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Abstract. Generalising modules over associative rings, the notion of mod-
ules for an endofunctor of any category is well established and useful in large
parts of mathematics including universal algebra. Similarly, comodules over
coalgebras are the model for comodules for an endofunctor and they are of
basic importance. Compatibility conditions between endofunctors can be de-
scribed by distributive laws. We use these ingredients to define bimonads and
Hopf monads on arbitrary categories thus making these notions accessible to
universal algebra.

1. Introduction

The language of category theory is a universal tool in various parts of mathe-
matics like algebra, topology, logic, universal algebra and computer science. Many
notions were introduced by transfer from algebra. Associative algebras were gener-
alised to monads on arbitrary categories, and coassociative coalgebras (or corings)
lead to comonads on categories. Related to these the categories of modules for a
monad and comodules for a comonad are studied. It was observed by Beck [Beck],
van Osdol [Osdol], and others that the compatibility between monads and comon-
ads can be controlled by distributive laws. These ideas again showed up recently in
papers from theoretical computer science (e.g. Turi and Plotkin [TuPl]).

The purpose of this talk is to recall the fundamental terminology from algebra
in a form which makes it quite obvious how to transfer them to general categories.
In particular we will focus on bialgebras and Hopf algebras and their interpretation
as bimonads on categories. Most of the generalisations of the classical situation
were formulated for categories with a tensor product, i.e., monoidal categories (e.g.
Moerdijk [Moer], Bruguières-Virelizier [BruVir]). We want to avoid any con-
ditions on the base category. This is possible by posing all requirements on the
functors and for this we exploit the fact that the endofunctors do carry a monoidal
structure.

For more details on the subject the reader is referred to Mesablishvili [Mes,
MesWis], Škoda [SkoDis, SkoNon], and [Wis] and the literature cited there.

2. Preliminaries

In this section we recall the basic definitions for modules and comodules.
Throughout R will be a commutative associative ring with identity.
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2.1. Algebras. An algebra over a ring R is an R-module A with linear maps

µ : A⊗R A→ A, η : R→ A,

the multiplication and unit, inducing commutative diagrams

A⊗R A⊗R A
I⊗µ //

µ⊗I
��

A⊗R A

µ

��
A⊗R A

µ // A,

A
η⊗I //

I

%%LLLLLLLLLLLL

I⊗η
��

A⊗R A

µ

��
A⊗R A

µ // A

2.2. A-modules. An R-module M is said to be a left A-module provided there
is an R-linear map

ρM : A⊗RM →M, a⊗m 7→ am,

with commutative diagrams

A⊗R A⊗RM
I⊗ρM //

µ⊗I
��

A⊗RM

ρM

��
A⊗RM

ρM // M

, M
η⊗I//

=
$$III

III
III

I A⊗RM
ρM

��
M

,

Homomorphisms between modules are maps which respect the structural maps
and this can be expressed as follows:

2.3. Module homomorphisms. Given left A-modules M and N , an A-
module (homo)morphism is an R-linear map f : M → N with a commutative
diagram

A⊗RM
I⊗f //

ρM

��

A⊗R N
ρN

��
M

f // N .

2.4. Category of left A-modules AM. The left A-modules as objects and
the A-module homomorphisms as morphisms form a category, the category of left
A-modules which we denote by AM.

AM is an abelian category with products and coproducts, kernels and cokernels.
This follows partly from properties of the base category, the R-modules, and partly
from properties of the functor A⊗R −.

Reversing the arrows in the above diagrams we arrive at the notion of coalge-
bras and comodules. Notice that this is not a proper ”dualisation process” in the
categorical sense because the tensor product (which has a considerable influence on
the resulting constructions) is maintained.

2.5. Coalgebras. A coalgebra over a ring R is an R-module C with linear
maps

∆ : C → C ⊗R C, ε : C → R,

the comultiplication and the counit, inducing commutative diagrams
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C
∆ //

∆

��

C ⊗R C

I⊗∆

��
C ⊗R C

∆⊗I // C ⊗R C ⊗R C ,

C
∆ //

I

%%LLLLLLLLLLL

∆

��

C ⊗R C

ε⊗I
��

C ⊗R C
I⊗ε

// C .

It is fairly obvious how comodules are to be defined:

2.6. C-comodules. A left C-comodule is an R-module M with an R-linear
map

ρM : M −→ C ⊗RM,

inducing commutative diagrams

M
ρM

//

ρM

��

C ⊗RM

∆⊗I
��

C ⊗RM
I⊗ρM

// C ⊗R C ⊗RM,

M
ρM

//

=
$$III

III
III

I C ⊗RM

ε⊗I
��
M

.

2.7. C-comodule morphisms. Given left C-comodules M and N , a C-
comodule morphism is an R-linear map f : M → N with a commutative diagram

M
f //

ρM

��

N

ρM

��
C ⊗RM

I⊗f // C ⊗R N.

2.8. Category of left C-comodules CM. The left C-comodules and co-
module homomorphisms form the category of left C-comodules which we denote by
CM.

CM is an additive category with coproducts and cokernels. However, the exis-
tence of kernels is not always guaranteed. Moreover, monomorphisms need not be
injective maps. This is a consequence of the fact that the functor C ⊗R− need not
be left exact.

Given an algebra and a coalgebra the question arises if there is a reasonable
way to express compatibility of the two structures.

2.9. Entwining algebras and coalgebras. Given an R-algebra (A,µ, η) and
an R-coalgebra (C,∆, ε), an R-linear map

ψ : C ⊗R A→ A⊗R C

is called an entwining map (in [BrzMaj]) provided it implies commutativity of the
diagrams

C ⊗A⊗A
I⊗µ //

ψ⊗I
��

C ⊗A

ψ

��

∆⊗I // C ⊗ C ⊗A
I⊗ψ // C ⊗A⊗ C

ψ⊗I
��

A⊗ C ⊗A
I⊗ψ // A⊗A⊗ C

µ⊗I // A⊗ C
I⊗∆ // A⊗ C ⊗ C,
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C
I⊗η //

η⊗I ##FF
FF

FF
FF

F C ⊗A

ψ

��

ε⊗I // A

A⊗ C.

I⊗ε

;;xxxxxxxxx

A comultiplication can be defined on A ⊗R C giving it the structure of an
A-coring (e.g. [BrzWis, Section 32]).

2.10. Entwined modules. Given an entwined pair (A,C, ψ) of an algebra
and a coalgebra, let M be an R-module with an

A-module structure %M : M ⊗R A→M and a
C-comodule structure %M : M →M ⊗R C.

Then M is an entwined module if the diagram

M ⊗A
%M //

%M⊗IA

��

M
%M

// M ⊗ C

M ⊗ C ⊗A
I⊗ψ // M ⊗A⊗ C,

%M⊗I

OO

is commutative (e.g. [BrzWis, 32.4]).
Morphisms between entwined module M and N are maps M → N which are

A-module as well as C-comodule morphisms.
The resulting category of entwined modules is an additive category with coprod-

ucts and cokernels but not necessarily with kernels (see 2.8). It can be identified
with the category of comodules over the coring A⊗R C (see 2.9).

Considering the case B = A = C in 2.9 we obtain:

2.11. Bialgebras. An R-bialgebra is an R-module B that is an
algebra µ : B ⊗R B → B, η : R→ B, and a

coalgebra ∆ : B → B ⊗R B, ε : B → R,

such that
∆ and ε are algebra morphisms, or equivalently,
µ and η are coalgebra morphisms.

In this case, multiplication and comultiplication on B ⊗R B are derived from
the canonical twist map tw : B⊗RB → B⊗RB, a⊗ b 7→ b⊗ a, which also induces
an entwining map

ψ : B ⊗R B → B ⊗R B, a⊗ b 7→ (1⊗ a)∆(b).

and with this the compatibility conditions can be formulated as in 2.9.
Note that the ordinary twist map can more generally be replaced by some

braiding map (e.g. [Wis, 5.16]). Not all entwining maps are derived from a braiding.

2.12. Bimodules. A right (mixed) B-bimodule (or Hopf module) over a bial-
gebra B is an R-module M which is a B-module and a B-comodule

ρM : M ⊗R B →M , ρM : M →M ⊗R B,
such that

ρM (mb) = ρM (m) ·∆(b), for b ∈ B, m ∈M.

Similar to the situation in 2.11, this compatibility condition can be expressed by
the entwining induced by the twist map (or a braiding map). The related category
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of right mixed B-bimodules, denoted by MB
B , has the bimodules as objects and

morphisms are maps which are module and comodule morphisms. B induces a
fully faithful functor

φBB : RM → MB
B , M 7→M ⊗R B.

2.13. Hopf algebras. An R-bialgebra B is a Hopf algebra if the functor φBB is
an equivalence.

Traditionally Hopf algebras are characterised by the existence of

2.14. Antipodes. An R-linear map S : B → B is called an antipode if it
induces commutativity of the diagram

B
ε //

∆

��

R
η // B

B ⊗R B
S⊗I //
I⊗S

// B ⊗R B.

µ

OO

The antipode S can also be characterised as the inverse of the identity map
with respect to the convolution product in EndR(B) (e.g. [BrzWis, Section 15]).

2.15. Fundamental Theorem. For a bialgebra B, the following assertions
are equivalent:

(a) B has an antipode;
(b) the functor φBB : RM → MB

B is an equivalence.

3. Monads and comonads in general categories

The notions considered in the preceding section are written in a way which
allows a straightforward transfer to arbitrary categories. Little knowledge is needed
from category theory and for the convenience of the reader we repeat the basic facts.

3.1. Categories A. A category A consists of classes of objects Obj(A),
morphism sets Mor(A), such that for any objects A,B,C we have

• MorA(A,B) ∩MorA(A′, B′) = ∅ for (A,B) 6= (A′, B′);
• composition maps

MorA(A,B)×MorA(B,C) → MorA(A,C);

• identity morphisms IA ∈ MorA(A,A).

Two categories may be related by

3.2. Functors. A covariant functor F : A → B consists of assignments

Obj(A) → Obj(B), A 7→ F (A)

Mor(A) → Mor(B), f : A→ A′ 7→ F (f) : F (A) → F (A′)

such that for g : A′′ → A and f : A→ A′,
F (fg) = F (f)F (g) and F (IA) = IF (A).

Contravariant functors reverse the composition of maps. Here we will only be
concerned with covariant functors.
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The connection between two functors from a category A to a category B are
described by

3.3. Natural transformations. A natural transformation α : F → G between
functors F,G : A → B is given by morphisms

αA : F (A) → G(A) in B, A ∈ A,
such that f : A→ A′ in A induces the commutative diagram in B

F (A)
F (f) //

αA

��

F (A′)

αA′

��
G(A)

G(f) // G(A′) .

3.4. Adjoint functors. Given two categories A and B, a functor L : A → B
is said to be left adjoint to a functor R : B → A if there are natural isomorphisms
(in A ∈ Obj(A) and B ∈ Obj(B))

ϑA,B : MorB(L(A), B) → MorA(A,R(B)).

Associated to such functors are natural transformations
unit η : IA → RL and counit ε : LR→ IB.

Because of its importance we have a look at the functor which was indispensable
for our Section 2.

3.5. Tensor functor. For any R-algebra A we have the tensor functor

A⊗R − : RM −→ RM,

objects M 7→ A⊗RM,

morphisms f : M → N 7→ I ⊗ f : A⊗RM → A⊗R N.

It is left adjoint to the functor HomR(A,−) : RM → RM by the canonical
isomorphisms for R-modules M,N ,

HomR(A⊗RM,N) → HomR(M,HomR(A,N)).

The functor A ⊗R − has the property that its composition A ⊗R A ⊗R − is
related with A⊗R −: the multiplication induces a natural transformation

µ⊗− : A⊗R A⊗R − → A⊗R −.

Also the associativity conditions in 2.1 give rise to natural transformations of the
compositions of A⊗R −. This leads to the following definition for endofunctors:

3.6. Monads. A monad is a triple F = (F, µ, η), where F : A → A is a functor
and

µ : FF → F , η : IA → F ,
are natural transformations with commutative diagrams

FFF
µF //

Fµ

��

FF

µ

��
FF µ

// F ,

F
ηF //

Fη

��

=

""EEEEEEEE FF

µ

��
FF µ

// F .
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Of course, A ⊗R − : RM → RM is a monad if and only if A is an associative
R-algebra with unit.

The definitions of A-modules and their morphisms are generalised to

3.7. F -modules and their morphisms. Given an endofunctor F : A → A,
an object A ∈ Obj(A) is an F -module provided there is a morphism

%A : F (A) → A in A.
A morphism f : A→ A′ in A between F -modules is an F -module morphism if

it induces commutativity of the diagram

F (A)
F (f) //

%A

��

F (A′)

%A′

��
A

f // A′ .

Obviously, the composition of two F -module morphisms is again of this type
and thus we have the category of F -modules which we denote by AF .

Note that F -modules are defined for any functors F : A → A. So, for example,
any R-module N gives rise to a functor N⊗R− : RM → RM. In 2.2, for associative
algebras A we put more conditions on the A-modules. Similarly, the modules over
any monad should be compatible with the defining properties of the monad:

3.8. Modules for monads. Given a monad F = (F, µ, η) on a category A, an
F-module is an object A ∈ Obj(A) with a morphism

%A : F (A) → A

inducing commutative diagrams

FF (A)
µA //

F%A

��

F (A)

%A

��

A
ηA //

IA !!CC
CC

CC
CC

C F (A)

%A

��
F (A)

%A

// A , A .

In particular, for any A ∈ Obj(A), F (A) is an F-module by

µA : FF (A) → F (A).

This yields the free functor

φF : A → AF, A 7→ F (A),

which is left adjoint to the forgetful functor UF : AF → A by the bijection

MorAF
(F (A), B) → MorA(A,UF (B)), f 7→ f ◦ ηA.

Although the modules for a monad F are fairly close to the modules over an
associative unital algebra, there are many properties of the category of A-modules
which are not shared by all F-modules. This depends on the special properties of
A⊗R−: it is a right exact functor which preserves direct sums and cokernels. This
implies, for example, that A ⊗R R, the image of R, is a (projective) generator in
AM.

The notions of coalgebras and comodules as considered in 2.5 and 2.6 are the
blueprint for the introduction of comonads and their comodules.
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3.9. Comonads. A comonad on a category A is a triple G = (G, δ, ε), where
G : A → A is a functor and

δ : G→ GG, ε : G→ IA,
are natural transformations with commuting diagrams

G
δ //

δ

��

GG

Gδ

��
GG

δG // GGG ,

G
δ //

δ

��

=

""EEEEEEEE GG

εG

��
GG

Gε
// G.

3.10. G-comodules and their morphisms. A G-comodule for any functor
G : A → A is an A ∈ Obj(A) with a morphism in A,

%A : A→ G(A).

A G-comodule morphism between G-comodules A and A′ is a morphism f :
A→ A′ in A with a commutative diagram

A
f //

%A

��

A′

%A′

��
G(A)

G(f) // G(A′) .

The G-comodules with the morphisms defined above form a category which we
denote by AG.

3.11. Comodules for comonads. A G-comodule is an object A ∈ Obj(A)
with a morphism

%A : A→ G(A) in A
and commutative diagrams

A
%A

//

%A

��

G(A)

δA

��

A
%A

//

IA ##FF
FF

FF
FF

FF
G(A)

εA

��
G(A)

G%A

// GG(A) , A.

For any object A ∈ Obj(A), G(A) is a comodule canonically and thus we have
the free functor

φG : AG → AG, A 7→ G(A),
which is right adjoint to the forgetful functor UG : AG → A by the bijection

MorAG(B,G(A)) → MorA(UG(B), A), f 7→ εA ◦ f.

As observed for A-modules and F-modules, in general the category of C-
comodules and G-comodules may differ considerably depending on the properties
of the comonad G.

Having transferred algebras and coalgebras to monads and comonads on arbi-
trary categories the question arises how to express the compatibility conditions as
considered in 2.9 for monads and comonads. The key to this is provided by John-
stone’s lifting theorem from [John]. The resulting diagrams are called distributive
laws (e.g. [Beck], [Osdol]).



HOPF MONADS ON CATEGORIES 9

3.12. Lifting of endofunctors. Let F and G be endofunctors of the category
A. Liftings of a functor T : A → A are functors

T : AF → AF and T̂ : AG → AG

with commutative diagrams

AF
T //

UF

��

AF

UF

��
A T // A,

AG
bT //

UG

��

AG

UG

��
A T // A.

Such liftings need not always exist and we are asking under which conditions
they do exist. We first consider the case of monads.

3.13. Lifting of monads. For a monad F = (F, µ, η) on A, the liftings

T : AF → AF of T : A → A
are in bijective correspondence with the natural transformations

λ : FT → TF

with commutative diagrams

FFT
µT //

Fλ

��

FT

λ

��
FTF

λF // TFF
Tµ // TF,

T
ηT //

Tη !!CC
CC

CC
CC

FT

λ

��
TF.

Knowing about the existence of a lifting we still do not know which properties
it has. So we may ask when it is a monad.

3.14. Lifting of monads to monads. If T = (T, µ′, η′) is a monad, then the
lifting

T : AF → AF of T : A → A
with natural transformation

λ : FT → TF

is a monad if and only if we have commutative diagrams

FTT
Fµ′

//

λT

��

FT

λ

��
TFT

Tλ // TTF
µ′

F // TF,

F
Fη′

//

η′
F !!CC

CC
CC

CC
FT

λ

��
TF.

The entwining structures considered in 2.9 correspond to the

3.15. Mixed distributive laws. Given a monad F = (F, µ, η) and a comonad
G = (G, δ, ε) on the category A, a natural transformation

λ : FG→ GF
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is called a mixed distributive law or an entwining provided it induces commutative
diagrams

FFG
µG //

Fλ

��

FG

λ

��
FGF

λF // GFF
Gµ // GF,

FG
Fδ //

λ

��

FGG
λG // GFG

Gλ

��
GF

δF // GGF,

G
ηG //

Gη !!CC
CC

CC
CC

FG

λ

��
GF,

FG
Fε //

λ

��

F

GF.

εF

=={{{{{{{{

3.16. Mixed bimodules. For a monad F = (F, µ, η) and comonad G =
(G, δ, ε) on A with an entwining λ : FG → GF , mixed bimodules are defined as
those A ∈ Obj(A) with morphisms

F (A) h // A
k // G(A)

such that (A, h) is an F-module and (A, k) is a G-comodule satisfying the pentagonal
law

F (A) h //

F (k)

��

A
k // G(A)

FG(A)
λA // GF (A).

G(h)

OO

A morphism f : A→ A′ between two mixed bimodules is a bimodule morphism
provided it is both an F -module and a G-comodule morphism. These notions yield
the category of mixed bimodules which we denote by AGF .

We are now prepared to formulate the conditions on bialgebras from 2.11 for
endofunctors.

3.17. Mixed bimonads and bimodules. An endofunctor B : A → A is
called a (mixed) bimonad if it is a

• monad B = (B,µ, η) and a comonad B = (B, δ, ε)
• with an entwining functorial morphism ψ : BB → BB

inducing commutativity of the diagram

BB
µ //

Bδ

��

B
δ // BB

BBB
ψB // BBB.

Bµ

OO

For a bimonadB, mixed B-bimodules are defined asB-modules andB-comodules
A satisfying the pentagonal law

B(A)
%A //

B(%A)

��

A
%A

// B(A)

BB(A)
ψA // BB(A).

B(%A)

OO
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Taking as morphisms A → A′ between bimodules the morphisms which are B-
module and B-comodule morphisms, we obtain the category of mixed B-bimodules
denoted by ABB .

The diagram for mixed bimonads implies that for any A ∈ Obj(A), B(A) is a
mixed B-bimodule and thus we get a functor

φBB : A → ABB , A 7→ B(A),

which is full and faithful by the functorial isomorphisms for A,A′ ∈ Obj(A),

MorBB(B(A), B(A′)) ' MorB(B(A), A′) ' MorA(A,A′).

As for bialgebras, we may consider the case when the functor φBB is an equiva-
lence of categories. Furthermore, we may define an

3.18. Antipode. An antipode for a mixed bimonad B : A → A is a natural
transformation S : B → B with commutative diagram

B
ε //

δ

��

I
η // B

BB
SB //
BS

// BB.

µ

OO

3.19. Hopf bimonads. For a bimonad B on a category A one can require:
• B has an antipode;
• the functor φBB : A → B

BA is an equivalence.
The two conditions are equivalent provided A has equalisers and colimits and

B preserves colimits.

For a deeper study of these conditions the reader is referred to [MesWis].
We conclude by recalling a familiar example of a non-additive Hopf monad on

the category of sets (e.g. [Wis, 5.19]).

3.20. Bimonads on Set.
• Endofunctor G×− : Set → Set, A 7→ G×A
• G×− monad, G is monoid
• G×− comonad, δ : G→ G×G, g 7→ (g, g)
• entwining morphism ψ : G×G→ G×G, (g, h) 7→ (gh, g)

Hopf monads on Set. For a set G the following assertions are equivalent:
(a) G×− is a bimonad and φGG : Set → SetGG is an equivalence;
(b) G×− is a bimonad with antipode S : G×− → G×−;
(c) G is a group.

Here the antipode is given by the map

s : G→ G, g 7→ g−1.
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