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Abstract We study the tensor category of modules over a semisimple bialgebra H under the assumption that
irreducible H -modules of the same dimension >1 are isomorphic. We consider properties of Clebsch–Gordan
coefficients showing multiplicities of occurrences of each irreducible H -module in a tensor product of irre-
ducible ones. It is shown that, in general, these coefficients cannot have small values.
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1 Introduction

Throughout the paper, the basic field k is algebraically closed and H is a finite dimensional k-bialgebra that
is semisimple as an algebra. The restriction that k is algebraically closed implies that any finite dimensional
simple k-algebra is a full matrix algebra over k. We shall use the notations for bialgebras and Hopf algebras
from [4,5].

An element g ∈ H is a group-like element if �(g) = g⊗g and ε(g) = 1. The set of all group-like elements
G(H) of a bialgebra H is a multiplicative monoid. If H is a Hopf algebra with an antipode S, then G(H) is a
group, where g−1 = S(g) for any g ∈ G(H).

The dual bialgebra H∗ has a natural pairing 〈−, −〉 : H∗⊗ H → k. The monoid G = G(H∗) of group-like
elements in H∗ consists just of algebra homomorphisms H → k.
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A semisimple algebra H is a direct sum of full matrix algebras over k. One-dimensional summands are
in one-to-one correspondence with algebra homomorphisms H → k. Hence, under our assumptions, H as a
k-algebra has a semisimple direct decomposition

H =
⎛
⎝⊕

g∈G

k eg

⎞
⎠ ⊕

⎛
⎝

n⊕
j=1

Mat(d j , k)

⎞
⎠ , (1.1)

where n, d j are natural numbers and {eg, g ∈ G} is a system of central orthogonal idempotents in H corre-
sponding to the one-dimensional direct summands. For h ∈ H and g ∈ G we have heg = egh = 〈g, h〉eg.

As in [1], we here deal with the case when

1 < d1 < d2 < · · · < dn, (1.2)

which just means that irreducible H -modules of the same dimension > 1 are isomorphic.
The main result of the paper [1] is the following:

Theorem 1.1 Let H be a semisimple Hopf algebra with decomposition (1.1), n � 1, such that (1.2) holds.
Suppose that at least one single matrix constituent is a Hopf ideal in H. Then it is the last summand Mat(dn, k).

In the present paper, for a bialgebra H, we consider properties of the Clebsch–Gordan coefficients, that is,
the multiplicities of occurrences of irreducible H -modules in semisimple decompositions of tensor products
of irreducible ones. These play a substantial role in representation theory of groups and their applications to
physics.

More general than in [1], we consider the case of a bialgebra H not assuming that it is a Hopf algebra.
In Theorem 4.5, under some restrictions on the Clebsch–Gordan coefficients, it is shown that n � 2 in (1.1).
In Theorem 4.6, for the case n = 2, we compare the number of one-dimensional summands in (1.1) and the
sizes of matrix components. Further properties of Clebsch–Gordan coefficients are found in Theorem 4.7. In
the last section we consider the comodule structure of H.

2 Bialgebra structure of H and H∗

We consider comultiplication and counit in the bialgebra H having as algebra a decomposition (1.1). The
counit ε : H → k has the form

ε(x) =
{

δg,1, x = eg,

0, x ∈ Mat(di , k).
(2.1)

For each one-dimensional H -module Eg = keg related to g ∈ G,

heg = 〈g, h〉eg, h ∈ H. (2.2)

For further information on the bialgebra structure of H some additional properties of the dual bialgebra H∗
are needed.

The semisimple bialgebra H over an algebraically closed field k has the decomposition (1.1). If char k = 0
and H is a Hopf algebra, then, by the Larson–Radford theorem [4, Theorem 7.4.6], the dual Hopf algebra
H∗ is also semisimple. Recall that some additional information on semisimple Hopf algebras in positive
characteristic can be found in [6].

Consider one of the main samples of bialgebras, namely a monoid algebra F = kG of a finite monoid G.
In this case �(g) = g ⊗ g for any g ∈ G. It means that G is the monoid of group-like elements of F.

It is well-known that the dual bialgebra F∗ is a direct sum of one-dimensional ideals ⊕g∈Gkeg. Here
{eg | g ∈ G} is the dual base for the base {g | g ∈ G} of F. In particular, F∗ is semisimple.

However, its dual bialgebra F∗∗ = F is not necessarily semisimple. For example, take the three-element
commutative monoid G = {1, a, b} with the identity element 1 such that ab = b2 = a2 = b. Then the
one-dimensional space k(a − b) in the monoid algebra F = kG is annihilated by a, b. Hence it is a nilpotent
ideal and the monoid algebra kG is not semisimple.

We shall now expand these structural observations to the case of the bialgebra H from (1.1).
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Consider in each matrix component Mat(di , k), the non-degenerated symmetric bilinear form

〈x, y〉 = tr
(
x · t y

)
. (2.3)

In the case of a Hopf algebra we consider the form 〈x, y〉 = tr(x · S(y)) where S is the antipode [3]. We shall
prove results from [3, Section 3] on Hopf algebras for the bialgebra case.

Using the form (2.3), we can identify the space Mat(di , k) with its dual space. Then the base of Mat(di , k)

consisting of matrix units E (i)
αβ, α, β = 1, . . . , di , is self-dual, namely

〈E (i)
αβ, E (i)

γ τ 〉 = tr
(

E (i)
αβ E (i)

τγ

)
= δβτ tr

(
E (i)

αγ

)
= δβτ δαγ .

Thus, as a vector space, H∗ has a direct decomposition

H∗ = kG ⊕ Mat(d1, k) ⊕ · · · ⊕ Mat(dn, k).

The counit ε∗ in H∗ is defined as ε( f ) = f (1) for any f ∈ H∗, where 1 is the unit of H, and 1 =∑
g∈G eg + E (1) + · · · + E (n) ∈ H. Direct calculations, as in [3], show ε(g) = 1, ε(x) = tr(x), if

g ∈ G, x ∈ Mat(di , k). The comultiplication �∗ in H∗ is defined by 〈�∗( f ), a ⊗ b〉 = 〈 f, ab〉, for all
a, b ∈ H.

Proposition 2.1 The following conditions are satisfied:

(i) For g ∈ G, �∗(g) = g ⊗ g.

(ii) For the matrix unit E (i)
αβ from the i-th matrix component,

�∗ (
E (i)

αβ

)
=

∑
γ

E (i)
αγ ⊗ E (i)

γβ .

Proof Let

a =
∑
g∈G

τgg +
∑

i=1,...,n;
αβ=1,...,di

E (i)
αβa(i)

αβ, b =
∑
g∈G

ξgg +
∑

i=1,...,n;
γ,λ=1,...,di

E (i)
γ λb(i)

γ λ, (2.4)

where τg, ξg, a(i)
αβ, b(i)

γ λ ∈ k. Then

ab =
∑
g∈G

τgξgg +
∑

i=1,...,n;
α,λ=1,...,di

E (i)
αλ

⎛
⎝

di∑
β=1

a(i)
αβb(i)

βλ

⎞
⎠ .

So, if g ∈ G, then 〈�∗(g), a ⊗ b〉 = 〈g, ab〉 = τgξg = 〈g, a〉〈g, b〉 = 〈g ⊗ g, a ⊗ b〉, hence �∗(g) = g ⊗ g.
Now

〈
�∗ (

E (i)
αλ

)
, a ⊗ b

〉
= 〈E (i)

αλ, ab〉 =
di∑

β=1

a(i)
αβb(i)

βλ =
di∑

β=1

〈E (i)
αβ, a〉〈E (i)

βλ, b〉

=
〈 di∑

β=1

E (i)
αβ ⊗ E (i)

βλ, a ⊗ b

〉
,

and this means �∗(E (i)
αλ) = ∑di

β=1 E (i)
αβ ⊗ E (i)

βλ. 	

Proposition 2.2 If p, q ∈ G, then p ∗ q = pq. Suppose that H is a Hopf algebra. If x ∈ Mat(di , k), then
p ∗ x = p ⇀ x, x ∗ p = x ↼ p.
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Proof Suppose that a is from (2.4). Then by (2.6)

〈p ∗ q, a〉 =
∑

g,h, f ∈G, h f =g

τg〈p, eh〉〈q, e f 〉 = τpq = 〈pq, a〉

and therefore p ∗ q = pq.
In the case of Hopf algebras we can prove the last formulas as in [3]. 	

Now we shall consider some new properties of the bialgebra H from (1.1). The bialgebra H is a left and

right H∗-module algebra with respect to actions f ⇀ x, x ↼ f of f ∈ H∗ on x ∈ H, [5, Example 4.1.10],
that is, for �(x) = ∑

x x(1) ⊗ x(2),

f ⇀ x =
∑

x

x(1)〈 f, x(2)〉, x ↼ f =
∑

x

〈 f, x(1)〉x(2). (2.5)

For f ∈ G, the maps f ⇀, ↼ f are algebra endomorphisms of H preserving the identity element 1 of H,
and 1 = ∑

f ∈G e f + ∑
i�1 E (i), where E (i) is the identity matrix of Mat(di , k).

As shown in [2, Propposition 1.3, Corollary 1.2],

�(eg) =
∑

p,q∈G, pq=g

ep ⊗ eq +
n∑

i=1

Dg,i ;

�(x) =
∑
g∈G

(
(g ⇀ x) ⊗ eg + eg ⊗ (x ↼ g)

) +
n∑

i, j=1

�t
i j (x), (2.6)

where Dg,i ∈ Mat(di , k)⊗2 and, �t
i j (x) ∈ Mat(di , k) ⊗ Mat(d j , k), for i, j = 1, . . . , n.

With respect to the natural pairing 〈−, −〉, the elements g ∈ G ⊂ H∗ are dual to the elements eg, g ∈ G,
and each matrix component is annihilated by elements of G.

Proposition 2.3 (1) The element e1 is the left and the right integral in H.
(2) For g, f ∈ G, g ⇀ e f is equal either to zero or to the sum of all ep, p ∈ G, such that pg = f.
(3) An element g ∈ G is invertible if and only if g ⇀ e1 �= 0.
(4) For g ∈ G,

g ⇀

⎛
⎝∑

f ∈G

e f

⎞
⎠ =

∑
f ∈G

e f , g ⇀

(∑
i

E (i)

)
=

(∑
i

E (i)

)
,

where the E (i) denote the identity matrix in Mat(di , k).

Proof (1) For h ∈ H, he1 = 〈1, h〉e1 = ε(h)e1 by (2.1) and (2.2).
(2) Using the first equation in (2.6), we obtain

g ⇀ e f =
∑

p,q∈G, pq= f

ep〈g, eq〉 =
∑

p∈G, pg= f

ep.

(3) By (2), the element g ⇀ e1 �= 0 if and only if there exists an element p ∈ G such that pg = 1. It
means that p = g−1.
(4) Let g ∈ G. The map h → (g ⇀ h) is an algebra endomorphism of H preserving the unit element
1 = ∑

f ∈G e f + ∑
i�1 E (i), where E (i) is the identity matrix of Mat(di , k). Each full matrix algebra

Mat(di , k) is simple and therefore it is mapping either to zero or injectively into H. Hence we obtain the
required equality by (2). 	


Theorem 2.4 Let α be a unit preserving endomorphism of the semisimple algebra R = ⊕n
i=1 Mat(di , k),

where 1 < d1 < d2 < · · · < dn. Suppose that each integer d j is not a linear combination of d1, . . . , d j−1
with non-negative integer coefficients. Then α is an automorphism of R preserving each matrix component.

123



Arab J Math (2012) 1:29–38 33

Proof We shall proceed by induction on n. If n = 1, then α is an endomorphism of the full matrix algebra
preserving the unit element. Hence α is injective and therefore it is surjective.

Suppose that the theorem is proved for n − 1. Since dn > d j for any j < n we can conclude that
Mat(dn, k) is stable under α. By induction, α induces an automorphism on R/ Mat(dn, k). So without loss
of generality we can assume that α is identical modulo Mat(dn, k). It means that if x ∈ Mat(d j , k), j < n,
then α(x) = x + β j (x), where β j : Mat(d j , k) → Mat(dn, k) is an algebra homomorphism, not necessarily
preserving the unit element.

Suppose first that α(E (n)) �= 0. Then α induces an automorphism of Mat(dn, k) and therefore α(E (n)) =
E (n). If x ∈ Mat(d j , k), j < n then x E (n) = 0 in R and therefore

0 = α(x)α
(

E (n)
)

= (
x + β j (x)

)
E (n) = β j (x)E (n) = β j (x).

Hence, in this case, α is an automorphism and the proof is complete.
Suppose that Mat(dn, k) is contained in the kernel of α. Then E (n) = β1(E (1)) + · · · + βn−1(E (n−1))

because α preserves the unit element of R. Note that βi (x)β j (y) = 0 if i �= j, so the elements
β1(E (1)), . . . , βn−1(E (n−1)) form an orthogonal system of idempotents of sizes t1, . . . , tn−1, respectively,
and therefore t1 + · · · + tn−1 = dn.

By the Noether–Skolem and centralizer theorems, we can conclude that Mat(t j , k) � β j (Mat(d j , k)) ⊗
Mat(s j , k) for some non-negative integer s j . Hence t j = d j s j and therefore dn = t1 + · · · + tn−1 = d1s1 +
· · · + dn−1sn−1, a contradiction. 	


Note that the restriction on the numbers in Theorem 2.4 is satisfied if, for each j, the greatest common
divisor of d1, . . . d j is smaller than the greatest common divisor of d1, . . . , d j−1.

3 The category of modules

Let H be, as above, a semisimple bialgebra with direct sum decomposition (1.1) such that (1.2) is satisfied. In
what follows we shall in addition assume that either G is a group or d1, . . . , dn are as in Theorem 2.4. In both
cases, for each g ∈ G, the map g ⇀ induces an algebra automorphism of every matrix component in (1.1).

The tensor product M ⊗ N of two left H -modules M, N is again a left H -module by putting, for h ∈ H
and �(h) = ∑

h h(1) ⊗ h(2),

h(x ⊗ y) :=
∑

h

h(1)x ⊗ h(2)y, x ∈ M, y ∈ N . (3.1)

Let Mi be the irreducible H -module associated with matrix component Mat(di , k). The module Mi is
annihilated by each element eg, g ∈ G, and by any Mat(d j , k), j �= i.

Note that if h ∈ Mat(di , k) and x ∈ Mp, y ∈ Mq , then by (3.1) we have

h(x ⊗ y) = �i
pq(h) · (x ⊗ y), (3.2)

where �i
pq(h) · (x ⊗ y) is the componentwise action on the tensor product.

As in [1, Formula (9), Lemma 3.1] we can prove:

Proposition 3.1 Let h ∈ H, g ∈ G andDg,i from (2.6). If x, y ∈ Mi then h(Dg,i ·(x⊗y)) = 〈g, h〉Dg,i ·(x⊗y)

and D2
g,i = Dg,i .

Proof We have

h
(
Dg,i · (x ⊗ y)

) = (
�(h)Dg,i

) · (x ⊗ y)

= (
�(h)�(eg)

) · (x ⊗ y) = �(heg) · (x ⊗ y) = 〈g, h〉Dg,i · (x ⊗ y) .

The last statement holds because eg is an idempotent. 	

The next fact is well known for Hopf algebras [1]. In virtue of Theorem 2.3 it holds for bialgebras H

satisfying the above restrictions.
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Proposition 3.2 Let H be a bialgebra with a direct decomposition (1.1) such that (1.2) holds. Suppose M
to be an irreducible H-module, dim M > 1. Let Eg be the one-dimensional H-module associated with an
element g ∈ G. Then M ⊗ Eg and Eg ⊗ M are irreducible H-modules and

M ⊗ Eg � Eg ⊗ M � M.

For any square matrix X denote its transpose by t X. Let Mi be as above the irreducible H -module of dimen-
sion di Then the dual space M∗

i = Homk(Mi , k) is a left H -module. In fact, let f ∈ M∗
i , h ∈ Mat(di , k) and

x ∈ Mi . Put 〈h · f, x〉 = 〈 f, t h · x〉. Then for h1, h2 ∈ Mat(di , k),

〈h1h2 · f, x〉 = 〈 f, t (h1h2) · x〉 = 〈 f, t h2
t h1 · x〉

= 〈h2 · f, t h1 · x〉 = 〈h1 · (h2 · f ), x〉.
Using [4, Lemma 7.5.10, p. 322] as in [1, Proposition 1.7], we obtain

Proposition 3.3 Let Mi , M j be irreducible left H-modules of dimensions > 1. Then dim HomH (Mi ⊗
M j , Eε) = δi j .

Proposition 3.4 Denote by A the direct sum ⊕g∈G Eg of all one-dimensional H-modules Eg, g ∈ G. Then
there is a direct sum decomposition

Mi ⊗ M j = δi j A ⊕
(
⊕n

t=1mt
i j Mt

)
, (3.3)

where mt
i j = dimk HomH (Mi ⊗ M j , Mt ) � 0. In particular,

dim(Mi ⊗ M j ) = di d j = δi j |G| +
n∑

t=1

mt
i j dt

= dim
(
δi j A ⊕

(
⊕n

t=1mt
i j Mt

))
(3.4)

and |G| � d2
1 .

Proposition 3.4 generalizes [1, Corollary 1.8, Theorem 1.9] from Hopf algebras to the case of bialgebras
with the mentioned properties.

Using Proposition 3.1, we can prove as in [1, Lemma 3.1]:

Corollary 3.5 Let μ : Eg → Mi ⊗ Mi be an embedding of H-modules from Proposition 3.4. Then μ(Eg) =
Dg,i (Mi ⊗ Mi ).

The next affirmation follows from associativity of tensor products of H -modules.

Theorem 3.6 ([1]) The multiplicities mt
i j defined in Proposition 3.4 satisfy the Eq. (3.4) and the equations

ms
i j = mi

js, δi jδls |G| +
n∑

t=1

mt
i j m

l
ts = δ jsδli |G| +

n∑
t=1

mt
jsml

it ,

for all i, j, s, l = 1, . . . , n. In particular, ms
i j = mi

js = m j
si and

δi jδls |G| +
n∑

t=1

m j
ti m

l
ts = δ jsδli |G| +

n∑
t=1

m j
st m

l
it .

If i, j, p = 1, . . . , n, then m p
i j � dmin(i, j,p).

Furthermore, if H is a Hopf algebra, then mi
pq = mi

qp for all i, p, q = 1, . . . , n, that is, Mi ⊗ M j �
M j ⊗ Mi for all i, j = 1, . . . , n.
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Denote by Rt , 1 � t � n, the square matrix of size n whose (i, j)th entry is equal to mt
i j . Then Rr is a

non-negative integer matrix. By Theorem 3.6, each matrix Rt is symmetric. Now the equality (3.4) and the
statement of Theorem 3.6 can be rewritten as

[t R j , Rl
] = |G|(El j − E jl),

∑
t

dt Rt =
⎛
⎜⎝

d1
...

dn

⎞
⎟⎠(

d1 . . . dn
) − |G|En, (3.5)

where En and El j are the identity matrix and the matrix units of size n. If H is a Hopf algebra, then each
matrix Ri is symmetric.

For later use consider the case n = 2. In view of Theorem 3.6 put

a = m1
11, b = m1

12 = m1
21 = m2

11, c = m1
22 = m2

12 = m2
21, d = m2

22, (3.6)

which all are non-negative integers. Then

R1 =
(

a b
b c

)
, R2 =

(
b c
c d

)
. (3.7)

Now the first equation in (3.5) can be rewritten as

b2 + c2 − ac − bd = |G|, (3.8)

and the second equation in (3.5) as

d1a + d2b = d2
1 − |G|,

d1b + d2c = d1d2,

d1c + d2d = d2
2 − |G|.

(3.9)

4 Properties of coefficients

In this section we shall consider properties of the Clebsch–Gordan coefficients mt
i j in the decomposition (3.3)

for a bialgebra H with decomposition (1.1) and with additional properties from Sect. 3.

Proposition 4.1 Let H be a bialgebra as above and Mp, Mq irreducible H-modules of dimensions greater
than 1, such that Mp ⊗ Mq and Mq ⊗ Mp are irreducible H-modules. Then the order of the monoid G is
equal to 1. If H is a Hopf algebra then Mp ⊗ Mq � Mq ⊗ Mp.

Proof Suppose the H -module Mp ⊗ Mq is irreducible for some indices p, q = 1, . . . , n. Then p �= q by
Proposition 3.4. So Mp ⊗ Mq � Mi for some index i = 1, . . . , n. It means that mi

pq = 1 = m p
iq . Note that

the indices i, p, q are distinct because di = dpdq > dp, dq . In particular n � 3.

Associativity of the tensor product of modules yields by Theorem 3.6, since mi
pq = 1 = m p

qi ,

Mp ⊗ Mq ⊗ Mq � Mp ⊗
(

A ⊕
(
⊕t m

t
qq Mt

))

� (
Mp ⊗ A

) ⊕
[
⊕t m

t
qq

(
Mp ⊗ Mt

)]

� |G|Mp ⊕ m p
qq A ⊕

[(
⊕t,smt

qqms
pt Ms

)]
;

Mp ⊗ Mq ⊗ Mq � Mi ⊗ Mq = Mp ⊕
[
⊕t �=pmt

iq Mt

]
.

Comparing coefficients in Mp, we obtain |G| + ∑
t mt

qqm p
pt = 1. Hence |G| = 1. 	


Consider other cases when tensor products of some irreducible H -modules have similar almost trivial
decompositions.
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Proposition 4.2 Let 1 � i �= j � n. Suppose that there exists a unique index t such that mt
i j � 1. Then

t � max(i, j).

Proof By the assumption,

Mi ⊗ M j � mt
i j Mt . (4.1)

Theorem 3.6 and (4.1) imply

mt
i j = dim Mi · dim M j

dim Mt
= di · d j

dt
� dmin(i, j,t) � di .

Hence d j � dt which means that j � t. Similarly i � t. 	

Proposition 4.3 Suppose that (4.1) holds for some t �= i and

Mt ⊗ Mi � mt ′
ti Mt ′, (4.2)

for some index t ′. Then t = t ′ = j > i and mt
i j = mt

ji = di .

Proof By Proposition 4.2 and the assumption, t � max(i, j). Since t > i we can apply Theorem 3.6 and get
mt

i j = m j
ti > 0. So t ′ = j by the assumption and Mt ⊗ Mi � m j

ti M j . Applying Proposition 4.2 we obtain
j � max(t, i) = t � j and therefore t = j > i because j �= i. Comparing dimensions we complete the
proof. 	

Proposition 4.4 Let i be an index with the property: for every index j �= i, there exists a unique index t such
mt

i j > 0 and if t �= i, then also (4.2) holds for some index t ′. Then:

(1) if j �= i, then Mi ⊗ M j � dmin(i, j)Mmax(i, j);
(2) Mi ⊗ Mi � A ⊕ d1 M1 ⊕ · · · ⊕ di−1 Mi−1 ⊕ mi

ii Mi ;
(3) d2

i = |G| + d2
1 + · · · + d2

i−1 + mi
ii di ; in particular, if i = 1, then the order of the monoid G is divisible

by d1;

(4) � (Mat(di , k)) ⊆ H ⊗ Mat(di , k) + Mat(di , k) ⊗ H +
(∑

j�i Mat(d j , k)⊗2
)

.

Proof (1) Suppose that j > i. Then t � max(i, j) = j > i by Proposition 4.2 and t = j, m j
i j = mi

j j = di .

If j < i, then, by Proposition 4.3, the case t �= i is impossible. Hence j < i implies t = i and mi
i j = d j .

So in all cases (1) is proved. Moreover, for any j �= i,

ms
i j =

{
dmin(i, j), s = max(i, j);
0, otherwise.

(4.3)

(2) By Theorem 3.6, there is an H -module decomposition

Mi ⊗ Mi � A ⊕
(
⊕ j m

j
ii Ms

)
.

Note that m j
ii = mi

i j . Hence, by (4.3), the inequality m j
ii > 0 implies i = max(i, j) > j and in this case

mi
i j = d j . Hence we obtain the required decomposition of Mi ⊗ Mi .

(3) Comparing dimensions in the decomposition from (2) we can obtain the required equality. In particular if
i = 1, then d2

1 = |G| + m1
11d1 and therefore |G| is divisible by d1.

(4) Take any indices p, q = 1, . . . , n such that �i
pq �= 0 in (2.6). Combining (2.6), (3.2) and Proposition 4.4,

properties (1), (2), we see that Mat(di , k) annihilates Mp ⊗ Mq if either i �= max(p, q) where p �= q or
p = q < i. By (3.2) it means that (4) is satisfied. 	


Theorem 4.5 Let H be a bialgebra with decomposition (1.1) such that (1.2) is satisfied and either G is a
group or d1, . . . , dn are as in Theorem 2.4. Suppose that H satisfy the assumptions of Proposition 4.4 for some
index i. If i = 1, then J = ⊕ j�2 Mat(d j , k) is a bi-ideal in H. If i = n, then Mat(di , k) is a bi-ideal of H.
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Proof Let i = 1 and �
j
pq �= 0 for some j � 2 where either p = 1 or q = 1. The case p = q = 1 is impossible

by Proposition 4.4, (1) and (2). Hence either p or q is greater than 1. Hence J is a bi-ideal.
Suppose that i = n and �n

pq �= 0 for some p, q. If either p < n or q < n, then, by Proposition 4.4, (1),
n = max(p, q) and therefore either p = n or q = n. In both cases,

� (Mat(dn, k)) ⊆ H ⊗ Mat(dn, k) ⊕ Mat(dn, k) ⊗ H.

	

Theorem 4.6 Let H be a Hopf algebra with decomposition (1.1). If the number n of full matrix algebras of
size > 1 in (1.1) is equal to 2, then the greatest common divisor D of sizes d1, d2 of matrices is greater than
1. The order of the group G is divisible by D.

Proof As it is noticed in [7] the order |G| of the group G divides d2
1 and d2

2 . Suppose that d1, d2 are coprime.
Using the notations (3.6), we see in the second equation in (3.9) that b is divisible by d2 and c is divisible by
d1, namely b = d2u1, c = d1u2 for some non-negative integers u1, u2. So this equation can be rewritten as
u1 + u2 = 1. It follows immediately that there is an alternative,

either u1 = 1, u2 = 0, or u1 = 0, u2 = 1.

Suppose first that u1 = 1, u2 = 0. Then b = d2, c = 0 and the first equation in (3.9) has the form
d1a + d2

2 = d2
1 − |G|. This is impossible because d2 > d1 but the left hand side is greater or equal to d2

2 while
the right hand side is smaller than d2

1 .
Suppose now that u1 = 0, u2 = 1. Then b = 0, c = d1 and the first equation in (3.9) has the form

d1a = d2
1 − 1 which is impossible since d1 > 1. 	


Theorem 4.7 Let H be a semisimple bialgebra with decomposition (1.1) where n � 2. Then mt
n−1,n � 2 for

some index t = 1, . . . , n in (3.3).

Proof Suppose that mt
n−1,n � 1 for all t = 1, . . . , n. Then, in equation (3.3), we have dn−1dn � d1 +· · ·+dn .

Dividing by dn we get by (1.2),

dn−1 � d1

dn
+ · · · + dn−1

dn
+ 1 < n

On the other hand, (1.2) implies that di � i + 1 for any i and in particular dn−1 > n, a contradiction. 	


5 The category of (H, H)-bimodules

Let, as above H, be the semisimple bialgebra with decomposition (1.1). By (3.1) the comultiplication � :
H → H ⊗ H is also a homomorphism of (H, H)-bimodules. So it is interesting to look at the structure of
(H, H)-bimodules.

Note that any (H, H)-bimodule can be considered as a left module over H ⊗ Hop where Hop is defined
on the same vector space as H by the new multiplication x · y = yx . Clearly Hop is a semisimple algebra with
a similar decomposition (1.1). Its irreducible modules are dual modules E∗

g, g ∈ G, and M∗
1 , . . . , M∗

n . The
action of h ∈ Hop on E∗

g and on M∗
i is the following. If f ∈ E∗

g then 〈 f h, eg〉 = 〈g, h〉〈 f, eg〉. If f ∈ M∗
i

and x ∈ Mi then 〈 f h, x〉 = 〈 f, hx〉. By Proposition 1.5 [1], each M∗
i is an irreducible Hop-module.

Now Hop is a bialgebra with comultiplication �op = � and a counit εop = ε.
Consider the bialgebra H ⊗ Hop. It is a semisimple bialgebra whose simple ideals are tensor products of

simple ideals of H and of Hop. It means that irreducible H ⊗ Hop-modules are just tensor products

Eg ⊗ E∗
f , Eg ⊗ M∗

i , M j ⊗ E∗
g, Mi ⊗ M∗

j , f, g ∈ G.

The one-dimensional bimodule Eg ⊗ E∗
f has a base eg ⊗ e f such that

h
(
eg ⊗ e f

)
r = 〈g, h〉〈 f, r〉 (

eg ⊗ e f
)
,

for all h, r ∈ H.
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By Proposition 3.2 and Proposition 1.5 [1], the bimodule Eg ⊗ M∗
i can be identified with Mi where

hxr = 〈g, h〉 · t r · x for all h, r ∈ H and x ∈ Mi .
The bimodule M j ⊗ E∗

g can be identified with Mi where hxr = hx〈g, r〉 for all h, r ∈ H and x ∈ Mi .

Finally, the bimodule Mi ⊗ M∗
j is identified with Mi ⊗ M j where hxr = hx · t r for all h, r ∈ H and

x ∈ Mi .
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