε−→ R

ι−→ H .

In addition to the product µ : H ⊗R H → H, consider the R-linear maps

ν : H ⊗R H → H, a⊗ b 7→ S(b)S(a), ρ : H ⊗R H → H, a⊗ b 7→ S(ab) .

To prove that S is an anti-multiplicative map, it is sufficient to show that
ρ∗̃µ = µ∗̃ν = ι̃ ◦ ε̃ (the identity in H̃). By the uniqueness of inverse elements
we are then able to conclude that ν = ρ. Consider the R-linear maps

H ⊗R H
∆H⊗H// H ⊗R H ⊗R H ⊗R H

ρ⊗µ //
µ⊗ν

// H ⊗R H
µ // H .

Take any a, b ∈ H and compute

a⊗ b 7→
∑
a1 ⊗ b1 ⊗ a2 ⊗ b2

ρ⊗µ7−→
∑
S(a1b1)a2b2 = S ∗ IH(ab) = ε(ab)1H ,

µ⊗ν7−→
∑
a1b1S (b2)S (a2)

=
∑
a1S (a2) ε(b) = ε(a)ε(b)1H .

Thus ν = ρ, and S is an anti-multiplicative map, that is, S(ab) = S(a)S(b).
Furthermore, 1H = ι ◦ ε(1H) = (IH ∗ S)(1H) = S(1H), so that S is a unital
map and hence an algebra anti-morphism.

(2) This is a dual statement to (1), and we use a similar technique as for
the proof of (1). In this case consider the convolution algebra corresponding
to H as a coalgebra and H ⊗R H as an algebra, (HomR(H,H ⊗R H), ∗). Let
ν := tw ◦ (S ⊗ S) ◦ ∆ and ρ := ∆ ◦ S. Direct computation verifies that
ρ ∗∆ = ιH ◦ εH⊗H = ∆ ∗ ν . From this we conclude that ρ = ν, so that S
is an anti-comultiplicative map. Furthermore, for all a ∈ H, we know that
ε(ι ◦ ε(a)) = ε(a), and ι ◦ ε(a) =

∑
S(a1)a2 . This implies

ε(a) = ε(ι ◦ ε(a)) =
∑

ε (S(a1)) ε(a2) = ε ◦ S(a) ,

hence S is a coalgebra anti-morphism, as stated.
(3) Apply S−1 to the defining properties of S. tu

We now prove that Hopf algebras are precisely those R-bialgebras for
which the category MB

B is equivalent to MR. It is interesting to notice that
this can be seen from a single isomorphism.
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13.4. Fundamental Theorem of Hopf algebras. For any R-bialgebra B
the following are equivalent:

(a) B is a Hopf algebra (that is, B has an antipode);

(b) γB : B ⊗R B → B ⊗b
R B, a ⊗ b 7→ (a ⊗ 1B)∆b, is an isomorphism in

MB
B;

(c) γB : B ⊗c
R B → B ⊗R B, a ⊗ b 7→ ∆a(1B ⊗ b), is an isomorphism in

MB
B;

(d) for every M ∈ MB
B, M coB⊗RB →M, m⊗ b 7→ mb, is an isomorphism

in MB
B;

(e) for every M ∈ MB
B, there is an isomorphism (in MB

B)

ϕM : HomB
B(B,M)⊗R B →M, f ⊗ b 7→ f(b);

(f) ϕB⊗B : HomB
B(B,B ⊗b

R B)⊗R B → B ⊗b
R B is an isomorphism in MB

B;

(g) HomB
B(B,−) : MB

B → MR is an equivalence (with inverse −⊗R B).

If B is flat as an R-module, then (a)-(g) are equivalent to:

(h) B is a (projective) generator in MB
B;

(i) B is a subgenerator in MB
B, and ϕM is injective for every M ∈ MB

B.

If BR is locally projective, then (a)− (i) are equivalent to:

(j) B is a subgenerator in MB
B and the image of Bop#B∗ → EndR(B) is

dense (for the finite topology).

For any Hopf module M over a Hopf algebra B, the coinvariants M coB

are an R-direct summand of M .

Proof. (a) ⇔ (b) was shown in 13.2, and by symmetry (see 12.9) the
same proof implies (a)⇔(c). (b) ⇔ (f) is clear by 12.15.

(d) ⇔ (e) This follows from the commutative diagram in 12.13.
(a) ⇒ (d) For any M ∈ MB

B, consider φ : M → M coB,m 7→
∑
m0S(m1).

The following equalities show that the image of φ is in M coB:

%M(φ(m)) = %M(
∑
m0S(m1)) =

∑
m0S(m3)⊗m1S(m2)

=
∑
m0S(m1)⊗ 1B = φ(m)⊗ 1B.

Now we show that the map

(φ⊗ IB) ◦ %M : M →M coB ⊗R B

is the inverse of the multiplication map %M : M coB ⊗R B →M . For m ∈M ,

%M ◦(φ⊗IB)(%M(m)) =
∑
φ(m0)m1 =

∑
m0S(m1)m2 =

∑
m0ε(m1) = m.
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On the other hand, for n⊗ b ∈M coB ⊗R B,

(φ⊗ IB) ◦ %M(nb) = (φ⊗ IB)(
∑
nb1 ⊗ b2) =

∑
φ(nb1)⊗ b2

=
∑
nb1 S(b2)⊗ b3 =

∑
nε(b1)⊗ b2 = n⊗ b.

(e) ⇒ (f) is trivial (take M = B ⊗b
R B).

(e) ⇔ (g) From 12.14 we know HomB
B(B,−⊗R B) ' I

RM. Condition (f)
induces HomB

B(B,−)⊗RB ' IMB
B
, and the two isomorphisms characterise an

equivalence between MR and MB
B.

(g) ⇒ (h) Obviously (g) always implies that B is a generator in MB
B and

that B is projective in MB
B (that is, HomB

B(B,−) : MB
B → MR preserves

epimorphisms).

Now suppose that RB is flat. Then MB
B has kernels and HomB

B(B,−) is a
left exact functor.

(h) ⇒ (i) Suppose that B is a generator in MB
B. Of course any generator

is in particular a subgenerator. For any M ∈ MB
B, the set Λ = HomB(B,M)

yields a canonical epimorphism

p : B(Λ) →M, bf 7→ f(b).

Choosing Λ′ = HomB(B,Ke p) we form – with a similar map p′ – the exact
sequence in MB

B,

B(Λ′)
p′ // B(Λ)

p //M // 0 .

Now apply HomB
B(B,−) to obtain the exact sequence

HomB
B(B,B(Λ′)) // HomB

B(B,B(Λ)) // HomB
B(B,M) // 0 .

By the choice of Λ and Λ′, this sequence is exact. Now tensor with − ⊗R B
to obtain the commutative diagram with exact rows (⊗ for ⊗R),

HomB
B(B,B(Λ′))⊗B //

'
��

HomB
B(B,B(Λ))⊗B //

'
��

HomB
B(B,M)⊗B

ϕM

��

// 0

B(Λ′) // B(Λ) //M // 0 .

The first two vertical maps are bijective since HomB
B(B,−) commutes with

direct sums. By the diagram properties this implies the bijectivity of ϕM .

(i) ⇒ (f) Assume that B is a subgenerator in MB
B and that ϕM is injective

for all M ∈ MB
B. Then clearly ϕN is bijective for all B-generated objects

N in MB
B and M is a subobject of such an N . Choose an exact sequence
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0 →M → N → L in MB
B where N and L are B-generated. Then clearly ϕN

and ϕL are bijective and there is a commutative diagram with exact rows,

0 // HomB
B(B,M)⊗RB //

ϕM

��

HomB
B(B,N)⊗RB //

ϕN

��

HomB
B(B,L)⊗RB

ϕL

��
0 // M // N // L .

From this we conclude that ϕM is also bijective.
(h) ⇔ (j) If BR is locally projective, then, by 4.7(g), B is a generator in

σ[EndR(B)B]. Moreover, MB
B = σ[Bop#B∗B ⊗b

R B]. Now assume (h). Then
MB

B = σ[Bop#B∗B] and the density property follows by [3, 43.12]. On the
other hand, given the density property and the subgenerating property of B,
one has σ[EndR(B)B] = σ[Bop#B∗B] and B is a generator in MB

B.
The R-linear map φ : M → M coB considered in the proof (a)⇒(d) splits

the inclusion M coB →M , thus proving the final statement. tu
Notice that parts of the characterisations in 13.4 apply to Hopf algebras

that are not necessarily flat as R-modules (see 13.7 for such examples).

13.5. Finitely generated Hopf algebras. For an R-bialgebra B with BR

finitely generated and projective, the following are equivalent:

(a) B is a Hopf algebra;

(b) γB : B ⊗R B → B ⊗b
R B is surjective;

(c) B has a left antipode;

(d) Bop#B∗ ' EndR(B);

(e) B is a generator in Bop#B∗M.

Proof. (a)⇔(b)⇔(c) follow from 13.2 and the fact that, for finitely
generated projective R-modules, any surjective endomorphism is bijective.

(a) ⇒ (d) As a generator in MB
B = Bop#B∗M, B is a faithful Bop#B∗-

module and the density property of Bop#B∗ (see 13.4) implies Bop#B∗ '
EndR(B).

(e) ⇔ (d) Since B is a subgenerator in σ[EndR(B)B], the assertion follows
from 13.4(j).

(e) ⇒ (a) Under the given conditions MB
B = Bop#B∗M (see 12.1) and the

assertion again follows from the Fundamental Theorem 13.4. tu
Clearly, if B is a finitely generated projective R-module, then MB = B∗M

has (enough) projectives and 12.5 implies the following corollary.

13.6. Semigroup bialgebra. Let G be a semigroup with identity e. The
semigroup algebra R[G] is the R-module R(G) together with the maps (defined
on the basis G and linearly extended)

µ : R[G]×R[G] −→ R[G], (g, h) 7→ gh and ι : R→ R[G], r 7→ re .
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Since R[G] is a free R-module, there are also linear maps (see 5.6)

∆ : R[G] −→ R[G]⊗R R[G], g 7→ g ⊗ g, and ε : R[G] −→ R, 1 7→ 1, g 7→ 0.

It is easily seen from the definitions that ∆ and ε are algebra morphisms.
If G is a group, then S : R[G] → R[G], g 7→ g−1, is an antipode, that is,

in this case R[G] is a Hopf algebra.

13.7. Polynomial Hopf algebra. As noticed in 5.8, for any commutative
ring R, the polynomial algebra R[X] is a coalgebra by

∆2 : R[X]⊗R R[X] → R[X], 1 7→ 1, X i 7→ (X ⊗ 1 + 1⊗X)i,

ε2 : R[X] → R, 1 7→ 1, X i 7→ 0, i = 1, 2, . . . .

Together with the polynomial multiplication this yields a (commutative and
cocommutative) bialgebra that is a Hopf algebra with antipode

S : R[X] → R[X], 1 7→ 1, X → −X.

For any a ∈ R, denote by J the ideal in R[X] generated by aX. Since

∆2(aX) = 1⊗ aX + aX ⊗ 1, ε2(aX) = 0 and S(aX) = −aX ,

it is easily seen that J is a Hopf ideal. Therefore H = R[X]/J is a Hopf
algebra over R. Notice that H need no longer be projective or flat as an
R-module. In particular, if R is an integral domain and 0 6= a ∈ R, then
HomR(R/aR,R) = 0 and H∗ = Hom(H,R) ' R, and H-subcomodules of H
do not correspond to H∗-submodules.



Chapter 3

Exercises

13.8. Exercises for Modules and Tensor Products.

(1) Let M,M ′,M ′′ be right and N,N ′, N ′′ left R-modules. Prove:

(i) IM ⊗ IN = IM⊗RN .

(ii) For any morphism f : M →M ′, f ⊗ 0 = 0.

(iii) For morphisms f : M →M ′, f ′ : M ′ →M ′′ and g : N → N ′, g′ : N ′ →
N ′′,

(f ′ ⊗ g′) ◦ (f ⊗ g) = f ′ ◦ f ⊗ g′ ◦ g.

(iv) If f and g are isomorphisms, then f ⊗ g is an isomorphism, and

(f ⊗ g)−1 = f−1 ⊗ g−1.

(v) For f1, f2 : M →M ′ and g1, g2 : N → N ′,

(f1 + f2)⊗ g = f1 ⊗ g + f2 ⊗ g and f ⊗ (g1 + g2) = f ⊗ g1 + f ⊗ g2.

(2) Let K ⊂ RR and L ⊂ RR be right and left ideals of R. Prove

R/K ⊗R R/L ' R/(K + L) as Z-modules.

Conclude that Z/mZ⊗Z/nZ ' Z/g(m,n)Z, where g(m,n) denotes the great-
est common divisor of m,n ∈ Z.

(3) Let RMS be a bimodule and SN an S-module. Prove: If RM and SN are flat
modules, then RM ⊗S N is a flat R-module.

(4) Let µQ : Q ⊗Z Q → Q and µC : C ⊗R C → C be the multiplication maps.
Prove:

(i) µQ and µC are ring homomorphisms;

(ii) µQ is an isomorphism, µC is not monic.

(5) Prove:

(i) Q is flat as a Z-module.

(ii) For abelian torsion groups M (every element has finite order),
M ⊗Z Q = 0.

(iii) Q/Z⊗Z Q/Z = 0.

(iv) For finite Z-modules K, L, K ⊗Z L ' HomZ(K,L).

115
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13.9. Exercises for Modules and Algebras.

(1) Let I be an ideal of the ring R. Put AnM (I) = {m ∈M | Im = 0} for a left
R-module M . Prove:

(i) AnM (I) is an R/I-module.

(ii) The map ψ : HomR(R/I,M) −→ AnM (I), f 7−→ f(1 + I),
is an isomorphism of R/I-modules.

(iii) The assignment M 7−→ AnM (I) defines a functor

HomR(R/I,−) : R−Mod −→ R/I−Mod.

(iv) The functor HomR(R/I,−) respects essential monomorphisms and in-
jective modules.

(2) Let M be a left R-module and M∗ := HomR(M,R). Prove:

(i) M∗ is a right R-module.

(ii) If M is finitely generated and projective, then M∗ is also finitely gen-
erated and projective.

(iii) If M is a generator in R-Mod, then M∗ is a generator in Mod-R.

(3) Prove that for a right ideal J ⊂ R the following are equivalent:

(a) R/J is flat as right R-module;

(b) the exact sequence 0 → J → R→ R/J → 0 is pure in Mod-R;

(c) for every left ideal I ⊂ R, we have JI = J ∩ I.

(4) Let T be any associative ring (without unit). A left T -module N is called
s-unital if u ∈ Tu for every u ∈ N . T itself is called left s-unital if it is s-unital
as a left T -module.
Prove that for a left T -module N , the following are equivalent:

(a) N is an s-unital T -module;

(b) for any n1, . . . , nk ∈ N , there exists t ∈ T with ni = tni for all i ≤ k;

(c) for any set Λ, N (Λ) is an s-unital T -module.

Hint for (a) ⇒ (b): Assume the assertion holds for k − 1 elements. Choose
tk ∈ T such that tknk = nk and putmi = ni−tkni, for all i ≤ k. Choose t′ ∈ T
satisfying mi = t′mi, for all i ≤ k − 1. Then consider t := t′ + tk − t′tk ∈ T .

(5) Prove that for an ideal T in an algebra A, the following are equivalent:

(a) T is left s-unital;

(b) for every left ideal I of A, TI = T ∩ I;
(c) A/T is a flat right A-module.
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13.10. Exercises for Coalgebras.

(1) Let g : A → A′ be an R-algebra morphism. Prove that, for any R-coalgebra
C,

Hom(C, g) : HomR(C,A) → HomR(C,A′)

is an R-algebra morphism.
(2) Let f : C → C ′ be an R-coalgebra morphism. Prove: If f is bijective then

f−1 is also a coalgebra morphism.
(3) Let C be a free R-module with basis {gi, di | i ∈ N} and define

∆ : C → C ⊗R C, gi 7→ gi ⊗ gi,
di 7→ gi ⊗ di + di ⊗ gi+1;

ε : C → R gi 7→ 1,
di 7→ 0 .

Prove that (C,∆, ε) is a coalgebra.
(4) Let C be a free R-module with basis {s, c} and define

∆ : C → C ⊗R C, s 7→ s⊗ c+ c⊗ s,
c 7→ c⊗ c− s⊗ s;

ε : C → R s 7→ 0,
c 7→ 1 .

Prove that (C,∆, ε) is a coalgebra.
(5) Let C be an R-module and C∗ = HomR(C,R). For an R-submodule D ⊂ C

define
D⊥ := {f ∈ C∗ | f(D) = 0} = HomR(C/D,R) ⊂ C∗ ,

and for any subset J ⊂ C∗, put

J⊥ :=
⋂
{Ke f | f ∈ J} ⊂ C .

Prove that D ⊂ D⊥⊥, and D = D⊥⊥, provided that C/D is cogenerated by
R.

(6) Now let C be an R-coalgebra and D ⊂ C be an R-submodule. Prove:

(i) If D is a left C∗-submodule of C, then D⊥ is a right C∗-submodule.
(ii) If D is a (C∗, C∗)-sub-bimodule of C, then D⊥ is an ideal in C∗.
(iii) If D is a coideal in C, then D⊥ is a subalgebra of C∗.

(Hint: Recall that for f, g ∈ C∗ and c ∈ C, f ∗ g(c) = f(g⇀c).)

(7) With the notation above prove:

(i) If J ⊂ C∗ is a right (left) ideal, then J⊥ is a left (right) C∗-submodule
of C.

(ii) If J ⊂ C∗ is an ideal, then J⊥ is a (C∗, C∗)-sub-bimodule of C.
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(8) Let P,N be R-modules where P is projective. Prove:

(i) For any index set Λ, the canonical map RΛ ⊗R P → PΛ is injective.

(ii) For any family fλ ∈ HomR(N,R), λ ∈ Λ,⋂
Λ
(Ke fλ ⊗R P ) = (

⋂
Λ
Ke fλ)⊗R P.

(9) Let C = (C,∆, ε) be an R-coalgebra. Prove that the category of right C-
comodules is equivalent to the category of left comodules over the opposite
coalgebra Ccop = (C, tw ◦∆, ε).
(Hint: If %M : M → M ⊗R C defines a right C-comodule then tw ◦ %M :
M → C ⊗RM yields a left Ccop-comodule.)

(10) Let R be a von Neumann regular ring and f : MR →M ′
R and g : RN → RN

′

two R-module homomorphisms. Prove that

Ke f ⊗ g = Ke f ⊗R N +M ⊗R Ke g,

(11) Let R be von Neumann regular, C ∈ MR, C∗ = HomR(C,R), D ⊂ C, and
J ⊂ C∗. Recall the definitions

D⊥ := {f ∈ C∗ | f(D) = 0} ⊂ C∗ , J⊥ :=
⋂
{Ke f | f ∈ J} ⊂ C .

Prove:

(i) (J1 ⊗R J2)⊥ = J⊥1 ⊗R C + C ⊗R J⊥2 .
(ii) If C is a coalgebra and J ⊂ C∗ is a subalgebra, then J⊥ is a coideal.

(iii) If C is a coalgebra and R is semisimple, then D ⊂ C is a coideal if and
only if D⊥ is a subalgebra.

(12) Let (A,µ, ι) be an R-algebra with RA is finitely generated and projective with
dual basis a1, . . . , an ∈ A and π1, . . . , πn ∈ A∗, where HomR(−, R) = (−)∗.
Recall the isomorphism

ψ : A∗ ⊗R A∗ → (A⊗R A)∗, f ⊗ g 7→ [a⊗ b 7→ f(a)g(b)].

Prove:

(i) Describe ψ−1 in terms of the dual basis.

(ii) A∗ is a coalgebra with coproduct

A∗
µ∗ // (A⊗R A)∗

ψ−1
// A∗ ⊗R A∗

and counit
ε := ι∗ : A∗ → R, f 7→ f(1A).

(iii) The dual of the coalgebra A∗ is isomorphic (as an algebra) to A.
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(13) For C ∈ MR, C∗ = HomR(C,R), and subsets D ⊂ C, S ⊂ C∗ recall the
definitions

D⊥ := {f ∈ C∗ | f(D) = 0} ⊂ C∗ , S⊥ :=
⋂
{Ke f | f ∈ S} ⊂ C .

Prove:

(i) S⊥ =< S >⊥ and D⊥ =< D >⊥, where < X > is the R-linear closure
of X.

(ii) S⊥ = ((S⊥)⊥)⊥ and D⊥ = ((D⊥)⊥)⊥.

(14) Let K be a field and V,W vector spaces over K. Prove:
For any u ∈ V ⊗KW there exist n ∈ N, linearly independent x1, . . . , xn ∈ V ,
and linearly independent y1, . . . , yn ∈W , such that

u =
n∑
i=1

xi ⊗ yi.

(15) Let K be a field and C a K-coalgebra. An non-zero element g ∈ C is called
grouplike if ∆(g) = g ⊗ g. Prove:

(i) For any grouplike element g ∈ C, ε(g) = 1.

(ii) The set of grouplike elements is linearly independent.

(16) Let A be a finite dimensional algebra over the field K and A∗ the dual coal-
geba of A. Prove that the grouplike elements of A∗ correspond to the algebra
morphisms A→ K.

(17) Let A be a ring and M a faithful left A-module. Prove that for an ideal
T ⊂ A the following are equivalent:

(a) T is M -dense in A, i.e., for any a ∈ A and m1, . . . ,mn ∈M there exists
t ∈ T such that

tmi = ami, for all i = 1, . . . , n.

(b) M is s-unital as T -module.

13.11. Exercises for Hopf Algebras.

(1) Let H be a Hopf algebra with antipode S that is finitely generated and
projective as an R-module. Show that H∗ with the canonical structure maps
is again a Hopf algebra.

(2) Prove that for a Hopf algebraH with antipode S, the following are equivalent:

(a) for any h ∈ H,
∑
S(h2)h1 = ε(h)1H ;

(b) for any h ∈ H,
∑
h2S(h1) = ε(h)1H ;

(c) S ◦ S = IH .
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(3) Let H, K be Hopf algebras with antipodes SH , SK , respectively. Prove that,
for any bialgebra morphism f : H → K, SK ◦ f = f ◦ SH .

(4) Let H be a Hopf R-algebra that is finitely generated and projective as an
R-module. Prove:

(i) The antipode S of H is bijective.
(ii) The right coinvariants (H∗)coH of H∗ form a finitely generated projec-

tive R-module of rank 1.
(iii) If (H∗)coH ' R, then H ' H∗ as left H-modules (that is, H is a

Frobenius algebra).
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[4] Dǎscǎlescu, S., Nǎstǎsescu, C., Raianu, S., Hopf Algebras. An Introduc-
tion, Marcel Dekker, New York-Basel (2001)

[5] Kassel, C., Quantum Groups, Springer, Berlin (1995)

[6] Lusztig, G., Introduction to Quantum Groups, Birkhäuser, Basel (1993)
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rational submodule, 74
rational submodule of C∗∗, 75
relative injective comodule, 58
right antipode, 108
right rational C∗-module, 76
right semiperfect coalgebra, 83
right semiperfect coalgebras, 83, 88
right trace ideal, 76

s-unital, 30
s-unital ideals, 30
scalar extension, 41
self-generator, 22
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semigroup bialgebra, 113
semigroup coalgebra, 42
semiperfect category, 26
semiperfect module, 25
semisimple comodule, 71
semisimple modules, 24
simple coalgebras, 73
small submodule, 25
smash product, 106, 107
sub-bialgebra, 95
subcoalgebra, 46
subcomodule, 52
subgenerator, 23
superfluous in M , 25
superfluous submodule, 25
supplement in M , 25

tensor functors, 5
tensor product, 1
tensor product and direct products, 5
tensor product and direct sums, 3
tensor product of B-comodules, 96
tensor product of B-modules, 96
tensor product of algebras, 16
tensor product of coalgebras, 48
tensor product of comodules, 96
tensor product of homomorphisms, 2
tensor product over commutative rings,

12
tensor product with cyclic modules, 8
trace ideal, 76
trace ideal and decompositions, 79
twist map, 13

universal property of the tensor prod-
uct, 17

weak QF modules, 27

zero in the tensor product, 7


