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Abstract. For a Hopf algebra H over a commutative ring k, the category MH
H of right

Hopf modules is equivalent to the category Mk of k-modules, that is, the comparison

functor −⊗k H : Mk → MH
H is an equivalence (Fundamental theorem of Hopf modules).

This was proved by Larson and Sweedler via the notion of coinvariants McoH for any M ∈
MH

H . The coinvariants functor (−)coH : MH
H → Mk is right adjoint to the comparison

functor and can be understood as the Hom-functor HomH
H(H,−) (without referring to

an antipode).

For a quasi-Hopf algebra H, the category HMH
H of quasi-Hopf H-bimodules has been

introduced by Hausser and Nill and coinvariants are defined to show that the functor

−⊗k H : Mk → HMH
H is an equivalence. It is the purpose of this paper to show that the

related coinvariants functor, right adjoint to the comparison functor, can be seen as the
functor HHomH

H(H ⊗k H,−)

More generally, let H be a quasi-bialgebra and A an H-comodule algebra A (as

introduced by Hausser and Nill). Then − ⊗k H is a comonad on the category AMH

of (A, H)-bimodules and defines the Eilenberg-Moore comodule category (AMH)−⊗H

which is just the category AMH
H of two-sided Hopf modules. Following ideas of Hausser,

Nill, Bulacu, Caenepeel and others, two types of coinvariants are defined to describe

right adjoints of the comparison functor − ⊗k H : AM → AMH
H and to establish an

equivalence between the categories AM and AMH
H provided H has a quasi-antipode. As

our main results we show that these coinvariants functors are isomorphic to the functor

AHomH
H(A⊗k H,−) : AMH

H → AM and give explicit formulas for these isomorphisms.

1. Introduction

For a commutative ring k, the category Mk of k-modules is monoidal: the tensor product
of two k-modules has again a natural k-module structure and for k-modules V,M,N , the
canonical map

(1.1) aV,M,N : (V ⊗kM)⊗k N → V ⊗k (M ⊗k N), (v ⊗m)⊗ n 7→ v ⊗ (m⊗ n),

is an isomorphism. This means that the composition of the endofunctors V ⊗k−, M⊗k− on
Mk is the same as the functor (V ⊗kM)⊗k−. It is known well-known that the endofunctors
(V ⊗k −,Homk(V,−)) form an adjoint pair of functors with unit and counit

ηM : M → Homk(V, V ⊗kM), m 7→ [v 7→ v ⊗m],
εM : V ⊗Homk(V,M)→M, v ⊗ f 7→ f(v).

For a k-bialgebra (H,µ, ι,∆, ε), denote the category of left H-modules by HM and the
category of right H-comodules by MH . For two modules M,N ∈ HM, the tensor product
M ⊗k N is again a left H-module by the action h · (m ⊗ n) = ∆h(m ⊗ n) (componentwise
action). This turns HM into a monoidal category. To make this work, coassociativity of
the coproduct ∆ is needed, since it is to show that for V,M and N ∈ HM, the k-linear
isomorphism 1.1 is also H-linear, that is - using the Sweedler notation -

h · ((v ⊗m)⊗ n) =
∑

(h11v ⊗ h12m)⊗ h2n =
∑

h1v ⊗ (h21m⊗ h22n) = h · (v ⊗ (m⊗ n)),
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were the middle identity is just the coassociativity condition. In this case, the composition
of the functors H ⊗k (H ⊗k −) can be identified with the functor (H ⊗k H) ⊗k −. This is
an essential property in the theory of bialgebras and Hopf algebras.

For a bialgebra H, a right H-Hopf module M is a right H-module ρM : M ⊗k H → M
as well as a right H-comodule ρM : M → M ⊗k H such that ρM (mh) = ρM (m)∆(h) for
m ∈M , h ∈ H.

The endomorphism ring Endk(H) has a second k-algebra structure with the convolution
product ∗ and an S ∈ Endk(H) is an antipode if it is an inverse of the identity map with
respect to the convolution product, that is, id ∗ S = ι ◦ ε = S ∗ id. A Hopf algebra is a
bialgebra which has an antipode and the latter condition is equivalent to the fact that

−⊗k H : Mk →MH
H , M 7→ (M ⊗k H, id⊗ µ, id⊗∆),

is an equivalence of categories (Fundamental Theorem for Hopf algebras, e.g. [4, 15.5]).
The adjoint (inverse) to this functor was initially defined in terms of coinvariants (see [16,
Proposition 1]) and it can be seen as the functor HomH

H(H,−) (e.g. [4, 14.8]).
This paper is concerned with quasi-bialgebras as defined in Drinfeld [10] by requiring the

same axioms as for bialgebras except for the coassociativity condition of the coproduct which
is modified by a normalised 3-cocycle φ ∈ H⊗H⊗H in such a way that the module categories
over H are yet monoidal (even rigid monoidal in the finite case). The map aV,M,N considered
in 1.1 is no longer H-linear and the theory of Hopf algebras cannot be transferred to the
new situation immediately. For example, the convolution algebra (Endk(H), ∗) is no longer
associative. However, the aV,M,N may be replaced by non-trivial associativity constraints
in the monoidal category HM and this leads the way to the necessary modification of the
classical notions. The notion of an antipode was adapted to a quasi-antipode in Drinfeld
[10]. The Fundamental Theorem corresponds to the comparison functor

−⊗k H : HM→ HMH
H , N 7→ (N ⊗H, %N⊗H , %N⊗H),

being an equivalence (see 3.4, 3.8 and 5.10). This was first shown by Hausser and Nill [14]
by defining a projection E : M →M which leads to a coinvariant functor (−)coH : HMH

H →
HM. Another projection E : M → M was defined by Bulacu and Caenepeel [5] leading to
a distinct (but isomorphic) coinvariant functor (−)coH .

For a quasi-bialgebra H and a right H-comodule algebra (A, ρ, φρ), following Bulacu-
Caenepeel [6], we consider the category AMH

H of left two-sided Hopf modules and this cat-
egory can be considered as the Eilenberg-Moore comodule category (AMH)−⊗H over the
comonad − ⊗k H : AMH → AMH (see 2.3). Adopting the arguments of Hausser-Nill [14]
and Bulacu-Caenepeel [5], over a quasi-Hopf algebra H, we define two (isomorphic) types
of coinvariants functors (−)coH and (−)coH : AMH

H → AM. Each of them defines an in-
verse to the comparison functor − ⊗ H : AM → AMH

H (see 5.3, 5.9). Showing that the
AHomH

H(A⊗H,−) : AMH
H → AM is also right adjoint to the comparison functor (see 4.4)

implies that it has to be isomorphic to the coinvariants functors. An explicit description of
these isomorphisms is given in 5.11.

As corollaries, for the case A = H, we obtain that the functor HHomH
H(H ⊗ H,−) :

HMH
H → HM is right adjoint to the comparison functor − ⊗k H : HM → HMH

H (see 3.10)
and, as a consequence, both the coinvariants functors defined by Hausser-Nill in [14] and by
Bulacu-Caenepeel [5] are isomorphic to this Hom-functor.

2. Preliminaries

In this section we recall definitions and lemmas to be referred to later in this paper. For
more details about module theory we refer to [24], about Hopf algebras, to [4], [15], and [22]
and about category theory to [2], [17], and [21].

Throughout k will denote a commutative ring with identity. All (co)algebras, bialgebras,
Hopf algebras etc. will be over k; unadorned ⊗ and Hom mean ⊗k and Homk, respectively.
For k-modules M,N , we denote by Homk(M,N) all k-module homomorphisms from M to
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N , M∗ := Homk(M,k) and Endk(M) := Homk(M,M). By τM,N : M ⊗ N → N ⊗M we
denote the twist map which carries m⊗ n to n⊗m.

2.1. Adjoint Functors. A pair (L,R) of functors L : A → B and R : B → A between
categories A and B is called an adjoint pair if there exists a natural isomorphism

MorB(L(−),−)→ MorA(−, R(−)),

which can be described by natural transformations, the unit η : idA → RL and the counit
ε : LR→ idB, with

εL ◦ Lη = 1L, Rε ◦ ηR = 1R.

2.2. Comonads. A comonad G = (G, δ, ε) on a category A consists of an endofunctor
G : A→ A and two natural transformations, the comultiplication δ : G→ G2 and the counit
ε : G→ idA, such that

δG ◦ δ = Gδ ◦ δ, εG ◦ δ = 1G = Gε ◦ δ.

2.3. Comonads and their comodules. Given a comonad G = (G, δ, ε) on a category A,
a G-comodule (A, ρA) consists of an object A ∈ A and an arrow ρA : A→ G(A) in A such
that

δA ◦ ρA = G(ρA) ◦ ρA, εA ◦ ρA = idA.

The class of all G-comodules together with G-comodule maps form the Eilenberg-
Moore comodule category over the comonad G and is denoted by AG. The forgetful
functor UG : AG → A is left adjoint to the free functor φG : A→ AG (e.g. [11]).

2.4. Monoidal categories. A category A is called a monoidal (or tensor) category if
there exist a bifunctor − ⊗ − : A × A → A, a distinguished neutral object E, and natural
isomorphisms, called associativity and unit constraints,

a : (−⊗−)⊗− → −⊗ (−⊗−), λ : E ⊗− → idA, ρ : −⊗ E → idA,

(idW ⊗ aX,Y,Z) ◦ aW,(X⊗Y ),Z ◦ (aW,X,Y ⊗ idZ) = aW,X,Y⊗Z ◦ aW⊗X,Y,Z ,
(idX ⊗ λY ) ◦ aX,E,Y = ρX ⊗ idY , for all W,X, Y, Z ∈ A.

A monoidal category (A,⊗, E, a, λ, ρ) is said to be strict if the isomorphisms a, λ, and ρ
are the identity morphisms. For a monoidal category (A,⊗, E, a, λ, ρ), we shortly write
(A,⊗, E) or just A if no confusion arises. For more details see [15].

2.5. Quasi-bialgebras. A quadruple (H,∆, ε, φ) is called a quasi-bialgebra if H is an
associative k-algebra with unit, φ an invertible element in H ⊗H ⊗H, ∆ : H → H ⊗H and
ε : H → k are algebra maps, satisfying the identities, for h ∈ H,

(2.1) (id⊗ ε) ◦∆(h) = h⊗ 1, (ε⊗ id) ◦∆(h) = 1⊗ h,

(2.2) (id⊗∆) ◦∆(h) = φ · (∆⊗ id) ◦∆(h) · φ−1,

(2.3) (id⊗ id⊗∆)(φ)(∆⊗ id⊗ id)(φ) = (1⊗ φ)(id⊗∆⊗ id)(φ)(φ⊗ 1),

(2.4) (id⊗ ε⊗ id)(φ) = 1⊗ 1.

The identities (2.1), (2.3) and (2.4) imply also

(2.5) (ε⊗ id⊗ id)(φ) = (id⊗ id⊗ ε)(φ) = 1⊗ 1.

For h ∈ H, we use the Sweedler type notation ∆(h) =
∑
h1 ⊗ h2.

φ is called the Drinfeld reassociator. The equation (2.3) is a 3-cocycle condition on
φ. The tensor components of φ are denoted by capital letters, those of φ−1 by small letters,

φ =
∑

X1 ⊗X2 ⊗X3 and φ−1 =
∑

x1 ⊗ x2 ⊗ x3.

As in the bialgebra case, the (bi-)module categories over a quasi-bialgebra H is monoidal,
yet the associativity constraints in this case are not trivial:

2.6. (Bi-)module categories for quasi-bialgebras. For any quasi-bialgebra (H,∆, ε, φ),
the categories HM, MH and HMH are monoidal categories with the tensor product ⊗k.
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(i) The associativity constraint for objects M,N,L ∈ HM is given by

aM,N,L : (M ⊗k N)⊗k L→M ⊗k (N ⊗k L), (m⊗ n)⊗ l 7→ φ · (m⊗ (n⊗ l)).

(ii) The associativity constraint for M,N,L ∈MH is

a′M,N,L : (M ⊗k N)⊗k L→M ⊗k (N ⊗k L), (m⊗ n)⊗ l 7→ (m⊗ (n⊗ l)) · φ−1,

(iii) The associativity constraint for M,N,L ∈ HMH is

a′′M,N,L : (M ⊗k N)⊗k L→M ⊗k (N ⊗k L), (m⊗ n)⊗ l 7→ φ · (m⊗ (n⊗ l)) · φ−1.

2.7. Quasi-Hopf algebras. ([10]) A quasi-antipode (S, α, β) for a quasi-bialgebra H
consists of an algebra anti-morphism S : H → H and α, β ∈ H with the identities, for
h ∈ H,

(2.6)
∑

S(h1)αh2 = ε(h)α,
∑

h1βS(h2) = ε(h)β

(2.7)
∑

X1βS(X2)αX3 = 1,
∑

S(x1)αx2βx3 = 1.

These axioms imply ε(α)ε(β) = 1 and ε ◦ S = ε. Note that we do not require the quasi-
antipode S to be bijective (as it is done in [10]).

A quasi-Hopf algebra is a quasi-bialgebra H together with a quasi-antipode (S, α, β).

2.8. Gauge transformations. Given a quasi-bialgebra H = (H,∆, ε, φ), a gauge trans-
formation on H is an invertible element F ∈ H ⊗H such that

(ε⊗ id)(F ) = (id⊗ ε)(F ) = 1.

Using a gauge transformation F on H, one can build a new quasi-bialgebra HF by keeping
the multiplication, unit and counit of H and replacing the comultiplication of H by

∆F : H → H ⊗H, h 7→ F ∆(h)F−1,

and defining a new Drinfeld reassociator φF by

φF := (1⊗ F )(id⊗∆)(F ) · φ · (∆⊗ id)(F−1)(F−1 ⊗ 1) ∈ H ⊗H ⊗H.

In case H is a quasi-Hopf algebra with antipode S, the quasi-Hopf algebra HF will be
again a quasi-Hopf algebra with the same S but α and β are to be replaced by

αF :=
∑

S(G1)αG2, βF :=
∑

F 1βS(F 2),

where we write F =
∑
F 1 ⊗ F 2 and F−1 =

∑
G1 ⊗G2 ∈ H ⊗H (see [15, p. 373 ]).

If H happens to be a bialgebra, then HF in general is not a bialgebra unless F is a 2-
cocycle. Thus, in general, the construction provides non-trivial examples of quasi-bialgebras.

2.9. Properties of quasi-antipodes. For a quasi-Hopf algebra H, Drinfeld ([10]) defines
a gauge element f ∈ H ⊗H by the conditions, for any h ∈ H,

f ∆ ◦ S(h) f−1 = (S ⊗ S)∆cop(h),
(S ⊗ S ⊗ S)(φ321) = (1⊗ f)(id⊗∆)(f)φ(∆⊗ id)(f−1)(f−1 ⊗ 1),

(id⊗ ε)(f) = (ε⊗ id)(f) = 1.

Such an f can be obtained explicitly as follows. First put∑
A1 ⊗A2 ⊗A3 ⊗A4 = (1⊗ φ−1)(id⊗ id⊗∆)(φ),∑
B1 ⊗B2 ⊗B3 ⊗B4 = (∆⊗ id⊗ id)(φ)(φ−1 ⊗ 1),

and then define γ and δ in H ⊗H by

(2.8) γ =
∑

S(A2)αA3 ⊗ S(A1)αA4, δ =
∑

B1βS(B4)⊗B2βS(B3).

Then f and f−1 are given by the formulas

(2.9) f =
∑

(S ⊗ S)(∆op(x1))γ∆(x2βS(x3)), f−1 =
∑

∆(S(x1)αx2)δ(S ⊗ S)(∆op(x3)),
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and f satisfies the relations

(2.10) f∆(α) = γ, ∆(β)f−1 = δ.

Writing f =
∑
f1 ⊗ f2 and f−1 =

∑
g1 ⊗ g2 in (2.9), it can be easily seen that

(2.11)
∑

f1βS(f2) = S(α),
∑

S(βf1)f2 = α,
∑

g1S(g2α) = β.

3. The category HMH
H of quasi-Hopf H-bimodules

Although a quasi-bialgebra H is not a coassociative coalgebra, it can be considered as a
coalgebra in the monoidal category HMH . Thus it makes sense to define comodules over this
coalgebra in this monoidal category and this was done by Hausser and Nill in [14] calling
them quasi-Hopf H-bimodules (generalising Hopf bimodules over Hopf algebras).

For any left H-module N , the tensor product N ⊗H is a right quasi-Hopf H-bimodule
(see 3.2). If H is a quasi-Hopf algebra, any quasi-Hopf H-bimodule M is isomorphic to
such a tensor product N ⊗ H, where N is a left H-module (the coinvariants of M , [14]).
This generalises the the Fundamental Theorem of Hopf modules over a Hopf algebra. In this
section we are concerned with various interpretations of the coinvariants. For convenience
we recall some of the related constructions from Hausser and Nill [14] and Bulacu and
Caenepeel [5],

Throughout (H,∆, ε, φ) denotes a quasi-bialgebra.

3.1. Quasi-Hopf bimodules. Let M be an (H,H)-bimodule and %M : M → M ⊗H an
(H,H)-bimodule homomorphism. Then (M,%M ) is called a right quasi-Hopf H-bimodule
if, for all m ∈M ,

(idM ⊗ ε) ◦ %M = idM ,
φ · (%M ⊗ idH)(%M (m)) = (idM ⊗∆)(%M (m)) · φ,

where we consider the diagonal left and right H-module structure on M ⊗H.

A morphism between such bimodules is an (H,H)-bimodule morphism f : M → L
satisfying %L ◦ f = (f ⊗ id) ◦ %M . The category of right quasi-Hopf H-bimodules with the
above morphisms is denoted by HMH

H .
By definition of a quasi-bialgebra, taking M = H and %M = ∆ provides an example of a

quasi-Hopf H-bimodule.

3.2. (H,H)-bimodules and quasi-Hopf bimodules. For any (H,H)-bimodule N , N⊗H
becomes a right quasi-Hopf H-bimodule by the structures, for any a, b, h ∈ H,n ∈ N ,

a · (n⊗ h) · b :=
∑

a1nb1 ⊗ a2hb2 = ∆(a)(n⊗ h)∆(b),(3.1)

and a coaction %N⊗H : N ⊗H → (N ⊗H)⊗H,

(3.2) %N⊗H(n⊗ h) := φ−1 · (id⊗∆)(n⊗ h) · φ =
∑

x1 nX1 ⊗ x2h1X
2 ⊗ x3h2X

3.

For any (epi-)morphism g : N1 → N2 in HMH , g ⊗ idH : N1 ⊗ H → N2 ⊗ H is an (epi-
)morphism in HMH

H . This gives rise to a functor

−⊗k H : HMH → HMH
H , N 7→ (N ⊗H, %N⊗H , %N⊗H),

where %N⊗H is denotes the diagonal (H,H)-bimodule structure map given in (3.1) and
%N⊗H is the coaction of N ⊗H defined in (3.2).

In particular, H ⊗H belongs to HMH
H with the structures, for h, a, b ∈ H,

h · (a⊗ b) = ∆(h)(a⊗ b), (a⊗ b) · h = (a⊗ b)∆(h), %H⊗H(a⊗ b) = φ−1 · (id⊗∆)(a⊗ b) · φ.

Any left H-module N may be considered as an (H,H)-bimodule with the trivial right
H-module structure, that is, n · b := ε(b)n. Then, in 3.2, the right H-module structure on
N ⊗ H comes out as (n ⊗ h) · b =

∑
ε(b1)n ⊗ hb2 = n ⊗ hb. This leads to the following

important special case:
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3.3. Left H-modules and quasi-Hopf bimodules. Let N ∈ HM and a, b, h ∈ H, n ∈ N .
(1) N ⊗H is a right quasi-Hopf H-bimodule with the bimodule structure the coaction,

(3.3) a · (n⊗ h) · b := ∆(a)(n⊗ hb),

(3.4) %N⊗H : N ⊗H → (N ⊗H)⊗H, n⊗ h 7→ φ−1 · (id⊗∆)(n⊗ h).

(2) If g : N1 → N2 is an (epi-)morphism in HM, then g⊗ idH : N1⊗H → N2⊗H is an
(epi-)morphism in HMH

H .
(3) In particular, H ⊗H belongs to HMH

H with the structures

(3.5) h · (a⊗ b) · h′ = ∆(h)(a⊗ b)(1⊗ h′), %H⊗H(a⊗ b) = φ−1 · (id⊗∆)(a⊗ b).

3.4. Comparison functor. For any N ∈ HM, N ⊗H ∈ HMH
H with the (H,H)-bimodule

structure given in (3.3) and the H-comodule structure map given in (3.4). This gives rise
to the comparison functor

−⊗k H : HM→ HMH
H , N 7→ (N ⊗H, %N⊗H , %N⊗H),

where %N⊗H denotes the (H,H)-bimodule structure map from (3.3) and %N⊗H the right
H-comodule structure of N ⊗H defined in (3.4).

In [19, Proposition 3.6], Schauenburg showed that (HMH
H ,⊗H , H) is a monoidal category

and with this monoidal structure on HMH
H , the comparison functor −⊗k H is monoidal.

We now want to find right adjoints for the comparison functor.

3.5. Hausser-Nill and Bulacu-Caenepeel coinvariants in HMH
H . Let H be a quasi-

Hopf algebra. For any M ∈ HMH
H , Hausser and Nill consider the projection map

(3.6) E : M →M, m 7→
∑

X1m0 βS(X2m1)αX3.

and define as covariants M coH := E(M), we call these HN-coinvariants. They form a
left H-module by the action, for h ∈ H, m ∈M coH ,

(3.7) h I m := E(hm)

Bulacu and Caenepeel in [5], gave an alternative definition for coinvariants, by considering
a different projection map

E : M →M, m 7→
∑

m0βS(m1),

and putting M coH := E(M), we call them BC-coinvariants. They can be characterised
by

(3.8)
M coH = {m ∈M |E(m) = m}

= {m ∈M |%M (m) =
∑
x1mS(x3

2X
3)f1 ⊗ x2X1βS(x3

1X
2)f2},

where f =
∑
f1 ⊗ f2 ∈ H ⊗H is the gauge element from (2.9) (see [5, Lemma 3.6]).

M coH forms a left H-module with the left adjoint action of h ∈ H (see [5, Lemma 3.6]),

h . m =
∑

h1mS(h2).

For any morphism f : M → L in HMH
H , f(M coH) ⊆ LcoH and f(M coH) ⊆ LcoH .

These notions yield functors (−)coH and (−)coH : HMH
H → HM.

3.6. Relation between the projections E and E. Let H be a quasi-Hopf algebra,
M ∈ HMH

H and E,E : M → M be the projections defined in (3.6) and (3.7). Then (as
shown in [5]) for all m ∈M ,

(i) E(m) =
∑
E(x1m)x2βS(x3),

(ii) E(m) =
∑
X1E(m)S(X2)αX3,

(iii) E : M coH →M coH is an H-module isomorphism with inverse E : M coH →M coH .
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3.7. Coinvariants as right adjoints. Let H be a quasi-Hopf algebra, N ∈ HM and
M ∈ HMH

H .

(1) ψN,M : HHomH
H(N ⊗H,M)→ HHom(N,M coH), f 7→ [n 7→ f(n⊗ 1)],

is a functorial isomorphism with inverse map g 7→ [n⊗ h 7→ g(n)h)].
Thus, the functors (−⊗k H, (−)coH) form an adjoint pair with unit and counit

ηN : N → (N ⊗H)coH , n 7→ n⊗ 1H ; εM : M coH ⊗k H →M, m⊗ h 7→ mh,

(2) HHomH
H(N ⊗H,M)

ψN,M−→ HHom(N,M coH), f 7→ [n 7→ E(f(n⊗ 1H))],
is a functorial isomorphism with inverse map g 7→ [n⊗ h 7→

∑
X1 g(n)S(X2)αX3h].

So the functors (−⊗H, (−)coH) form an adjoint pair with unit and counit

ηN : N → (N ⊗H)coH , n 7→
∑
x1 n⊗ x2βS(x3),

εM : M coH ⊗k H →M, m⊗ h 7→
∑
X1mS(X2)αX3h.

This is shown in [6] and [14]. From there we also get:

3.8. Fundamental Theorem of quasi-Hopf bimodules. (see [14, Theorem 3.8]) Let H
be a quasi-Hopf algebra and M ∈HMH

H . Referring to the H-module structures defined in
3.5 we get:

(1) εM : M coH ⊗H → M, m⊗ h 7→ mh, is an isomorphism in HMH
H with inverse map

ε−1
M (m) =

∑
E(m0)⊗m1.

(2) ν̄ : M coH ⊗ H → M, n ⊗ h 7→=
∑
X1 nS(X2)αX3h, is an isomorphism in HMH

H

with inverse map ν̄−1(m) =
∑
E(m0)⊗m1.

The isomorphism M coH ∼= M coH (see 3.6) implies (N ⊗H)coH ∼= (N ⊗H)coH as left H-
modules. Both (−)coH and (−)coH are inverses – hence right adjoints – to the comparison
functor −⊗k H : HM→ HMH

H . We can describe these also by a Hom functor.

3.9. The functor HHomH
H(V ⊗k H,−). Let V ∈HMH .

(1) For M ∈HMH , HHomH(V ⊗H,M) ∈ HM with the left H-module structure given for
h, h′ ∈ H and v ∈ V , by

(h′ · f)(v ⊗ h) = f(v h′ ⊗ h).

This yields a functor HHomH(V ⊗H,−) : HMH → HM, and by corestriction, a
functor

HHomH
H(V ⊗H,−) : HMH

H → HM.

(2) Let N ∈ HM and consider it as an (H,H)-bimodule with the trivial right H-module
structure. Then

(i) ψ : HHomH
H(V ⊗H,N ⊗H)→ HHomH(V ⊗H,N), f 7→ (id⊗ ε) ◦ f ,

is an isomorphism in HM with inverse map g 7→ (g ⊗ idH) ◦ %V⊗H .
(ii) θ : HHomH(V ⊗H,N)→ HHom(V,N), f 7→ f(−⊗ 1H),

is an isomorphism in HM with inverse map g 7→ [v ⊗ h 7→ ε(h)g(v)].

(iii) HHom(V,N)→ HHomH
H(V ⊗H,N ⊗H), g 7→ g ⊗ idH ,

is a left H-module isomorphism with the inverse map f 7→ (id⊗ ε) ◦ f(−⊗ 1H).
Thus the comparison functor −⊗k H : HM→ HMH

H is full and faithful.

Let V = H and consider H ⊗ H with the structures given in (3.5). Then, for any
M ∈HMH

H we have a left H-module structure on HHomH
H(H ⊗H,M), for h, a, b ∈ H and

f ∈ HHomH
H(H ⊗H,M),

(h · f)(a⊗ b) = f(a h⊗ b).
This structure leads to a right adjoint for the comparison functor (see also [4, 18.10]).
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3.10. HHomH
H(H ⊗H,−) as right adjoint to the comparison-functor. For M ∈HMH

H

and N ∈HM, there is a functorial isomorphism

HHomH
H(N ⊗H,M)→ HHom(N,HHomH

H(H ⊗H,M)), f 7→ {n 7→ [a⊗ b 7→ f(an⊗ b)]},

with inverse map g 7→ [n⊗ h 7→ g(n)(1H ⊗ h)].
Thus the comparison functor −⊗k H (from 3.4) is left adjoint to the functor

HHomH
H(H ⊗H,−) :HMH

H →HM,

with unit and counit

ηN : N → HHomH
H(H ⊗H,N ⊗H), n 7→ [a⊗ b 7→ an⊗ b],

εM :HHomH
H(H ⊗H,M)⊗H →M, f ⊗ h 7→ f(1H ⊗ h).

Proof. The proof will follow from more general assertions in 4.9. tu

Of course the three adjoint versions of the comparison functor have to be isomorphic and
explicitly this reads as follows.

3.11. Coinvariants as HHomH
H-functor. Let M be a right quasi-Hopf H-bimodule.

(1) There is a functorial isomorphism in HM

ψ̄M : HHomH
H(H ⊗k H,M)→M coH , f 7→ f(1⊗ 1),

with inverse map m 7→ [a⊗ b 7→ E(am) b].
(2) There is a functorial isomorphism in HM,

θ̄M : HHomH
H(H ⊗k H,M)→M coH , f 7→

∑
f(x1 ⊗ x2βS(x3)),

with inverse map m 7→ [a⊗ b 7→ E(am) b].

Proof. This will follow from the more general results proved in 5.11. tu

4. Two-sided Hopf modules

Again (H,∆, ε, φ) will denote a quasi-bialgebra. Hausser and Nill [12] gave a definition
of H-comodule (co)algebras taking care of the non-coassociativity of the coproduct.

4.1. Comodule algebras. A unital associative algebra A is called a right H-comodule
algebra if there exist an algebra morphism ρ : A → A ⊗ H and an invertible element
φρ ∈ A⊗H ⊗H such that

(R1) φρ · (ρ⊗ idH) ◦ ρ(a) = (idH ⊗∆) ◦ ρ(a) · φρ for all a ∈ A.
(R2) (1A ⊗ φ)(id⊗∆⊗ id)(φρ) · (φρ ⊗ 1H) = (id⊗ id⊗∆)(φρ) · (ρ⊗ id⊗ id)(φρ)
(R3) (idA ⊗ ε) ◦ ρ = idA
(R4) (idA ⊗ ε⊗ idH)(φρ) = 1A ⊗ 1H .

These conditions also imply (id⊗ id⊗ ε)(φρ) = 1A ⊗ 1H .

Any quasi-bialgebra H is a right H-comodule algebra with A = H, ρ = ∆ and φρ = φ.
As for the reassociator φ of a quasi-bialgebra H, we use capital letters for the components

of φρ and small letters for the components of φ−1
ρ , that is,

(4.1) φρ =
∑

X̃1
ρ ⊗ X̃2

ρ ⊗ X̃3
ρ and φ−1

ρ =
∑

x̃1
ρ ⊗ x̃2

ρ ⊗ x̃3
ρ.

Although a quasi-bialgebra is not coassociative one can associate monoidal categories
to quasi-bialgebras in which they induce comonads. This point of view has been taken in
[7], [14], [19], and [6] in order to define relative Hopf modules, quasi-Hopf bimodules, and
two-sided two-cosided Hopf modules.

For a right H-comodule algebra (A, ρ, φρ), we show that the tensor functor − ⊗k H is
a comonad on the category AMH and we consider the category of two-sided Hopf modules
AMH

H as the Eilenberg-Moore comodule category over this comonad. Furthermore, we show
that the Hom-functor AHomH

H(A⊗H,−) is right adjoint to the comparison functor −⊗kH.
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Other forms of adjoint functors to −⊗kH are obtained by defining Hausser-Nill and Bulacu-
Caenepeel type coinvariants for this category (following [6, 5], [9]). The relationship between
these is explicitly described.

4.2. Category AMH
H of two-sided Hopf modules. Let (A, ρ, φρ) be a right H-comodule

algebra. A left two-sided (A, H)-Hopf module is an (A, H)-bimodule M , together with
a k-linear map

%M : M →M ⊗H, %M (m) =
∑

m0 ⊗m1,

satisfying the relations

(idM ⊗ ε) ◦ %M = idM ,(4.2)

(idM ⊗∆) ◦ %M (m) = φρ · (%M ⊗ idH) ◦ %M (m) · φ−1,(4.3)

%M (am) =
∑

a(0)m0 ⊗ a(1)m1,(4.4)

%M (mh) =
∑

m0 h1 ⊗m1h2,(4.5)

for m ∈M , h ∈ H and a ∈ A, where ρ(a) =
∑
a(0) ⊗ a(1).

The category of left two-sided (A, H)-Hopf modules and right H-linear, left A-linear, and
right H-colinear maps is denoted by AMH

H .

For the special case A = H, the category of two-sided (H,H)-Hopf modules is nothing
but the category of right quasi-Hopf H-bimodules (see section 3.1).

4.3. Subgenerator for AMH
H . Let (A, ρ, φρ) be a right H-comodule algebra.

(1) For any N ∈ AM, N ⊗H ∈ AMH
H with structure maps, for h, h′ ∈ H, n ∈ N , a ∈ A,

(4.6) a · (n⊗ h) =
∑

a(0) n⊗ a(1)h, (n⊗ h) · h′ = n⊗ hh′.

(4.7) %N⊗H(n⊗ h) =
∑

x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2 = φ−1

ρ · (id⊗∆)(n⊗ h),

(2) If g : N1 → N2 is an (epi-)morphism in AM, then g ⊗ idH : N1 ⊗H → N2 ⊗H is an
(epi-)morphism in AMH

H .

(3) With the structure maps, for h, h′ ∈ H and a, a′ ∈ A,

a′ ·(a⊗h′) =
∑

a′(0)a⊗a
′
(1)h, (a⊗h)h′ = a⊗hh′, %A⊗H(a⊗h) = φ−1

ρ ·(
∑

a⊗h1⊗h2),

A⊗H ∈ AMH
H and it is a subgenerator for this category.

Proof. The parts (1) and (2) are straightforward to see.
(3) Using a similar approach as in section 3.1, we see that for any M ∈ AMH

H , the left
A-module M is a homomorphic image of A(Λ), for some cardinal Λ. Therefore M ⊗H is a
homomorphic image of

A(Λ) ⊗H ∼= (A⊗H)(Λ).

For any M ∈ AMH
H , the coaction %M : M →M ⊗H is a (mono-)morphism in the category

AMH
H , so we can consider M as a subobject of M ⊗H, the latter being generated by A⊗H

in AMH
H . tu

The parts (1) and (2) in the above assertion give rise to

4.4. The comparison functor − ⊗k H : AM → AMH
H . Let (A, %, φ%) be a right H-

comodule algebra. For any N ∈ AM, N ⊗ H ∈ AMH
H with the (A, H)-bimodule structure

from (4.6) and the H-comodule structure map from (4.7). This leads to the comparison
functor

−⊗k H : AM→AMH
H , N 7→ (N ⊗H, %N⊗H , %N⊗H),

where %N⊗H denotes the (A, H)-bimodule and %N⊗H the right H-comodule structure of
N ⊗H.
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4.5. − ⊗k V as endofunctor of AMH . Let (A, ρ, φρ) be a right H-comodule algebra,
N ∈ AMH and V ∈ HMH . Then the coaction

ρ : A → A⊗k H, ρ(a) =
∑

a(0) ⊗ a(1),

induces an (A, H)-bimodule structure on N ⊗k V , for h ∈ H, a ∈ A, v ∈ V , and n ∈ N ,

a · (n⊗ v) · h =
∑

a(0) nh1 ⊗ a(1) v h2 = ρ(a) (n⊗ v) ∆(h).

With this structure we obtain an endofunctor −⊗k V : AMH → AMH , and the special case
V = H yields

G := −⊗k H : AMH → AMH , N 7→ N ⊗H,
with the (A, H)-bimodule structure on N ⊗H given as above. This is a comonad.

4.6. −⊗k H as a comonad on AMH . Let (A, ρ, φρ) a right H-comodule algebra.
(1) − ⊗k H : AMH → AMH is a comonad on AMH with the comultiplication, on N ∈

AMH ,

δN : N ⊗H → (N ⊗H)⊗H, n⊗ h 7→ φ−1
ρ · (id⊗∆)(n⊗ h) · φ,

and counit ε defined by εN = idN ⊗ ε : N ⊗H → N .
(2) The category of two-sided Hopf modules AMH

H is isomorphic to the Eilenberg-Moore
comodule category (AMH)−⊗H .

Proof. (1) First we show the coassociativity of δ, i.e., for N ∈ AMH , n ∈ N and h ∈ H,

(4.8) δN⊗H ◦ δN (n⊗ h) = (δN ⊗ idH) ◦ δN (n⊗ h).

For this, using the definition of δN , we compute

L.H.S = (φ−1
ρ ⊗ 1) · {(id⊗∆⊗ id)(φ−1

ρ · [(id⊗∆)(n⊗ h)] · φ)} · (φ⊗ 1)

= (φ−1
ρ ⊗ 1) · (id⊗∆⊗ id)(φ−1

ρ ) · [(id⊗∆⊗ id) ◦ (id⊗∆)(n⊗ h)]

·(id⊗∆⊗ id)(φ) · (φ⊗ 1)

by (2.2) = (φ−1
ρ ⊗ 1) · (id⊗∆⊗ id)(φ−1

ρ ) · (1A ⊗ φ−1) · [(id⊗ id⊗∆) ◦ (id⊗∆)(n⊗ h)]

·(1H ⊗ φ) · (id⊗∆⊗ id)(φ) · (φ⊗ 1).

On the other hand,

R.H.S = (ρ⊗ id⊗ id)(φ−1
ρ ) · {(id⊗⊗id∆)(φ−1

ρ · [(idN ⊗∆)(n⊗ h)] · φ)} · (∆⊗ id⊗ id)(φ)

= (ρ⊗ id⊗ id)(φ−1
ρ ) · (idN ⊗ idH ⊗∆)(φ−1

ρ ) · [(id⊗ id⊗∆) ◦ (id⊗∆)(n⊗ h)]

·(id⊗ id⊗∆)(φ) · (∆⊗ id⊗ id)(φ).

By (2.3) and 4.1, both sides of (4.8) are equal to each other. Thus, δ is coassociative.
It can be easily seen that εN = idN ⊗ ε : N ⊗H → N is a counit for δ.
(2) To prove the isomorphism (AMH)−⊗H ∼= AMH

H , we take an object M ∈ (AMH)−⊗H

and note that we have a G-comodule structure morphism %M : M → M ⊗ H = G(M) in
AMH inducing commutativity of the diagram

M

%M

��

%M // M ⊗H = G(M)

δM

��

id⊗∆

))TTTTTTTTTTTTTTT

M ⊗ (H ⊗H)

φ−1
ρ ·−·φuujjjjjjjjjjjjjjj

M ⊗H = G(M)
G(%M )=%M⊗id

// GG(M) = (M ⊗H)⊗H.

The commutativity of the outer diagram is precisely the condition (4.3) on M to be a two-
sided Hopf module. It is easy to see that the condition (4.2) is equivalent to the counitality
of ε. tu
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The following helps to find a right adjoint to the comparison functor (from 4.4).

4.7. The functor AHomH
H(V ⊗H,−). Let (A, ρ, φρ) be a right H-comodule algebra, V ∈

AMA.
(1) If M ∈ AMH , then AHomH(V ⊗H,M) ∈ AM with the left A-action, for h ∈ H,

a ∈ A and v ∈ V ,

(a · f)(v ⊗ h) = f(v a⊗ h).

This leads to the functor AHomH(V ⊗H,−) : AMH → AM and, by corestriction, to

AHomH
H(V ⊗H,−) : AMH

H → AM.

(2) Let N ∈AM.

(i) ψ : AHomH
H(V ⊗H,N ⊗H)→ AHomH(V ⊗H,N), f 7→ (id⊗ ε) ◦ f,

is an isomorphism in AM with inverse map g 7→ (g ⊗ idH) ◦ %V⊗H .
(ii) θ : AHomH(V ⊗H,N)→ AHom(V,N), f 7→ f(−⊗ 1H),

is an isomorphism in AM with inverse map g 7→ [v ⊗ h 7→ ε(h)g(v)].

(iii) AHom(V,N)→ AHomH
H(V ⊗H,N ⊗H), g 7→ g ⊗ idH ,

is an isomorphism in AM with inverse map f 7→ (id⊗ ε) ◦ f(−⊗ 1H).
Thus the comparison functor −⊗k H is full and faithful.

Note that here we consider the right H-module structure of N to be the trivial one.

Proof. (1) For all a ∈ A and f ∈ AHomH(V ⊗H,M), it is easy to see that a · f is an
(A, H)-bilinear map. In this way, we have AHomH(V ⊗H,M) ∈AM. In case M ∈AMH

H and
f ∈ AHomH

H(V ⊗H,M), the H-colinearity of of a·f follows from the H-colinearity of f itself.
Thus, AHomH

H(V ⊗H,M) ∈AM and we obtain a functor AHomH
H(V ⊗H,−) :AMH

H →AM.

(2) (i) As seen in 4.5, the functor −⊗kH : AMH → AMH is a comonad and the category
AMH

H of two-sided Hopf modules is the Eilenberg-Moore comodule category (AMH)−⊗H .
Now, considering the functor − ⊗ H : AMH → AMH

H as the free functor which is right
adjoint to the forgetful functor (by 2.3), we obtain the isomorphism of part (i).

(ii) First we note that for f ∈ AHomH(V ⊗H,N), h ∈ H, a ∈ A and v ∈ V ,

a [θ(f)(v)] = a [f(v ⊗ 1H)]

f is left A-linear =
∑

f(a(0) v ⊗ a(1))

f is right H-linear =
∑

f(a(0) v ⊗ 1H) a(1)

N is trivial right H-module =
∑

f(a(0) v ⊗ 1H) ε(a(1)) = f(a v ⊗ 1H) = θ(f)(a v).

This means that θ(f) ∈ AHom(V,N). It is straightforward to show that, for g ∈ AHom(V,N),
we have θ′(g) ∈ AHomH(V ⊗H,N). Bijectivity and left A-linearity of θ follow from direct
computations.

(iii) This follows from the composition of the isomorphisms in parts (i) and (ii). tu

4.8. Corollary. Let (A, ρ, φρ) be a right H-comodule algebra.

(1) For M ∈AMH
H , we have a left A-module structure on AHomH

H(A⊗H,M) given, for
h ∈ H, a, a′ ∈ A and f ∈ AHomH

H(A⊗H,M), by (a′ · f)(a⊗ h) = f(aa′ ⊗ h).
(2) For N ∈ AM, the morphism

ηN : N → AHomH
H(A⊗H,N ⊗H), n 7→ [a⊗ h 7→ an⊗ h],

is an isomorphism with inverse map f 7→ (id⊗ ε) ◦ f(1A ⊗ 1H).
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Proof. (1) Follows directly from 4.7 by taking V = A.
(2) Composition of the isomorphisms ψ−1 and θ−1 gives rise to the isomorphisms

N ∼= AHom(A, N) ∼= AHomH(A⊗H,N) ∼= AHomH
H(A⊗H,N ⊗H).

Using 4.7, we see that this composition gives the isomorphism ηN . tu

The Hom-functor from 4.7 is right adjoint to the comparison functor −⊗k H from 4.4:

4.9. Hom-tensor adjunction for AMH
H . Let (A, %, φ%) be a right H-comodule algebra,

M ∈AMH
H , and N ∈AM. Then there is a functorial isomorphism

Ω : AHomH
H(N⊗H,M) −→ AHom(N,AHomH

H(A⊗H,M)), f 7→ {n 7→ [a⊗h 7→ f(an⊗h)]},

with inverse map Ω′ given by g 7→ {n⊗ h 7→ g(n)(1A ⊗ h)}.
Thus the functors (−⊗kH,AHomH

H(A⊗H,−)) form an adjoint pair with unit and counit

ηN : N → AHomH
H(A⊗H,N ⊗H), n 7→ [a⊗ h 7→ an⊗ h],

εM :AHomH
H(A⊗H,M)⊗H →M, f ⊗ h 7→ f(1A ⊗ h).

Proof. First we show that for any f ∈AHomH
H(N ⊗H,M), Ω(f) is left A-linear. For

h ∈ H, a, a′ ∈ A and n ∈ N ,

[a′ · (Ω(f)(n))](a⊗ h) = Ω(f)(n)(aa′ ⊗ h) = f(naa′ ⊗ h) = [Ω(f)(a′ n))](a⊗ h).

Thus, we have Ω(f) ∈AHom(N,AHomH
H(A⊗H,M)).

For any g ∈AHom(N,AHomH
H(A⊗H,M)), we show that Ω′(g) ∈AHomH

H(N ⊗H,M).
(i) Ω′(g) is left A-linear. For a ∈ A and n ∈ N ,

Ω′(g)((n⊗ h) · a) =
∑

Ω′(g)(a(0) n⊗ a(1)h) =
∑

g(a(0) n)(1A ⊗ a(1)h)

g is right A-linear =
∑

(a(0) · g(n))(1A ⊗ a(1)h) =
∑

g(n)(a(0) ⊗ a(1)h)

= g(n)(ρ(a) (1⊗ h)) = a [g(n)(1⊗ h)] = a [Ω′(g)(n⊗ h)].

(ii) It can be easily seen that Ω′(g) is right H-linear.
(iii) For the right H-colinearity of Ω′(g) we show that

(%M ◦ Ω′(g))(n⊗ h) =
∑

(Ω′(g)⊗ id)(x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2).

By the colinearity of g(n),

(%M ◦ Ω′(g))(n⊗ h) = %M (g(n)(1A ⊗ h)) = g(n)(x̃1
ρ ⊗ x̃2

ρh1)⊗ x̃3
ρh2.

On the other hand,

(Ω′(g)⊗ id)(
∑

x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2) =

∑
g(x̃1

ρ n)(1⊗ x̃2
ρh1)⊗ x̃3

ρh2

g is A-linear =
∑

[x̃1
ρ · g(n)](1⊗ x̃2

ρh1)⊗ x̃3
ρh2

=
∑

g(n)(x̃1
ρ ⊗ x̃2

ρh1)⊗ x̃3
ρh2.

This shows the H-colinearity of Ω′(g).
Ω and Ω′ are inverse to each other: For n ∈ N,h ∈ H and f ∈AHomH

H(A⊗H,M),

(Ω′ ◦ Ω(f))(n⊗ h) = (Ω(f))(n)(1A ⊗ h) = f(1A n⊗ h) = f(n⊗ h).

Conversely, for any h ∈ H,n ∈ N, a ∈ A and g ∈AHom(N,AHomH
H(A⊗H,M)),

{[(Ω ◦ Ω′)(g)](n)}(a⊗ h) = (Ω′(g))(an⊗ h) = g(an)(1A ⊗ h)

g is A-linear = [a · g(n)](1A ⊗ h) = g(n)(a⊗ h).

i.e. Ω ◦ Ω′(g) = g. It is easy to see that Ω is functorial in both components M and N . tu

Remark. Taking A = H, 3.10 is a special case of 4.9 above.
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5. Coinvariants for AMH
H

In this section we show that right adjoints for the comparison functor from 4.4 can also
be described by coinvariants.

Throughout this section, we assume (H,∆, ε, φ) to be a quasi-Hopf algebra with quasi-
antipode (S, α, β). For a right H-comodule algebra A, by [12, Lemma 9.1], we have for all
a ∈ A, ∑

a(0)(0) x̃
1
ρ ⊗ a(0)(1) x̃

2
ρS(a(1)) =

∑
x̃1
ρ a⊗ x̃2

ρβS(x̃3
ρ)∑

X̃1
ρ a(0)(0) ⊗ S(X̃2

ρa(0)(1))αX̃
3
ρa(1) =

∑
aX̃1

ρ ⊗ S(X̃2
ρ)αX̃3

ρ∑
(X̃1

ρ)(0)x̃
1
ρ ⊗ (X̃1

ρ)(1)x̃
2
ρβS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ = 1A ⊗ 1H(5.1) ∑

X̃1
ρ(x̃1

ρ)(0) ⊗ S(X̃2
ρ(x̃1

ρ)(1))αX̃3
ρ x̃

2
ρβS(x̃3

ρ) = 1A ⊗ 1H(5.2)

5.1. Hausser-Nill-type coinvariants for AMH
H . Let (A, ρ, φρ) a right H-comodule alge-

bra. For M ∈ AMH
H , define a projection E : M →M , for m ∈M , by

E(m) :=
∑

X̃1
ρ m0 βS(X̃2

ρm1)αX̃3
ρ ,

and define HN-type coinvariants of M by M coH := E(M). For m ∈M,a ∈ A put

a I m := E(am)

Similar to 3.5 (see also [14, Proposition 3.4]), we have the following properties:

5.2. Properties of HN-type coinvariants. For M ∈ AMH
H , a ∈ A, h ∈ H and m ∈ M

we have, with the above notations,
(i) E(mh) = ε(h)E(m),

(ii) E2 = E ,

(iii) a I E(m) = E(am) = a I m,

(iv) (ab) I m = a I (b I m),

(v) a E(m) =
∑

[a(0) I E(m)] a(1),

(vi)
∑
E(m0)m1 = m,

(vii)
∑
E(E(m)0)⊗ E(m)1 = E(m)⊗ 1.

Proof.

(i) E(mh) =
∑

X̃1
ρ (mh)0 βS(X̃2

ρ(mh)1)αX̃3
ρ =

∑
X̃1
ρ m0 h1βS(X̃2

ρm1h2)αX̃3
ρ

= ε(h)
∑

X̃1
ρ m0 βS(X̃2

ρm1)αX̃3
ρ = ε(h)E(m).

(ii) We use part (i) to compute

E2(m) = E(
∑

X̃1
ρ m0 βS(X̃2

ρm1)αX̃3
ρ)

by (i) =
∑
E(X̃1

ρ m0)ε(βS(X̃2
ρm1)αX̃3

ρ)

=
∑
E(X̃1

ρ m0)ε(β)ε(X̃2
ρ)ε(m1)ε(α)ε(X̃3

ρ) =
∑
E(m0ε(m1)) = E(m).

(iii) a I E(m) = E(a E(m)) =
∑
E(aX̃1

ρ m0 βS(X̃2
ρm1)αX̃3

ρ)

=
∑
E(aX̃1

ρ m0)ε(βS(X̃2
ρm1)αX̃3

ρ)

=
∑
E(aX̃1

ρ m0)ε(β)ε ◦ S(m1)ε ◦ S(X̃2
ρ)ε(α)ε(X̃3

ρ)

=
∑
E(aε(m1)m0)ε(β)ε(α) =

∑
E(am) = a I m.

(iv) follows immediately from part (iii).
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(v) a E(m) = a
∑

X̃1
ρ m0 βS(X̃2

ρm1)αX̃3
ρ =

∑
aX̃1

ρ m0 βS(m1)S(X̃2
ρ)αX̃3

ρ

by (5) =
∑

X̃1
ρa(0)(0) m0 βS(m1)S(a(0)(1))S(X̃2

ρ)αX̃3
ρa(1)

=
∑

X̃1
ρa(0)(0) m0 βS(X̃2

ρa(0)(1)m1)αX̃3
ρa(1)

=
∑

X̃1
ρ (a(0)m)0 βS(X̃2

ρ(a(0)m)1)αX̃3
ρa(1) =

∑
E(a(0)m) a(1)

by (iii) =
∑

[a(0) I E(m)] a(1).

(vi) E(m0)m1 =
∑

X̃1
ρm00βS(X̃2

ρm01)αX̃3
ρm1

by (4.3) =
∑

m0X
1βS(m11X

2)αm12X
3 =

∑
m0X

1βS(X2)S(m11)αm12X
3

by (2.6) =
∑

ε(m1)m0 (X1βS(X2)αX3) = m 1H = m.

(vii)
∑
E(E(m)0)⊗ E(m)1

=
∑
E([X̃1

ρ m0 βS(X̃2
ρm1)αX̃3

ρ ]0)⊗ [(X̃1
ρ)m0 βS(X̃2

ρm1)αX̃3
ρ ]1

=
∑
E((X̃1

ρ)(0)m00 β1[S(X̃2
ρm1)αX̃3

ρ ]1)⊗ (X̃1
ρ)(1)m01β2S(X̃2

ρm1)αX̃3
ρ)2

by (i) =
∑
E((X̃1

ρ)(0)m00)⊗ ε(β1)ε(S(X̃2
ρm1)αX̃3

ρ)1)(X̃1
ρ)(1)m01β2S(X̃2

ρm1)αX̃3
ρ)2

=
∑
E((X̃1

ρ)(0)m00)⊗ (X̃1
ρ)(1)m01βS(X̃2

ρm1)αX̃3
ρ

by (4.3) =
∑
E((X̃1

ρ)(0)x̃
1
ρm0X

1)⊗ (X̃1
ρ)(1)x̃

2
ρm11X

2βS(X̃2
ρ x̃

3
ρm12X

3)αX̃3
ρ

by (i) =
∑
E((X̃1

ρ)(0)x̃
1
ρm0)ε(X1)⊗ (X̃1

ρ)(1)x̃
2
ρm11X

2βS(X̃2
ρ x̃

3
ρm12X

3)αX̃3
ρ

=
∑
E((X̃1

ρ)(0)x̃
1
ρm0)⊗ (X̃1

ρ)(1)x̃
2
ρm11βS(X̃2

ρ x̃
3
ρm12)αX̃3

ρ

by (2.6) =
∑
E((X̃1

ρ)(0)x̃
1
ρm0)⊗ (X̃1

ρ)(1)x̃
2
ρε(m1)βS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ

=
∑
E((X̃1

ρ)(0)x̃
1
ρm)⊗ (X̃1

ρ)(1)x̃
2
ρβS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ

by (5.1) = (E ⊗ id)([(1A ⊗ 1H) (m⊗ 1H)]) = E(m)⊗ 1H .

tu
By (ii), (vi) and (vii), we get characterisations of HN-type coinvariants:

M coH := E(M) = {n ∈M |E(n) = n}
= {n ∈M |

∑
E(n0)⊗ n1 = E(n)⊗ 1}

= Ke((E ⊗ id) ◦ [%M − (−⊗ 1H)]).

M coH with the left A-action I is a left A-module and for any morphism f : M → L in

AMH
H , it is not hard to show that f(M coH) ⊆ LcoH . This gives rise to a functor (−)coH

which is right adjoint to the comparison functor.

5.3. The adjoint pair (−⊗k H, (−)coH) for HN-type coinvariants. Let (A, ρ, φρ) be a
right H-comodule algebra, N ∈ AM and M ∈ AMH

H . There is a functorial isomorphism

ψN,M : AHomH
H(N ⊗H,M)→ AHom(N,M coH), f 7→ [n 7→ f(n⊗ 1)],

with inverse map ψ′N,M given by g 7→ [n⊗ h 7→ g(n)h)].
Thus, the functors

−⊗k H : AM→ AMH
H , (−)coH : AMH

H → AM,

form an adjoint pair with unit and counit

ηN : N → (N ⊗H)coH , n 7→ n⊗ 1; εM : M coH ⊗k H →M, m⊗ h 7→ mh.
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Proof. First, we show that f(n⊗ 1) ∈M coH : Since f is H-colinear,

%M (f(n⊗ 1)) =
∑

f(x̃1
ρ n⊗ x̃2

ρ)⊗ x̃3
ρ,

so we have

E(f(n⊗ 1)) =
∑

X̃1
ρ f(x̃1

ρ n⊗ x̃2
ρ)βS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ

f is (A, H)-bilinear =
∑

f(ρ(X̃1
ρ) (x̃1

ρ n⊗ x̃2
ρβS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ

=
∑

f([(X̃1
ρ)(0) x̃

1
ρ ⊗ (X̃1

ρ)(1)x̃
2
ρβS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ ] (n⊗ 1))

by (5.1) = f(n⊗ 1).

ψ := ψN,M and ψ′ := ψ′N,M are inverse to each other: For n ∈ N,h ∈ H, f ∈ AHomH
H(N ⊗H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) = ψ(f)(n)h = f(n⊗ 1)h = f(n⊗ h).

Conversely, for n ∈ N and g ∈ AHom(N,M coH),

[(ψ ◦ ψ′)(g)](n) = ψ′(g)(n⊗ 1) = g(n) 1 = g(n).

tu

Remark. For A = H, 5.3 implies 3.7 as a special case.

5.4. HN-type coinvariants of N ⊗H ∈ AMH
H . For any N ∈ AM, the HN-type coinvari-

ants of the two-sided Hopf module N ⊗H, come out as

(N ⊗H)coH ' N,

and for n ∈ N and h ∈ H, we have E(n⊗ h) = n⊗ ε(h)1H .

Proof. The definition of the right H-module structure of N ⊗H implies that (n⊗ h) =
(n⊗ 1)h. Now, by part (i) of 5.2, we have

E(n⊗ h) = E((n⊗ 1)h) = E(n⊗ 1)ε(h),

thus we are left to show that E(n⊗ 1) = n⊗ 1H :

E(n⊗ 1) =
∑

X̃1
ρ (n⊗ 1)0 βS(X̃2

ρ(n⊗ 1)1)αX̃3
ρ

=
∑

X̃1
ρ · (x̃1

ρ n⊗ x̃2
ρ)βS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ

=
∑

(X̃1
ρ)(0)x̃

1
ρ n⊗ (X̃1

ρ)(1)x̃
2
ρβS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ

by (5.1) = (1A ⊗ 1H) (n⊗ 1) = n⊗ 1H .

tu

This means that that the unit ηN : N → (N ⊗ H)coH of the adjunction in 5.3 is an
isomorphism with inverse map n ⊗ h 7→ nε(h) proving (again) the fully faithfulness of the
comparison functor −⊗k H : AM→ AMH

H (see 2.1 and 4.7).

5.5. Fundamental Theorem for AMH
H with HN-type coinvariants. Let (A, ρ, φρ)

be a right H-comodule algebra and M ∈ AMH
H . Consider M coH = E(M) as a left A-module

with left A-action I, defined by

a I m := E(am) =
∑

X̃1
ρa(0)m0 βS(X̃2

ρa(1)m1)αX̃3
ρ .

Then the map

εM : M coH ⊗H →M, m⊗ h 7→ mh,

is an isomorphism in AMH
H with inverse map ε′M (m) =

∑
E(m0)⊗m1.
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Proof. εM is an isomorphism of k-modules: for h ∈ H and n ∈ N ,

ε′M ◦ εM (n⊗ h) = ε′M (nh) =
∑
E(n0 h1)⊗ n1h2

by (i) =
∑
E(n0)ε(h1)⊗ n1h2

=
∑
E(n0)⊗ n1h =

∑
(E(n0)⊗ n1)(1⊗ h)

by (vii) = (n⊗ 1)(1⊗ h) = n⊗ h.

Conversely, for m ∈M ,

εM ◦ ε′M (m) = εM (
∑
E(m0)⊗m1) =

∑
E(m0)m1 = m.

We are left to show that εM is a morphism in AMH
H . By definition of the (A, H)-bimodule

structure of M coH ⊗H, for h ∈ H, a ∈ A and n ∈M coH ,

a · (n⊗ h) · h′ =
∑

a(0) I n⊗ a(1)hh
′ =

∑
E(a(0) n)⊗ a(1)hh

′.

Therefore, we have

εM (a · (n⊗ h) · h′) =
∑
E(a(0) n) a(1)hh

′

by (iii) =
∑

[a(0) I E(n)] a(1)hh
′

= a E(n)hh′ = anhh′ = a εM (n⊗ h)h′.

Finally, we show that ε′M (and therefore εM ) is H-colinear: for m ∈M ,

%M
coH⊗H(ε′M (m)) =

∑
E(x̃1

ρm0)⊗ x̃2
ρm11 ⊗ x̃3

ρm12

=
∑
E(m00X

1)⊗m01X
2 ⊗m1X

3

=
∑
E(m00)ε(X1)⊗m01X

2 ⊗m1X
3

=
∑
E(m00)⊗m01 ⊗m1

= (E ⊗ id)%M (m0) = (ε′M ⊗ id)%M (m).

tu

The above form of the Fundamental Theorem yields an additional characterisation of
coinvariants, for any M ∈ AMH

H , as

M coH = {n ∈M |%M (n) =
∑

(x̃1
ρ I n) x̃2

ρ ⊗ x̃3
ρ}

= Ke(%M − [(%M ⊗ id) ◦ (E ⊗ id⊗ id)(φ−1
ρ (−⊗ 1A ⊗ 1H))]).

5.6. Bulacu-Caenepeel-type coinvariants for AMH
H . Let A be a right H-comodule

algebra. With similar arguments as in (3.8) (see also [5]), for any M ∈ AMH
H , we consider

the projection
E : M →M, m 7→

∑
m0 βS(m1),

and define BC-type coinvariants for M ∈ AMH
H as

M coH := E(M) = {m ∈M | E(m) = m}.

This generalises the concept of coinvariants of quasi-Hopf bimodules M ∈ HMH
H .

5.7. HN versus BC-type projections. Let M ∈AMH
H and E , E : M →M be defined by

E(m) =
∑

X̃1
ρ m0 βS(X̃2

ρm1)αX̃3
ρ , E(m) =

∑
m0 βS(m1),

for all m ∈M . Then
(i) E(m) =

∑
E(x̃1

ρm) x̃2
ρβS(x̃3

ρ), E(m) =
∑
X̃1
ρ E(m)S(X̃2

ρ)αX̃3
ρ ,

(ii) E : M coH →M coH is an isomorphism in AM with inverse E : M coH →M coH .
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Proof. (i)∑
E(x̃1

ρm) x̃2βS(x̃3
ρ) =

∑
X̃1
ρ(x̃1

ρ)(0)m0 βS(X̃2
ρ(x̃1

ρ)(1)m1)αX̃3
ρ x̃

2
ρβS(x̃3

ρ)

=
∑

X̃1
ρ(x̃1

ρ)(0)m0 βS(m1)S(X̃2
ρ(x̃1

ρ)(1))αX̃3
ρ x̃

2
ρβS(x̃3

ρ)

=
∑

X̃1
ρ(x̃1

ρ)(0)E(m)S(X̃2
ρ(x̃1

ρ)(1))αX̃3
ρ x̃

2
ρβS(x̃3

ρ)

by (5.2) = E(m).

The other equality is an easy substitution of E(m).

(ii) For any m ∈M coH ,

E(E(m)) = E(
∑

m0 βS(m1))

=
∑

X̃1
ρ m00 β1S(m1)1βS(X̃2

ρm01β2S(m1)2)αX̃3
ρ

=
∑

X̃1
ρ m00 β1S(m1)1βS(S(m1)2)S(β2)S(X̃2

ρm01)αX̃3
ρ

=
∑

(X̃1
ρ m00 βS(X̃2

ρm01)αX̃3
ρ)ε(m1)ε(β)

= E(m0)ε(m1)ε(β) = E(m) = m.

On the other hand, for any m ∈M coH ,

E(E(m)) = E(
∑

X̃1
ρ m0 βS(X̃2

ρm1)αX̃3
ρ) = E(

∑
X̃1
ρ m0 βS(m1)S(X̃2

ρ)αX̃3
ρ)

= E(
∑

X̃1
ρ E(m)S(X̃2

ρ)αX̃3
ρ)

m∈McoH = E(
∑

X̃1
ρ mS(X̃2

ρ)αX̃3
ρ)

=
∑

(X̃1
ρ mS(X̃2

ρ)αX̃3
ρ)0 βS([X̃1

ρ mS(X̃2
ρ)αX̃3

ρ ]1)

=
∑

(X̃1
ρ m)0 S(X̃2

ρ)1(αX̃3
ρ)1βS((X̃1

ρ m)1S(X̃2
ρ)2(αX̃3

ρ)2)

=
∑

ε(X̃2
ρ)ε(αX̃3

ρ)(X̃1
ρ m)0 βS((X̃1

ρ m)1)

=
∑

ε(X̃2
ρ)ε(αX̃3

ρ)E(X̃1
ρ m) = E(m) = m.

For left A-linearity of E we compute

E(a . m) =
∑
E(a(0)m0 βS(a(1)m1))

=
∑

X̃1
ρa(0)(0) m00 β1S(a(1)m1)1βS(X̃2

ρa(0)(1)m01β2S(a(1)m1)2)αX̃3
ρ

=
∑

X̃1
ρa(0)(0) m00 β1S(a(1)m1)1βS(β2S(a(1)m1)2)S(X̃2

ρa(0)(1)m01)αX̃3
ρ

=
∑

X̃1
ρa(0)(0) m00 ε(β)ε(S(a(1)m1))βS(X̃2

ρa(0)(1)m01)αX̃3
ρ

=
∑

ε(a(1)m1)X̃1
ρa(0)(0) m00 βS(a(0)(1)m01)S(X̃2

ρ)αX̃3
ρ

=
∑

ε(a(1)m1)X̃1
ρ E(a(0)m0)S(X̃2

ρ)αX̃3
ρ = E(am) = a I E(m).

tu

With similar arguments as in [5, Lemma 3.6], we show

5.8. Characterisation of BC-type coinvariants in AMH
H .

(5.3) M coH = {m ∈M | %M (m) =
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2}.
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Proof. Let m ∈M coH . Then

%M (m) = %M (E(m)) =
∑

m00 β1S(m1)1 ⊗m01β2S(m1)2

by (2.10) =
∑

m00 δ
1f1S(m1)1 ⊗m01δ

2f2S(m1)2

by (2.9) =
∑

m00 δ
1S(m12)f1 ⊗m01δ

2S(m11)f2

by (2.8) =
∑

m00 x
1Y 1βS((m12x

3
2X

3Y 3)f1 ⊗m01x
2X1Y 2

1 βS((m11x
3
1X

2Y 2
2 )f2

by (2.6) =
∑

m00 x
1Y 1βS((m12x

3
2X

3Y 3)f1 ⊗m01x
2X1ε(Y 2)βS((m11x

3
1X

2)f2

by (2.4) =
∑

m00 x
1βS((m1x

3)2X
3)f1 ⊗m01x

2X1βS((m1x
3)1X

2)f2

by (4.3) =
∑

x̃1
ρm0 βS((x̃3

ρm12)2X
3)f1 ⊗ x̃2

ρm11X
1βS((x̃3

ρm12)1X
2)f2

by (2.2) =
∑

x̃1
ρm0 βS((x̃3

ρ)2X
3m12))f1 ⊗ x̃2

ρX
1m111βS((x̃3

ρ)1X
2m112))f2

by (2.6) =
∑

x̃1
ρm0 βS((x̃3

ρ)2X
3m12))f1 ⊗ x̃2

ρX
1ε(m11)βS((x̃3

ρ)1X
2)f2

=
∑

x̃1
ρm0 βS((x̃3

ρ)2X
3m1)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2

=
∑

x̃1
ρ E(m)S((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2

(m∈McoH) =
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2.

Conversely, if %M (m) =
∑
x̃1
ρmS((x̃3

ρ)2X
3)f1 ⊗ x̃2X1βS((x̃3

ρ)1X
2)f2, then

E(m) =
∑

m0 βS(m1)

=
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1βS(x̃2

ρX
1βS((x̃3

ρ)1X
2)f2)

=
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1βS(f2)S(x̃2

ρX
1βS((x̃3

ρ)1X
2))

by (2.11) =
∑

x̃1
ρmS((x̃3

ρ)2X
3)S(α)S(x̃2

ρX
1βS((x̃3

ρ)1X
2))

=
∑

x̃1
ρmS(x̃2

ρX
1βS((x̃3

ρ)1X
2)α(x̃3

ρ)2X
3)

=
∑

x̃1
ρmS(x̃2

ρX
1βS(X2)S((x̃3

ρ)1)α(x̃3
ρ)2X

3)

=
∑

x̃1
ρmS(x̃2

ρX
1βS(X2)ε(x̃3

ρ)αX
3)

=
∑

mS(X1βS(X2)αX3) = m.

tu
The above characterisation generalises the BC-coinvariants in (3.8). It can be also be

written as

M coH = Ke(%M − {
∑

(x̃1
ρ ⊗ x̃2

ρ) (−⊗ 1H) [S((x̃3
ρ)2X

3)f1 ⊗X1βS((x̃3
ρ)1X

2)f2]})

where f =
∑
f1 ⊗ f2 is the Drinfeld gauge element defined in equation (2.9).

A new left A-module structure on M ∈ AMH
H can be defined by

a . m :=
∑

a(0)mS(a(1)),

for a ∈ A, and m ∈ M , where ρ(a) =
∑
a(0) ⊗ a(1). With this left A-action, M coH can be

considered as a left A-submodule of M . It is straightforward to see that for any morphism
g : M → L in AMH

H , we have g(M coH) ⊆ LcoH . This leads to an alternative coinvariants
functor

(−)coH : AMH
H → AM,

which we will show to be right adjoint to the comparison functor −⊗k H (from 4.4).

5.9. The adjoint pair (− ⊗k H, (−)coH) for BC-type coinvariants. Let A be a right
H-comodule algebra, N ∈ AM and M ∈ AMH

H .
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(1) There is a functorial isomorphism

ψN,M : AHomH
H(N ⊗H,M) −→ AHom(N,M coH), f 7→ [n 7→ f(x̃1

ρ n⊗ x̃2
ρβS(x̃3

ρ))],

with inverse map ψ′N,M given by g 7→ [n⊗ h 7→
∑
X̃1
ρ g(n)S(X̃2

ρ)αX̃3
ρh)].

(2) The functors (−⊗k H, (−)coH) form an adjoint pair with unit and counit

η̄N : N → (N ⊗H)coH , n 7→
∑
x̃1
ρ n⊗ x̃2

ρβS(x̃3
ρ),

ε̄M : M coH ⊗k H →M, m⊗ h 7→
∑
X̃1
ρ mS(X̃2

ρ)αX̃3
ρh.

(3) the unit map η̄N is an isomorphism, in particular

(N ⊗H)coH = {
∑

x̃1
ρ n⊗ x̃2

ρβS(x̃3
ρ) |n ∈ N}.

Proof. (1) We show that ψ and ψ′ are inverse to each other. For n ∈ N , h ∈ H and
f ∈ AHomH

H(N ⊗H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) =
∑

X̃1
ρ ψ(f)(n)S(X̃2

ρ)αX̃3
ρh

=
∑

X̃1
ρ f(x̃1

ρ n⊗ x̃2
ρβS(x̃3

ρ)S(X̃2
ρ))αX̃3

ρh

f is (A, H)-bilinear =
∑

f(ρ(X̃1
ρ)[x̃1

ρ n⊗ x̃2
ρβS(x̃3

ρ)S(X̃2
ρ)αX̃3

ρh])

=
∑

f((X̃1
ρ)(0)x̃

1
ρ n⊗ (X̃1

ρ)(1)x̃
2
ρβS(X̃2

ρ x̃
3
ρ)αX̃

3
ρh) =

(5.1) f(n⊗ h).

Conversely, for n ∈ N and g ∈ AHom(N,M coH),

[(ψ ◦ ψ′)(g)](n) = ψ′(g)(x̃1
ρ n⊗ x̃2

ρβS(x̃3
ρ))

=
∑

X̃1
ρ g(x̃1

ρ n)S(X̃2
ρ)αX̃3x̃2

ρβS(x̃3
ρ)

g is left A-linear =
∑

X̃1
ρ (x̃1

ρ . g(n))S(X̃2
ρ)αX̃3

ρ x̃
2
ρβS(x̃3

ρ)

=
∑

X̃1
ρ(x̃1

ρ)(0) g(n)S((x̃1
ρ)(1))S(X̃2

ρ)αX̃3
ρ x̃

2
ρβS(x̃3

ρ)

=
∑

X̃1
ρ(x̃1

ρ)(0) · g(n) · S(X̃2
ρ(x̃1

ρ)(1))αX̃3
ρ x̃

2
ρβS(x̃3

ρ)
=

(5.2) g(n).

(2) is a consequence of (1).

(3) For n⊗ h ∈ (N ⊗H)coH ,

%N⊗H(n⊗ h) =
∑

x̃1
ρ · (n⊗ h) · S((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2

=
∑

(x̃1
ρ)(0) n⊗ (x̃1

ρ)(1)hS((x̃3
ρ)2X

3)f1 ⊗ x̃2
ρX

1βS((x̃3
ρ)1X

2)f2.

On the other hand, %N⊗H(n⊗ h) =
∑
x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2.

Comparing this two values for %N⊗H(n ⊗ h) and applying id ⊗ ε ⊗ id on both sides, we
obtain

n⊗ h =
∑

ε(h)(x̃1
ρ n⊗ x̃2

ρβS(x̃3
ρ)).

This shows that the unit map η̄N is an isomorphism with inverse map n⊗ h 7→ nε(h). This
shows again that the comparison functor is fully faithful. tu

5.10. Fundamental Theorem for AMH
H with BC-type coinvariants. Let (A, ρ, φρ) be

a right comodule algebra and M ∈ AMH
H . Consider M coH ⊗ H as an object in AMH

H with
the structures

a · (n⊗ h) · h′ =
∑

a1 . n⊗ a2hh
′, %′(n⊗ h) =

∑
x̃1
ρ . n⊗ x̃2

ρh1 ⊗ x̃3
ρh2,

for h, h′ ∈ H, a ∈ A and n ∈M coH . Then the map

ε̄M : M coH ⊗H →M, n⊗ h 7→
∑

X̃1
ρ nS(X̃2

ρ)αX̃3
ρh

is an isomorphism in AMH
H with inverse map ε̄′M given by m 7→

∑
E(m0)⊗m1.
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Proof. By 5.7, we have the isomorphism E : M coH → M coH in AM and tensoring it
with H, we obtain

E ⊗ idH : M coH ⊗H →M coH ⊗H,

as an isomorphism in AMH
H . By the Hausser-Nill version of the Fundamental Theorem for

AMH
H 3.8, there is an isomorphism εM : M coH⊗H →M, m⊗h 7→ mh in AMH

H . Combining
these two isomorphisms, we have the isomorphism

ε̄M = εM ◦ (E ⊗ id) : M coH ⊗H →M coH ⊗H →M,

m⊗ h 7→ E(m)⊗ h 7→ E(m)h =
∑

X̃1
ρ m0 βS(X̃2

ρm1)αX̃3
ρh

=
∑

X̃1
ρ m0 βS(m1)S(X̃2

ρ)αX̃3
ρh =

∑
X̃1
ρ E(m)S(X̃2

ρ)αX̃3
ρh

m∈McoH =
∑

X̃1
ρ mS(X̃2

ρ)αX̃3
ρh.

The inverse map ε̄′M can also be computed directly as

ε̄′M (m) = (E ⊗ id)(
∑
E(m0)⊗m1) =

∑
E(E(m0))⊗m1

=
∑
E(X̃1

ρ m00 βS(X̃2
ρm01)αX̃3

ρ)⊗m1

=
∑
E(X̃1

ρ m00)ε(β)ε(X̃2
ρm01)ε(αX̃3

ρ)⊗m1 =
∑
E(m0)⊗m1.

tu

As shown in the proceding sections, for any comodule algebra A over H, the right adjoint
of the comparison functor −⊗kH (from 4.4) can be written in three different forms, namely

AHomH
H(H ⊗H,−), (−)coH and (−)coH :AMH

H →AM.

These have to be isomorphic and we describe the isomorphisms explicitly.

5.11. Coinvariants for AMH
H as Hom-functor. Let H be a quasi-Hopf algebra, (A, ρ, φρ)

a right H-comodule algebra, and M ∈ AMH
H .

(1) There is a functorial isomorphism in AM,

ψ̄M : AHomH
H(A⊗k H,M)→M coH , f 7→ f(1A ⊗ 1H),

with inverse map ψ̄′M given by m 7→ [a⊗ h 7→ E(am)h].

(2) There is a functorial isomorphism in AM,

θ̄M : AHomH
H(A⊗k H,M)→M coH , f 7→

∑
f(x̃1

ρ ⊗ x̃2
ρβS(x̃3

ρ)),

with inverse map θ̄′M given by m 7→ [a⊗ h 7→ E(am)h].

Proof. (1) Substituting N = A in the isomorphism in 5.3, we obtain for M ∈ AMH
H the

isomorphisms

ψ̄M : AHomH
H(A⊗k H,M)

ψA,M−→ AHom(A,M coH) ∼= M coH ,

f 7→ [a 7→ f(a⊗ 1H)] 7→ f(1A ⊗ 1H).

The inverse map ψ̄′M is obtained as the composition

M coH ∼= AHom(A,M coH)
ψ′A,M−→ AHomH

H(A⊗k H,M),

m 7→ [a 7→ a I m = E(am)] 7→ [a⊗ h 7→ E(am)h].

Here, ψA,M is the isomorphism given in 5.3 and ψ′A,M is its inverse.
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It remains to show that ψ̄M is left A-linear: For a ∈ A and f ∈AHomH
H(A⊗H,M),

a I ψ̄M (f) = E(a f(1A ⊗ 1H)) =
∑
E(f(a(0) ⊗ a(1)))

=
∑

X̃1
ρ f(a(0) ⊗ a(1))0 βS(X̃2

ρf(a(0) ⊗ a(1))1)αX̃3
ρ

f is H-colinear =
∑

X̃1
ρ f(x̃1

ρa(0) ⊗ x̃2
ρa(1)1βS(X̃2

ρ x̃
3
ρa(1)2)αX̃3

ρ)

f is A-linear =
∑

f(ρ(X̃1
ρ) (x̃1

ρa(0) ⊗ x̃2
ρa(1)1)βS(a(1)2)S(x̃3

ρ)S(X̃2
ρ)αX̃3

ρ)

by (2.6) =
∑

f(ρ(X̃1
ρ) (x̃1

ρa⊗ x̃2
ρβS(x̃3

ρ)S(X̃2
ρ)αX̃3

ρ)

=
∑

f([(X̃1
ρ)(0) x̃

1
ρ ⊗ (X̃1

ρ)(1)x̃
2
ρβS(X̃2

ρ x̃
3
ρ)αX̃

3
ρ ](a⊗ 1))

by (5.1) = f(a⊗ 1H) = (a · f)(1A ⊗ 1H) = ψ̄M (a · f).

(2) Setting N = A in the isomorphism given in 5.9, we obtain the isomorphisms

θ̄M : AHomH
H(A⊗k H,M)

ψA,M−→ AHom(H,M coH) ∼= M coH ,

f 7→ [a 7→ E(f(a⊗1)) =
∑

f(x̃1
ρa⊗x̃2

ρβS(x̃3
ρ))] 7→ E(f(1A⊗1H)) =

∑
f(x̃1

ρ⊗x̃2
ρβS(x̃3

ρ)).

The inverse map θ̄′M is obtained as the composition

θ̄′M : M coH ∼= AHom(A,M coH)
ψ′A,M−→ AHomH

H(A⊗k H,M),

m 7→ [a 7→ a . m = E(am)] 7→ {a⊗ b 7→
∑

q̃1
ρ E(am)S(q̃2

ρ)h = E(am)h}.

Here, ψA,M is the isomorphism given in 5.9 and ψ′A,M is its inverse.
Similar to part (1), considering the left A-action . on M coH , we must show that θ̄M is

left A-linear: for a ∈ A and f ∈AHomH
H(A⊗H,M),

a . θ̄M (f) = E(a f(1A ⊗ 1H)) =
∑
E(f(a(0) ⊗ a(1)))

=
∑

f(a(0) ⊗ a(1))0 βS(f(a(0) ⊗ a(1))1)

f is H-colinear =
∑

f(x̃1
ρa(0) ⊗ x̃2

ρa(1)1βS(x̃3
ρa(1)2))

=
∑

f(x̃1
ρ a⊗ x̃2

ρβS(x̃3
ρ)) = (a · f)(x̃1

ρ ⊗ x̃2
ρβS(x̃3

ρ)) = θ̄M (a · f).

tu

Remark. Part (2) can also be proved by composing the isomorphism ψ̄M from part (1)
with the isomorphism E : M coH →M coH leading to the isomorphism

AHomH
H(A⊗k H,M)

ψ̄M−→M coH E−→M coH ,

given by

f 7→ f(1⊗ 1) 7→ E(f(1⊗ 1)) =
∑

f(1⊗ 1)0 βS(f(1⊗ 1)1)

by H-colinearity of f =
∑

f(x̃1
ρ ⊗ x̃2

ρ)βS(x̃3
ρ)

by H-linearity of f =
∑

f(x̃1
ρ ⊗ x̃2

ρβS(x̃3
ρ)).

The inverse map comes out as

m
θ′7→ {a⊗ h 7→ E(a E(m))h =

∑
E([a(0) I E(m)] a(1))h

= [
∑
E(a(0) I E(m))ε(a(1))]h

= [E(a I E(m))]h = [E(E(am))]h = E(am)h}.
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