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LOCALIZATION OF MODULES AND THE CENTRAL CLOSURE OF RINGS
Robert Wisbauer

Universitat Dusseldorf
Universitatsstrasse 1
D-4000 Dusseldorf

General torsion theory in o[M]

The singular torsion theory

The torsion theory determined by the M-injective
hull of M

The central closure of s (nonagsociative) ring

B

Introduction

Let R be an associative ring with unity ana R-MOD
the category of unitary left R-modules. For any
MeR-MOD we denote by o[M] the full subcategory of
R-MOD, whose objects are the submodules of M-genera-

ted mcdules.

o[M] is a (locally finite) Grothendieck category
and hence we can apply the abstract localization theory
for this type of category as presented in Gabriel [8].
The technigues involved are guite similar to those

used for localization in the full module category
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R-MOD (Goldman [11], Golan [9])with two major differ-
ences:

(1) there is no distinguished (projective) generator
in o[M] and for this reason torsion theory is
not described by a filter of subobjects of &
single object;

(2) the ring R need not to be contained in o[M]
and hence we do not, in fact can not, alm at a
gquotient ring (of R) in our theory.

In case R is in o[M] we have o[M] = R-MOD and our
considerations lead to the usual torsion theory in

R-MOD, i.e. we also obtain a guotient ring for R.

In §1 we develop a torsion and localization theory

in o[M] starting from a torsion class ¥ of modules.

The main result gives us a direct limit representation
of the endomorphism ring of the quotient module QI(N)
of an Neo[M] (Theorem (1.9)). Its application to R-MOD
yields known results on the quotient ring of R

(Theorem (1.11)).

4§ 2 and 3 are devoted to special torsion theories
in o[M]. Call a module N M-singular, if there is an
exact sequence in o[M] O - X =+ L -> N~ 0 with K
essential in L. The class of M-singular modules is a
subclass of the singular modules in R-MOD. In §2 we

study the torsion theory determined by the M-singular
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modules in o[M]. Here the gquotient modules are
M-injective and the endomorphism ring of a quotient

module is regular and self-injective. In case Reo[M]

.we Obtain the Goldie torsion theory in R-MOD and the

guotient module of M is a generator for the guotient

ring of R (Theoren (2.5)).

The torsion theory in o[M] defined by the
M-injective hull M oor M is developed in §3. Notice
that ﬁ is a quagi-injective module in R-MOD but an
injective module in o[M]. In general guasi-injective
modules do not permit localization in R-MOD (see

Lambek [15]). We call a submodule K€M rational in M,

if HomR(M/K,ﬁ)=O. Our main interest is in modules whose
essential submodules are rationsl in M. In this case
the gquotient module of M isg Just the M-injective hull
# of M. The condition is in fact weaker than M being
non M-singular (Prop.(3.2)). The theorems obtained
((3.4)-(3.9)) have as special cases

- the Goldie theorem for associative semiprime rings;

properties of the endomorphism ring of a non-
singular torsionless module over a semiprime ring

(Zelmenowitz [28]);

a theorem on semiprime modules by Zelmanowitz [29];

a result on critically compressible modules by

Zelmanowitz [30];
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- the construction and properties of the extended
centroid and the central closure of (nonassocia-
t.ve) semiprime rings.

The last point is a consequence of an application of

§3% to the following situation (§4):

For an arbitrary ring A let &(A) be the multi-

plication ring of A and OQ[A] the subcategory of

$¢(A)-lMOD subgenerated by A. It was already seen in
[25] and [26] that many results of module theory

over commutative associative rings can be generalized
to og[A] - that is on[A] is a useful category of two-
sided A~-modules. It is clear from recent research in
one-gided module and ring theory that the crucial
test for any two-sided module theory is how well it
can handle prime and semiprime rings. For associa-

v

D

rings, the first success in this direction was

due to Delale [6] and van Oystaeyen-Verschoren [19],
(23], [24]. The latter studied localization for
(central) R-bimodules by restricting localization in
ReR’ -MOD to the subcategory of (central) bimodules
("relative localization"). A more general way to study
(even nonassociative) semiprime rings is opened by
localization in og[A]. The key to this is the obser-
vation that for a semiprime ring A every essentizl

ideal is rational in A. In case A has a unit and
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every non-zerc idesl has non-zero intersection with

the centre,this i1s also a sufficient condition for A

to be semiprime (Prop.(4.%)). Now the results of §3

apply and we obtain for a semiprime ring A with

A-injective hull 2 in on[al:

- T:Endg(ﬁ) is a self-injective, commutative and
regular ring and equal to the extended centroid
of & ([7], [41);

A
- A=A-T can be endowed with a ring structure to

become the central closure of A.

In further investigations we observe that the
associativity of A is of no special advantage. Two
other properties which hold for associative commutative
rings turn out to be of importance:

(1) every proper ideal of A intersects the centre

non-trivially;

(ii) 8#(A)¢o(A), 1.e. A is a subgenerator for @ (A)-MOD.
If A is a semiprime ring A with unit satisfying
property (i) and having finite Goldie dimension over
Q(4), then y ig & direct sum of simple rings and T is
the classical ring of quotients of the centre of A
(Theorem (4.5)). If A is semiprime with property (ii),
the maximal ring of quotients of R(A) is equal to
EndT(K) (Theorem (4.7)). For semiprime rings (ii) is

actually equivalent to KT being a finitely generated
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T-module. Finally, & semiprime ring with (i) and (ii)
and finite Goldie dimension over “(A) is an Azumaya
algebra (Theorem (4.9)). Examples of the situations

considered are given at the end of §4,.

It is one aim of the present paper to demonstrate to
what extent theorems on rings can be deduced from
one-sided associgtive module theory. The approach
suggested in §4 provides straightforward proofs for
properties of the central closure. For example, the
direct 1limit construction of the extended centroid

can be avoided.

1. General torsion theory in o[M]

Let R be an associative ring with unit and R-MOD
the category of unitary left R-modulegs. Homomorphisms
are written on the right side. An R-module N is
generated by an R-module M (M-generated), if it is a
homomorphic image of a direct sum of copies of M.

N is gubgenerated by M (M-subgenerated), if it is a

submodule of an M-generated module.

oR[M], or o[M], denotes the full subcategory of
R-MOD whose objects are all M-subgenerated modules
(Wisbauer [26]) - o[M] is a locally finite Grothen-

dieck category. There are enough injectives in o[M]
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and any 1lnjective object in o[M] is M-generated. For
A
Neo[M] the injective hull N in o[M] is called the

M-injective hull of N,

In Gabriel [8] an abstract theory of localization
in Grothendieck categories is given. We begin with a
short outline of this theory applied to o[M]. In gene-
ral there is no distinguished (projective) generator
in ¢[M] and therefore we cannot transfer the full
localization theory in R-MOD as presented in Goldman
[11] or Golan [9] to our situation. However, many of
the fundamental proofs remain valid and we shall not

repeat them here.

One way to define a torsion theory is to designate =2
distinguished class of modules as torsion modules:
(1.1) A class T of modules in o[M] is called a (heredi-

tary) torsion class, if it is closed under taking

submodules, homomorphic images,
extensions and direct sums.
¥ will slways denote a torsion class in o[M].
(1.2) For any Nes [M] the submodule
T(N) = Tr(X,N) = trace of ¥ in N

is called T-torsion submodule of N.

By definition we have N = ¥(N) if and only if NeZ.

From the properties of ¥ and the trace we deduce:
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() € T

T(N/Z(N)) = O

1

if Leo[M] and feHomp(N,L) then T(N)fc¥(L);

if KcN then T(K) = K®(N).

Thus T(~) is an idempotent kernel functor in the
senge of Goldman [11].

(1.3) A module Neo[M] with T(W) = O is called

I-torsion-free., This is the case if and only if

HomR(T,N) = 0 for all TeX. The class F of I-torsion-
free modules in o[M] is closed under
submodules, igomorphic images,
injective hulls and direct products in o[M].
There is an M-injective module in ¢[M] which cogene-
rates all I¥-torsion-free modules in o[M]. On the
other hand, any M-injective module E in o[M] defines
a torsion class
Ty = {Keo[M] | Homp(K,E) = O}.
(1.4) A submodule KcNeo[M] is called I-dense in N, if
N/KexX. The set of ¥I-dense submodules of N,
£ = 2(N,%) = {KcN | N/Kezx}
has the following properties:
(1) if Kef, KCICN, then Lel;
(2) if K,Le? then KNLeQ;
(3) if Ke® and feEndy(N), then K™ 'eg;
(4) if KcLcN, Leg and L/XeX, then Keg,

In g ¥-torsion-free module N any ¥-dense submodule is
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essential in N. If N is a generator in o[M] the set of
T-dense submodules of N uniguely determines the torsion
class X.

(1.5) A module Neo[M] is (M,¥)-injective,if N is injec-

tive with respect to any exact sequence OK~I»L/K~0 in
o[M] with L/Kex.

Any Nec[M] possesses an (M,3)-injective hull EI<N>’

that is a module EI(N> with the properties

- N is essential in EK(N>;

- E (1) /Nex;

- EI(N> is (M,¥)~injective.

Je may identify EI(N) with the submodule E of the
M-injective hull N of N for which E/N = x(R/N). Ir n
is ¥T~torsion-free, the same is true for ﬁ and EI<N>
(see (1.%)). In case every essential submodule of M
is T-dense in M, "{M,¥)-injective" is equivalent to
"M-injective” and the (M,¥)-injective hull of any
Nec[M] is equal to the M-injective hull N.

(1.6) We call a module Neo[M] faithfully (M,I)-in-

jective, if any diagram in o[M].

0= K~ L~ 1L/ >0

N
with exact row and L/Ke¥ can be completed to a commu-

tative diagram by a uniquely determined I»N. N is

faithfully (1M,¥)-injective if and only if N is (M,T)-

injective and I-torsion-free.
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(1.7) The ¥-quotient of a module Neo[M] is defined to
be the (M,T)-injective hull of the factor module
N/T(N):

QI(N)=EI(N/§(N>).
By construction, QI(N> is T-torsion-free and (IM,T¥)-in-
jective, which means Qz(N) ig faithfully (M,T)-injec-

tive (see (1.6)).

For N,Lec[M] and feHomR(N,L) we obtain in a canoni-
cal way a homomorphism T:N/T(N) -» L/X(L). Since
QI<L) is faithfully (M,¥)-injective, the diagram
0~ N/3T(N) = QZ(N)
T
0~ L/%(L) - (D)

can be completed to a commutative diagram by exactly

one

G (£) ¢ g () = g (D).
Thus building the quotient modules defines a (left
exact) functor

QI( ) O[M] - o[M].
For a monomorphism f : N » L the quotient map Qz(f) is

an isomorphism if and only if L/NfeZ.

(1.8) For any module Neoc[M] the set of ¥-dense sub-
modules 2(N,¥) is left directed with respect to in-
clusion (see (1.4)).

Take Ueoc[M] and K,Leg(N,I) with KCL. We have a canoni-

cal Z-homomorphism
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A HomR(L,U) - HomR(K,U)

L,k °
and this gives us an inductive system of Z ~modules

(HomR(K,U), KL,K’ Q(N,x)).

(1.9) THEOREM Let ¥ be a torsion class in o[M],
N,Ues[M] and T(U) = O. With the notations sbove we
have:
(1) Homp (W, Q (U))
(2) Homp(N,qp(U)) = Homp(Qr(N), Q3 (U));
(3) if N generates QI<U>’ then Q&(N) also generates
Qr (U

(4) EndR(QI(N)) = lig HomR(K,N/t(N)>, Kee(N,%).

e

lim HomR(K,U), Keg(N,3);

Proof: (1) For Keg(N,I¥), any feHomR(K,U) can be ex-
tended to a unique feHomR(N,QI(U)). This yields an

inverse system of Z-monomorphisms
i HomR(K,U) - HomR(N,QZ(U)).

By the universal property of direct limits we obtain

a monomorphism
¢ : lim HomR(K,U) - HomR(N,QE(U)).
¢ is epimorphic since, for heHomR(N,QI(U)), we have
V = un”lee(N,T). By restriction we get H<h|yeHomy(V,U)
and ¢V(h):h.
(2) Any feHomR(N,QE(U)) defines a unique fIEHomR<QI(N)’

QI(U>)' On the other hand every geHomR(QI(N), Qx(U))

is uniquely determined by its restriction to N/T(N).
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(3) From (2) we deduce that QE(U) = N-HomR(N,QI(U))=

(4) This follows from (1) and (2).

(1.10) We call M a gubgenerator in R-MOD, if M has

one of the three eguivalent properties

(i) Reo [M];
(ii) Re1e for a kel

(iii) R-MOD = o[M].

In this case the torsion theory considered above is
just a torsion theory in R-MOD and is determined by
the set of all ¥-dense left ideals of K (Gabriel

filter),
2(R,T) = {KcpR | R/Kex}.

From Theorem (1.9) we obtain the following well-known

properties of localization in R-llod:

(1.11) THEOREM Let ¥ be a torsion class in R-Mod and

N,Lek-Mod. Then

(1) Qy(N) = lig Homp(K,N/Z(N)), Keg(R,I);
(2) Qz(R) = Endp(Qx(R)) as Z-modules; by

this isomorphism a ring structure is
defined on QZ<R>;

(3) Qz(N) = Homp(R,Qz(N)) = Homp(Qy(R),Q(N));
this isomorphism allows the structure of
a left QI(R)—module for QQ(N) which ex-

tends the R-module structure;

(4) Homp(qy (), Q (L)) = Hom%(R>(Q1(N>,QI(L)).
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Endp(Qz(M)) is just the maximal ring of quotients

of EndR(M) in case !M satisfies the following condition :

(*) For any I-dense submodule KCM there is a mono-

morphism g:M»K with Img Z-dense in K (hence in M).

(1.12) THEOREM Let ¥ be a torsion class in o[M]. If
M is ¥I~torsion-free and M satisfies condition (¥*),
then EndR(QQ(M)) = ch(s>’ the classical left ring of

quotients of 8§ = EndR(M).

Proof: We have to show that any q€T=EndR(QE(M)) can

be written as q:s—1

t for s,tesS:

Take N=Mq_1ﬂM and chose a monomorphism s:M>N with Ms
T-dense in M (condition (*)). Then Ofsqg=teS, Since s
is invertible in T (see end of (1.7)) we get qzs—Tt.

L special case of (1.12) will appear in Corollary (3.2).

2. The singular torsion theory

As in torsion theories in R-MOD, the essential
gsubmodules play a special part here too. A first ob-

servation is:

(2.1) PROPOSITION Let ¥ be a torsion class in o[M]. If
every essential submodule ILcM is T~dense in M
(i.e. M/LeX), then

D) T:EndR(QI(M)) is (von Neumann) regular

and TT ig injective;
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(2) if M/T(M) has finite (Goldie) dimension,

then T is semisimple artinian.

Proof: (1) Under the given assumption, Q:QI(M> ig
just the M-injective hull of M/T(M) (see (1.5)). Hence
e is quasidinjective and T/Jac(T) is self-injective
and regular. It remagins to show that Jac(T)=0, For
fedJac(T) we have K=Ker f is essentisl in §. Then, for

~1 is essential -hence ¥-dense- in M.

any aeHomR(M,Q), Ko
Since M generates the M-injective module @, this means

Q/Kex and Q/Kcx(Q)=0, i.e., £=0.

(3) If M/5T(M) is finite dimensional, the same is true
for Q. In this case the regular ring T has no infinite
set of orthogonal idempotents and hence it is semi-

simple artinian.

(2.2) COROLLARY Let ¥ be a torsion class in o[M]. If
M is ¥T-torsion-free and every non-zero submodule is
Y¥-dense in M, then T:EndR(QI(M)) is a skew field. If,
in addition, HomR(M,N)%O for all submodules NcM, then

T is the quotient skew field of S=Endp,(1).

Proof: Under the given condition, QI(M)zﬁ, the M-injec-
tive hull of M. Every teT is a monomorphism. Thus T is
a regular ring (by (2.1)) without zero divisors, i.e.
T is a skew field, The second assertion follows from

Theorem (1.12).
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(2.3) A module Neo[M] is called singular in o[M], or
M-singular, if there is an exact sequence in o [M]
®BK-IsN-0, with K essential in L. Observe that a pro-
jective module N in o[M] is never M-singular, since
the above sequence splits. If o[M]=R-MOD, the notion
"M-singular" i1s identical to the usual "singular" for
modules., Of course, every M-singular module is singu-
lar in R-MOD. However, a simple module M can be singu-
lar in R-MOD but never is M-singular, because it is

projective in o[M].

The class 8 of all M-singular modules in o[M] is
closed by taking submodules, factor modules and direct
sums (e.g.Prop.(1.1) in Goodearl [12]). Therefore any
L¢o[M] has a largest M-singular submodule Tr(€’,L).

L is M-singular if and only if Tr(€’,L)=L; L is

called non M-singular, if Tr(8’,1)=0. For example,

a semihereditary module P in o[M] (Wisbauer [27]) is
non M-singular; Since every finitely generated sub-
module of P is M-projective, P cannot contegin an

M-singular submodule.

(2.4) By © we denote the smallest torsion class in o[M]
(as defined in (1.1)) which contains all M-singular
modules, and the resulting torsion theory is called

the singular torsion theory in o[M]. Applying standard

arguments we obtain (Leo[M]):
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(1) If L is non M-singular, then L is ©-torsion-free
and every €-dense submodule is essential in L
(see (1.4));

(2) Any (M,€)-injective module is M-injective (see
(1.5));

(3) Le€ if and only if its M-injective hull 3 be~
longs to ©;

(4) If M is projective in o[M], then Les iff, for
every 66HomR(M,i), Kerd is ©-dense in M. In
this case the class € is uniquely determined
by the set of all ©-dense submodules of M,

(5) In case M is non M-singular and projective in
o[M], © is determined by the set of all essen-
tial submodules of M (this follows from (1)
and (4)).

(6) Bndp(Qe(L)) is a regular, left self-injective
ring (Prop.(2.1)).

If M is a subgenerator in R-MOD (see (1.10)), the

M-singular modules are just the singular modules and

the singular torsion theory is the Goldie torsion theory

in R-MOD. We know from Theorvem (1.11) that in this case

the quotient module GQg(R) allows a ring structure.

(2.5) THEOREM Let M be a subgenerator in R-MOD and €
the smallest torsion class containing the (M-)singular

modules. Then
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(1) QE(M) is a generator in Qg(R)-MOD;

(2) T:EndR(QE<M>>:EndQ5(R)(QS(M>> is a regular,
left selfinjective ring;

(3) QE<M>T is a finitely generated, projective
T-module;

(4) Qg(R) = Endg(Qg(M)).

Proof: (1) By part (2) of (2.4), Q(R) is M-injective
(=R-injective), hence generated by M, and the assertion
follows from part (3) of Theorem (1.9). (2) This is a
special case of Prop. (2.1) and Theorem(1.11), (4).

(3) and (4) are consequences of (1).

Results on non M-singular modules M will be gpecial

cases of the more general theorems of the next paragraph.

%2. The torsion theory determined by the M-injective

hull of M

(3.1) As mentioned in (1.3) any M-injective module

in ¢[M] defines a torsion theory in o[lM]. Here we are
concerned with the torsion theory determined by the
M-injective hull ﬁ of M. Thus we are considering the
torgion class

o A
Ty= {Keo [11] [ Homp (K, M)=0} .

It is immediate that M is ¥-torsion-free, and ZM is,
in fact, the largest torsion class in o[M] for which M
is torsion-free. QI<M> is just the (M,zM)—injective
hull of M.
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We call a IM—dense submodule UCM rational in M and

M a rationsl extension of U, The following assertions

are equivalent for a submodule UCM:

(a) U is rational in I

() Homy (1/0,f)=0;

(¢) for all Ucycl, HomR(V/U,M)=O.
Since M is IM-torsion—free, every rational submodule
is essential in M (see (1.4)). We will be mainly

interested in modules M, whose essential submodules

are rational in M. These modules are relsted to non
M-singular modules in the following way:
(3.2) PROPOSITION Let M be an R-module.

(1) If M is non M-singular, then every essential
submodule is rational in M.

(2) If M is projective in o[}M] and every essential
submodule is rational in M, then
HomR(M,Tr(G',M))=O.

(3) If M is projective in o[lM] and Homp(IM,K)#0 for
all KcM, then M is non M-singular iff every

essential submodule is rational in M.

Proof:
(1) Let U be an essential submodule of M, UcVcl,
and feHomR(V/U,M). Since U is essential in V,
we get (V/U)feTr(&’ ,M)=0 and =0,
(2) Take geHomR(M,Tr(E',M)). Then Ker g is essential
and hence rationsl in M by assumption. This im-

plies g=0.
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(3) This is a conseguence of (1) and (2).

(3.3) Applying our theory to the case M=R we obtain

the torsion class in R-MOD defined by the injective

A
hull R of R:

N
Ty= {KeR-MOD | Homp(X,R)=0}.

This leads to the Lambek torsion theory in R-MOD. The

quotient module QI(R) may be considered as a ring
extension of R (see (1.11)) and is called the maximal

left ring of quotients Qm(R) of R. By (2.8), all

essential left ideals are rational in R if and only
if R is non singular. In this case Qm(R) coincides

with the injective hull of R and is a regular, left
self-injective ring (Compare (2.4), (6)). This situ-

ation is generalized in:

(3.4) THEOREM Let M be an R-module with every essential
submodule rational in M. Then
(1) T:EndR(ﬁ) is a regular and left self-injective
ring;
(2) S=EndR(M) is a subring of T;
(3) Endp(M)-1ig Homp(K,1), K essential in I
(4) every monomorphism f¢S with Im f essential in M
is invertible in T;
(5) 1f M is (Goldie) finite dimensionsl, then T is

semigimple artinian.
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Proof: (1) and (5) follow from Preoposition (2.1) since,
under the given condition, QI(M)=ﬁ.
(2), (4) are special cases of the general situation

described in (1.7). (3) was shown in Theorem (71.9), (4).

The following theorem gives a connection between

n
EndR(M) and a quotient ring of EndR(M):

(3.5) THEOREM Let M be an R-module with every essential
submodule rational in M and Hom (I,I)#0 for all sub-

N
modulegs NCM. Then EndR(M)=Qm(S), the maximal left ring

of quotients of S=EndR(M).

Prcof: Since T:EndR(ﬁ) is a self-injective extension

of 8 by (3.4), it remains to show that S is an essential
S-submodule of T. For OZaeT the submodule K=Ma~ MM is
essential in M. From HomR(M,N)%O for all NcM we deduce
that‘Tr(M,K):M-HomR(M,K) is essential in K and hence
essential and rational in IM. This implies M-HomR(M,K)a#O
and we can find BeHomp(M,K) with O#BaeS. Thus BaeSSa 0.
Notice that in (3.5) an s€¢S 1s a non zero divisor if

and only if Ker ¢ = 0 and Im s is essential in M.

Examples for the conditions in (3.5):
(i) Let R be s semiprime ring and M s non singular
R-module cogenerated by R. Then HomR(M,N)%O
for all NcM and (3.5) yields part of Theorem (2.2)

in Zelmanowitz [28].
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(ii) Let M be a non singular module and Tr(M,R)

essential in M. Then the standard Morita con-
text (R,M,M¥,3) is non degenerate and (3.5) is
s special case of Theorem (3.1) in Hutchinson-

Leu [14] (see also Leu [18]).

(i1i)If the standard Morita context is semiprime

(iv)

and M is noetherian, then we also have the
situation of (3.5). This is described in Zel-
manowitz [29] (e.g., Corollary (3.6)).

For any M-projective module M with Rad(M)=0
we have HomR(M,N)%O for all NCM:

Since N is not small in M there is a KcM, KA,
with N+K=M. Then the composition N-=MM/K 1is
an epimorphism and the diagranm

M

[

¥- MK~ 0
can be completed to a commutative diagram by

an aeHomg(M,N), a£0.

Other interesting applications will occur in §4.

We call a submodule K€M a kernel submodule (or

gnnihilator submodule) if it ig the kernel of an endo-

morphism of M. For the next theorem we need:

(3.6) LEMMA For an M-injective module M the following

properties are eguivalent:

(a) M has the ascending chain condition on kernel

submodules;
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{(b) S:EndR(M) has the descending chain condition

on cyclic right ideals.

Proof: This follows from the fact that for any teS we
have HomR(M/Kert,FD = tS (compare Harada-Ishii [13],

Prop.1).

(3.7) THEOREM Let M be an R-module with finite (Goldie)
dimension and every essential submodule rationsl in M.
Congider the conditions:
(i) HomR(M,N);!O for all NCIM and S=Endp(M) is
semiprime;
(1i1) for every essential submodule NCM there is a
monomorphism M - N;
(iii) T:EndR(ﬁ) is the (semisimple artinian)
classical left quotient ring of & and for
every essential submodule IFM we have L-T:ﬁ.
For these conditions the implications (i)=(ii)={iii)

are true.

Proof: (i)=(ii) From (3.5) we know that T is the
maximal left ring of gquotients of 8 and by Propositi-
on (2.1) T is semisimple artinian. Thus S is a left
finite-dimensional, non-singular ring. By assumption
it is also semiprime and hence S is a Goldie ring and
has a classical left ring of quotients which must be
equal to T. According to Lemma (3.6) ﬁ has acc on
kernel submodules; since SCT this implies acc on

kernel submodules for M.



Downloaded by [Universitaets und Landesbibliothek] at 07:10 23 November 2011

MODULES AND RINGS 1477

Now assume L to be an essentisgl submodule of M
(compare Goldie [10], Thecrem 2): HomR(M,L) is not a
nil ideal in 5 (=Goldie ring) and hence there is
a1eHomR(M,N) with Keroc1 = Kera?.

Ir Kera1%0, we chose an azeHomR(M,NﬂKera1) with
Kera2=Kera2. Continuing this way we get a direct sum

2
of submodules

Moc,,@l"locg@ @Mak

with ak+7%0 as long as NPKera1ﬂ...ﬁKerak#O.
Since M is finite dimensional and N is essential in M
we finglly must have Kera1ﬁKeraéW...ﬁKerak=O for some

kelN. Then B=a1+a2+...akeHomR(M,N) is g monomorphism.

(ii) = (iii) Since M is finite dimensional, for any
monomorphism feS Mf i1s essential in M: Assume

MMK=0 for KcM. Then the sum Kf1+Kf2+Kf3+... is direct
and, if KZ0, Kf'#0 for all rell. So we must have K=0.
By (ii) we know that for any essential I€M there is a
monomorphism M ~ N with essential image in N (and M).
Now Theorem (1.12) tells us that T is the classical
ring of quotients of S.

For an essential IcM, the M-injective hull 2 is equal
to ﬁ. The L-injective hull of L can be written an
L-EndR(ﬁ)zL-T. Since a copy of M is contained in L

(by (ii)), the L-injective hull is in fact M-injective

A
and hence L-T=M.
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(%.8) COROLLARY Assume the R-module M to be a self-
generator with finite (Goldie) dimension and every
essential submodule ratiocnsl in M. Then the following
properties are equivalent:
(a) S:EndR(M) is a semiprime ring;
(b) for every essential submodule IV there is a
monomorphism M - L;
(c) T:Endﬁ(ﬁ) is the classical left guotient ring
of 8 (and is semisimple artinian).

For M=R this is substantially one of Goldie's theorenms.

4 module M is called compressible, if every submodule

of M contains an isomorphic copy of IM.

(%.9) COROLLARY Let M be a compressible R-module in
which every submodule is rational.

A
Then T:EndR(M) is the guotient skew field of S:EndR(M)

A
and for every submodule KM we have K-Tsl,

This is actually again the situation of Corollary (2.2).
Modules satisfying the conditions of (3.9) are czlled

critically compressible and the first assertion of the

corollary is Lemma 2 in Zelmanowitz [30].

Analogous to Theorem (2.5), we want to study the

IM—torsion theory for a subgenerator in R-1MOD:

(%.10) THEOREM Assume M to be a subgenerator in R-MOD

with every essential submodule rational in M. Then
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(1) R is Iy-torsion-free (since RCM%”
(2) QQ(R)=ﬁ, the (M-)injective hull of R;
A LA
(3) M is a generator in R-MOD;
A oo .
(4) T:EndR(M)zEndﬁ(M) is a regular, left self-in-
~
jective ring and MT is a finitely generated,
projective T-module;
A N N .
(5) RﬂEndT(MT), hence R 1s regular and R is non
singular;
il
(&) if M is finite dimensional, then T and R are
semigimple artinian;
{(7) 1f M is finite dimensional and S:EndR(M) (or R)
is semiprime, then T (resp. ﬁ) is the classicsal

ring of quotients of S (resp. R).

Proof: (2) Because of (1), QK(R) is the M-injective
hull of R; since M is subgenerator, Q. (k) is even
F-injective. (3) M generates R and by part (3) of
Theorem (1.9), f generates %; 2 gets a ring structure
by Theorem (71.11). (4) T is regular and self-injective
by Theorem (3.5), and EndR(ﬁ)=Endﬁ(ﬂ) was shown in
Theorem (1.11). The rest of (4) and the isomorphism in
(5) are consequences of (3). (6) If M is finite dimen-
sional, then T is semisimple artinisn ((2.1)) and the
same is true for ﬁ because of (5). (7) If M is finite
dimensional, then S and R are finite dimensional non
singular rings; in case they are semiprime they allow
classical rings of quotients (Goldie theorem) which

A
must be equal to T resp. R.
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(%.11) COROLLARY Let M be an E-module whose essential
A
submodules are rational in M and T:EndR(M). The follow-
ing properties are equivalent:
(a) M is a subgenerator in R-MOD;
N . .. .
(b) My is a finitely generated T-module and M is

faithful,

A
Proof: (2)={(b) wag seen in (3.10). (p)=(a) M and M are
faithful R~modules. Since ﬁT is finitely generated as
T-module, there is a monomorphism Reﬁk, kell, which

means Reo[ﬁl:c[M];

4, The central closure of a (nonagsociative) ring

Let A be a not necessarily associative ring and

£(A) (or ) its multiplication ring, i.e. the subring

of EndZ(A) generated by the left and right multipli-
cations in A and the identity in EndZ(A). Congider A
as module over %(A). The R(A)-submodules are Jjust the
two-gided ideals in A. EndQ(A) is the centroid c(A) of
A. It coincides with the centre C(A) of A if A has a

unit element.

on[A] denotes the subcategory of #(A)-MOD subgene-
rated by the %(A)-module A (see §1). The A-injective
null & in og[A] is generated by A, i.e. A=A-Homg(4,%).
We are going to interpret the rational torsion theory

of €3 in this context.
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According to (3.1) an ideal UCA is called rational in 4,

if Hom (A/U,@):O.QP(A) denotes the quotient module of A
in the rational torsion theory. Since A is torsion-free

in this theory we have
acq (A
for the Q(A)-modules A, Qr(A) and K.

The following observation allows us to apply the re-

sults of €3 to semiprime rings:

(4.1) LEMMA Let A be a semiprime ring. Then

(1) Any essential ideal is rational in A;
(2) q.(a)=R, the A-injective hull of A4 in og[a];
(3) Endg(ﬁ)=lim HomQ(U,A), U essential in A;

(43 EndQ(ﬁ) is a commutative ring.

Proof: (1) Take sn essential ideal Uch, UcVcA, and
aeHomQ(V/U,A). Then (V/U)a is an ideal in A and
(UW(V/U)a)2=O; hence UWV/U)a=0 since A is semiprime
and (V/U)a=0 since U is essential in 4, i.e., a=0.
Thus HomQ(V/U,A)=O and by (3.1) U is rational in A.
(2) is a consequence of (1) (see (1.5)).

(3) is a special case of Theorem (1.9).

(4) Take f,geEndQ(ﬁ) and U=Af_1ﬁAg—1ﬂA. U is essential
in A and the ideal generated by ye is also essential,
hence rational in A, since for any ideal

KcA OZ(UNK) °cUTK.
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Now, for a,bel we have
(ab)fg=(a(bf))g=(ag)(vf)=(ab)af.
This means Ug(fg—gf)=0 and fg-gf is zero on the ratio-

nal ideal generated by U2, i.e. fg=gf.

Remark: For a torsion class ¥ in og[A] the ring
Endﬁ(QI(A)) is commutative 1f for any I-dense ideal

UCA the ideal generated by U2 is also T-dense in A,

(4.2) THEOREM Let A be a semiprime ring and & the
A-injective hull of A in oc[Al. Then
(1) T:Endg(ﬁ)=Hom9(A,ﬁ) is a commutative, regular,
selfinjective ring;
(2) the centroid c(A)=End§(A) is a subring of T;
(%) if A ig a finite dimensional ¢ (A)-module, then
T is semisimple artinian;
(4) XzA-HomQ(A,K)=A~T allows a ring structure and
A i1s a subring of the ring ﬁ;
(5) Yis a cemiprime ring with centroid c(K):T;
(6) % is a gelf-injective module over its multi-

plication ring (.

Proof: (1), (2), (3) are application of Theorem (3.4)
and Lemma (4.1).
(4) For a,bed and s,teT we define
(ag)-(bt) = (ab)st.
As readily checked this determines a multiplication

AN
on A=A-T and A is a subring of ﬁ.



Downloaded by [Universitaets und Landesbibliothek] at 07:10 23 November 2011

MODULES AND RINGS 1483

(5) Assume J2=0 for an idesl J in . Then (JWA)2=O
and therefore J1A=0 since A is semiprime. A being
essential in A this means J=0. From the definition

of the multiplicetion in A and the commutativity of T
we deduce T=Endg (s (2)<Fnag gy(B=c(®).

(6) follows from (5) and the fact that A is self-in-

Jective as & (A)-module.

(4.1) and (4.2) show that for az semiprime ring A

Endp(ﬁ) is just the extended centroid of A (intro-
duced in [17], [7])and & -with the multiplication

given above- is the central closure of A.

Theorem (4.2) extends Theorem (2.5) and (2.15) of

Baxter-Martindale [4].

We will be concerned with rings, whose non-zero

ideals have non-zero intersection with the centre.

This 1s clearly a generaslization of commutative asso-

ciative rings and like for these we can show:

(4.3) PROPOSITION Let A be a ring with centre C(A)
and MNC(A)#0 for any idesl U#£O. Then the following
properties are equivalent:

(a) A is semiprime;

(b) every essential ideal is rational in A and A has

no agbsolute zero divisors.

Proof: (a)=(b) was seen in (4.1).
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(b)=>(a) Assume U to be an ideal in A with u°-0.

Then there is an ideal K<A for which U@® K is essential
and hence rational in A and U(U ® K)=0. Any element
O£uelNC(A) defines a non-zero homomorphism A-AucU with
rational kernel U@ K. This means UNC(A)=0 and there-

fore U=0.

(4.4) THEOREM Let A be a semiprime ring with centre
C(A). If for every non-zero ideal USA UNC(A)#0, then
EndQ(ﬁ) is the maximal ring of quotients of the cen-

troid EndQ(A).

Proof: The given condition implies that HomQ(A,U)%O
for every non-zero ideal UCA, and the assertion follows

from Theorem (3.5).

For the finite dimensional case we get the following

two-sided analogue of Goldie' s theorem on semiprime

rings:

(4.5) THEOREM Let A be a semiprime ring with unit, C(A)
the” centre of A and T=Endg(ﬁ)=c(ﬁ) the centre of ﬁ.
The following conditions are eguivalent:
(a) A has finite (Goldie) dimension as Q(A)-module
and one of the eguivalent properties:
1) for every non-zero ideal USA UNC(A)AO;
2) for every essential ideal VcA there is a

monomorphism A=V,
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%) for every essential ideal VcA VNC(A) contains
a regular element;
4) for every essential ideal VcA we have v.7=0
and T is the classical guotient ring of C(A);
(b) 2 is (finite) direct sum of simple rings and T

is the classical quotient ring of C(A).

Remark:Since the classical quotient ring of C(A) is =

flat C(A)-module we have in (4.5) A=A-T = hag ()T

Proof: (a.1)=>(a.2) Under the given condition T is the
maximsl ring of quotients of C(A) by Theorem (3.5).
Since T is commutative and regular, C(A) is semiprime
and we can apply (1)=(ii) of Theorem (3.7).
(a.2)e(a.3) Given a monomorphism f:A»V, 1f is a regular
element in VNC(A).

(a.3)=(a.4) corresponds to the implication (ii)=(iii)
of Theorem (3%.7).

(a.4)=(b) Let X be an essential ideal in &. For any
Q(A)-submodule K of &, K-T is an ideal in @} and hence
XK - TAO,

Assume OFx=a to+...+ay by, for xeX, a ek, tjel.

]

Then there exists a regular element seC(A) with

t;seC(4) for i<k and hence xs=a,t, s+...+a, ), seX K.

We conclude that X is essential as Q(A)-submodule and

A

(a.4) implies X=X.T=A. Thus K has no non-trivial essen-
. . . . A .

tial (two-sided) ideals, i.e., A is direct sum of

simple ideals.
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(b)=(a.1) Since T:Endg(ﬁ) has no infinite sequence of
orthogonal idempotents, X and A are finite dimensional
£ (A)-modules. For any non-zero idesl UchA, U-T is an
ideal in K, hence direct summand in K and U-TNT#O.

Ir O%u1t1+...+uktk=qu for u,eU, t,eT, then there
exists a regular element seC(A) with tiseC(A) for

i<k and gseC(A). This means O%u1t1s+...+uktks =

= gseUNC(A).

(4.6) COROLLARY For a prime ring A with unit and
centre C(A) the following properties are eguivalent:
{a) for any non-zero ideal UcA UC(A)A0;
(b) for any non-zero ideal Uch there is a monomor-
phism A-U;
() & ic 2 simple ring and its centre is the quotient

field of C(&).

Proof: A prime ring ig finite dimensional and every
idesl is rationsl in it., Thus (4.6) follows from (4.5).
It is alsc a special case of Corollary (2.2).

In (4.6), A is a critically comprescsible module
over 8{(4A) and hence R(A) is a weakly primitive ring in
the sense of Zelmanowitz {30]. This generalizes the
fact that the multiplication ring of a simple ring is

primitive,

For associative rings the result of (4.6) was pro-

ved in Delale [6], Proposition II.9.6. (see also Ver-
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schoren [24], Theorem I.3.19). Notice that in (4.5)

and (4.6) R=A.T is = central extension of A as consi-

dered, e.g., in Amitsur [2].

The next theorem will describe the case when A is
a subgenerator in R(A)-MOD, that is we have one of the
following ecuivalent conditions:

(1) 9 e og[4l;

(11) ©(a)cak, xav

(1ii) o [A]=0(A)-110D.
If A is semiprime, then R(4) is torsion-free in the
torsion theory defined by & (because of (ii)). The
guotient module QI(Q) is just the (&-) injective
hull e of R and can be made into a ring by Theorem

(1.11). We readily deduce from Theorem (3.10):

(4.7) THEOREM Let A be a2 semiprime ring. If A is a
subgenerator in £(A)-MOD, then
(1) R is s generator in 8_mop (R=R(A));
(2) T:Endg(ﬁ)zEndﬁ(K) is commutative, regular and
self-injective;
(3) QT is a finitely generated, projective T-module;

' A ) . .
(4) Q:EndT(AT) is regular and & is non singular.

(4.8) COROLLARY For a gemiprime ring A the following
assertions are equivalent:

(a) A is a subgenerator in R(A)-MOD;

(p) ﬁT ig a finitely generated module over

T:EndQ(K).
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Proof: Corollary (3.11).

In general, there is a difference between oy,
the multiplication ring of ﬁ, and ﬁ, the maximal quo-
tient ring of £=R(A). Under the conditions of (4.7)
we have the inclusions
oco (D)cEna (B8,
In case X is direct sum of simple rings (and ﬁﬁ finite-
ly generated) Q(ﬁ) is semisimpie artinian, hence self-

injective and we conclude
A ~n A
Q(A):EDdT(AT)=Q 3

which means that A is an Azumaya algebrs over T.

S0 we state the following as a final theorem:

(4.9) THEOREM For a semiprime ring A with unit and
centre C(A) the following properties are equivalent:

(a) A is a subgenerator in Q(A)-MOD, A has finite
(Goldie) dimension over Q(A) and UNC(A)#0 for
any non-zero ideal U;

(v) T:EndQ(K) ig the classical quotient ring of
C(4) and T has one of the following equivalent
properties:

1) % is direct sum of simple rings and ﬁT is a
finitely generated T-module;

2) Q(ﬁ), the multiplication ring of R, is semi-
simple artinian and finitely generated as

T-module;
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3) ® is Azumays algebra over T.

Proof: We have seen in (4.5) that, under the conditions
of (a), T is the classical quotient ring of C(A).
A . . .
(a)=(b.1) A is direct sum of simple rings by (4.5)
and finitely generated as T-module by (4.7).
(b, 1)=(b.2)=(b.? was shown above.
(b.3)=(a) From (4.8) we know that A is a subgenerator

in §(A)-MOD and the rest follows from Theorem (4.5).

(4.10) COROLLARY For & primering A with unit and
centre C(A) the following conditions are eguivalent:
(2) A is a subgenerator in Q(A4)-MOD and UNC(4)#£0
for any non-zero ideal UcA;
(b) % is a finite dimensional central simple alge-
bra and T=End, (R)=C(1) is the quotient field
of C(A).

(4.11) EXAMPLES

(i) Rings A (with unit) whose non-zero ideals
intersect the centre non-trivially:
1) A is Azumaya algebra;
2) A is self-generator as Q(A)-module;
3) A is an assoclative semiprime PI-ring;
4) A is a (purely) alternative prime ring

with 3A#0 (Slater [22]);

5) A is a semiprime NPI Jordan ring (Rowen

[20], Theorem (2.5));
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(ii)

(iii)

(iv)

WISBAUER

6) A is centrally admissible (Rowen [21],
Theorem (3.%)).

Rings A (with unit) which are subgenerators

in €(A)-MOD:

1) examples 1) and 4) above;

2) Alsa finitely generated module over its
centre; v

%) A ig an associative prime PIl-ring;

4) A is a (nonassociative) prime NPI-ring of
finite degree (Rowen [20], Theorem (1.5)).

An example of an associative prime ring A

for which T:Endg(ﬁ) ig a transcendental field

extension of the guotient field of the centre

of A is given in Delale [5].

For an associative prime ring A with unit

the following construction for T:Endp(ﬁ)

is given in Delale [6], Proposition II.9.5.2:

Take E={(a,b)ehxA | b#£0 and axb=bxa for all

xeh}.

Define an equivalence relationon E by
(a,o)n(a’ ,b') iff axb’=bxa’ for all xed.
Then the eguivalence classes by this relation
allow the structure of a field which is iso-

morphic to T.
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