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COMMUNICATIONS IN ALGEBRA, 9(14), 1455-1493 (1981) 

LOCALIZATION OF MODULES AND THE CENTRAL CLOSURE OF RINGS 

Robert Wisbauer 

1 .  General torsion theory in U[M] 
2. The singular torsion theory 
3. The torsion theory determined by the M-inJective 

hull of M 
4. The central closure of a (r~onassociative) ring 

Introduction 

Let R be an associative ring with unity  an^ R-YtOD 

the category of unitary left R-modules. For any 

McR-MOD we denote by a[M] the full subcategory of 

E-MOD, whose objects are the submodules of M-genera- 

t e d  mcdules. 

U[M] is a (locally finite) Grothendieck category 

and hence we can apply the abstract localization theory 

for this type of category as presented in Gabriel [8]. 

The techniaues involved are quite similar to those 

used for localization in the full module category 

Copyright O 198 1 by Marcel Dekker, Inc. 
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1456 WISBAUER 

R-MOD (Goldman [ll], Golan [9])with two major differ- 

ences: 

( 1 ) there is no distinguished (projective) generator 

in o[M] and for this reason torsion theory is 

not described by a filter of subobjects of a 

single object; 

(2) the ring R need not to be contained in o[M] 

and hence we do not, in fact can not, aim at a 
quotient rlnff (of R) in our theory. 

In case R is in o [MI we have U[M] = R-MOD and our 

considerations lead to the usual torsion theory in 

R-MOD, i. e. we also obtain a quotient ring for R. 

In $1 we develop a torsion and localization theory 

in o[M] starting from a torsion class X of modules. 

The main result gives us a direct limit representation 

of the endomorphism ring of the quotient module $(N) 

of an NEU[M] (Theorem (1.9)). Its application to R-MOD 

yields known results on the quotient ring of R 

(Theorem (1.11)). 

96 2 and 3 are devoted to special torsion theories 

in o [MI. Call a module N M-singular, if there is an 

exact sequence in U[M] 0 + K -, L + N -+ 0 with K 

essential in L. The class of M-singular modules is a 

subclass of the singular modules in R-MOD. In $2 we 

study the torsion theory determined by the M-singular 
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MODULES AND RINGS 

modules in u[M]. Here the quotient modules are 

M-injective and the endomorphism ring of a quotient 

module is regular and self-injective. In case R€G[M] 

we obtain the Goldie torsion theory in X-MOD and the 

quotient module of M is a generator for the auotient 

ring of R (Theorem (2.5)). 

The torsion theory in U[M] defined by the 
A 

M-injective hull M of M is developed in $ 5 .  Notice 
A 

that M is a quasi-injective module in R-MOD but an 

injective module in o[M]. In general quasi-injective 

modules do not permit localization in R-MOD (see 

Lambek [ 1 5 ] ) .  We call a submodule KcM rational in M, 
h 

if Hom (M/K,M)=o. Our main interest is in modules~~hose R 

essential submodules are rational in M. In this case 

the quotient module of M is just the M-injective hull 
A 
M of M. The condition is in fact weaker than M being 

non M-singular (Prop.(3.2)). The theorems obtained 

((3.4)-(3.9)) have as special cases 

- the Goldie theorem for associative semiprime rings; 
- properties of the endomorphism ring of a non- 

singular torsionless module over a semiprime ring 

(Zelmanowitz [28]); 

- a theorem on semiprime modules by Zelmanowitz [29]; 
- a result on critically compressible modules by 

Zelmanowitz [yo]; 
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1458 WISBAUER 

- the construction and properties of the extended 

centroid and the central closure of (nonassocia- 

l-,ve ) semiprime rings. 

The last point is a conseouence of an application of 

$3 to the following situation (f4): 

For an arbitrary ring A let &(A) be the multi- 

plication ring of A and U Q [ A ]  the subcategory of 

c(A)-MOD subgenerated by A ,  It was already seen in 

[25] and [26] that many results of module theory 

over commutative associative rings can be generalized 

to UG[A] - that is OQ,[A] is a useful category of two- 

sided A-modules. It is clear from recent research in 

one-sided module and ring theory that the crucial 

test for any two-sided module theory is how well it 

can handle prime and semiprime rings. For assocla- 

5-qe rings, the first success in this direction was 

due to Delale [6] and van Oystaeyen-Verschoren [ 1 9 ] ,  

[23], [24]. The latter studied localization for 

(central) K-bimodules by restricting localization in 

H@~"-MOD to the subcategory of (central) bimodules 

("relative localization"). A more general way to study 

(even nonassociative) semiprime rings is opened by 

localization in U Q [ A ] .  The key to this is the obser- 

vatior that for a semiprime ring A every essential 

ideal is rational in A. In case A has a unit and 
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MODULES AND RINGS 1 4 5 9  

every non-zero ideal has non-zero intersection with 

the centre,this is also a sufficient condition for A 

to be semiprime (Prop.(4.3)). Now the results of $3 

apply and we obtain for a semiprime ring A with 
A .  

A-injective hull A In U~[A] : 

- T=E~%(X) is a self-injective, commutative and 

regular ring and equal to the extended centroid 

of A ( [ 71 ,  C41); 
A - A=AeT can be endowed with a ring structure to 
become the central closure of A. 

In further investigations we observe that the 

associativity of A is of no special advantage. Two 

other properties which hold for associative commutative 

rings turn out to be of importance: 

(i) every proper ideal of A intersects the centre 

non-trivially; 

(ii) a(A)€aid(A), i.e. A is a subgenerator for Q(A)-MOD. 

If A is a semiprime ring A with unit satisfying 

property (i) and having finite Goldie dimension over 
A .  

O(A), then A 1s a direct sum of simple rings and T is 

the classical ring of quotients of the centre of A 

(Theorem (4.5)). If A is semiprime with property (ii), 

the maximal ring of quotients of Q(A) is equal to 
h 

~ n d ~ ( ~ )  (Theorem (4.7)). For semiprime rings (ii) is 
A 

actually equivalent to AT being a finitely generated 
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1460 WISBAUER 

T-module. Finally, a semiprime ring with (i) and (ii) 

and finite Goldie dimension over cd(A) is an Azumaya 

algebra (Theorem (4.9)). Examples of the situations 

considered are given at the end of $4. 

It is one aim of the present paper to demonstrateto 

what extent theorems on rings can be deduced from 

one-sided associative module theory. The approach 

suggested in $4 provides straightforward proofs for 

properties of the central closure. For example, the 

direct limit construction of the extended centroid 

can be avoided. 

1. General torsion theory in U[M] 

Let R be an associative ring with unit and R-MOD 

the category of unitary left R-modules. Homomorphisms 

are written on the right side. An R-module N is 

generated by an R-module M (M-generated), if it is a 

homomorphic image of a direct sum of copies of M. 

N is subgenerated by M (M-subgenerated), if it is a 

submodule of an M-generated module. 

u ~ [ M ] ,  or U[M], denotes the full subcategory of 

R-MOD whose objects are all M-subgenerated modules 

(Wisbauer [26]) o [M] is a locally finite Grothen- 

dieck category. There are enough injectives in o[M] 
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MODULES AND RINGS 1461 

and any injective object in a[M] is M-generated. For 
4 

NC~[M] the injective hull N in O [ M ]  is called the 

M-intjective hull of N. 

In Gabriel [8] an abstract theory of localization 

in Grothendieck categories is given. We begin with a 

short outline of this theory applied to o[M]. In gene- 

ral there is no distinguished (projective) generator 

in a[M] and therefore we cannot transfer the full 

localization theory in R-MOD as presented in Goldman 

[TI] or Golan [ q ]  to our situation. However, many of 

the fundamental proofs remain valid and we shall not 

repeat them here. 

One way to define a torsion theory is to designate a 

distinguished class of modules as torsion nodules: 

(1.1) A class Z of modules in o[M] is called a (heredi- 

tary) torsion class, if it is closed under taking 

submodules, homomorphic images, 

extensions and direct sums. 

Z will always denote a torsion class in a[M]. 

( 1.2) For any Nco [MI the submodule 

Z(N) = Tr(Z,N) = trace of 2 in N 

is called 2-torsion submodule of N. 

By definition we have N = Z(N) if and only if NEZ. 

From the properties of 2 and the trace we deduce: D
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WISBAUER 

- X(N) € 2 ; 

- Z(N/X(N)) = 0; 

- if LEO[M] and ~ E H O ~ ~ ( N , L )  then 2(N)fcX(L); 

- if KcX then X(K) = m(N). 

Thus 2(-) is an idempotent kernel functor in the 

sense of Goldman [ I ? ] .  

(1.3) A module NEU[M] with X(N) = 0 is called 

2-torsion-free. This is the case if and only if 

HO~~(T,N) = 0 for all Ts2. The class a of %-torsion- 

free modules in U[M] is closed under 

submodul e s , isomorphic images, 

injective hulls and direct products in o[M].  

There is an M-injective module in U[M] which cogene- 

rates all 2-torsion-free modules in u[M]. On the 

other hand, any M-injective module E in 0 [MI defines 

a torsion class 

XE = {K&O[M] ( HomR(K,E) = 0). 

(1.4) A submodule K~NEO[M] is called 2-dense in N, if 

~/Ks2. The set of 9-dense submodules of N, 

r = .P(N,s) = (KCN I N/K&) 
has the following properties: 

( 1 )  if KsC, KCEN, then L d ;  

(2) if K,LeP then WILsQ; 

( 3 )  if KsP and fsEndg(N), then ~f-'m; 

(4) if KcLcN, LcQ and L/KEX, then KEG. 

In a Z-torsion-free module N any 2-dense submodule is 
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MODULES AND R I N G S  1463 

essential in N. If N is a generator in U[M] the set of 

2-dense submodules of N uniquely determines the torsion 

class 2. 

(1.5) A module Nso[M] is (M,S)-in<jective,if N is injec- 

tive with respect to any exact sequence CHK-'L~~L/K-0 in 

U[M] with L/KcS. 

Any NEU[M] possesses an (M,2)-injective hull %(N), 

that is a module %(N) with the properties 

- N is essential in %(N); 

- %(N)/NEz; 

- E&(N) is (M,S)-injective. 

We may identify %(N) with the submodule E of the 
h A 

M-injective hull N of N for which E/N = z(N/N). If N 
A 

is 2-torsion-free, the same is true for N and %(N) 

(see (1.3)). In case every essential submodule of M 

is 2-dense in M, "(M,X)-injective" 1s equivalent to 

"M-injective" and the (M,X)-injective hull of any 

N~U[M] is equal to the M-injective hull N. 

(1.6) We call a module NEU[M] faithfully (M,S)-in- 

jective, if any diagram in o [M] . 

N 

with exact row and L/KEZ can be completed to a commu- 

tative diagram by a uniquely determined IrtN. N is 

faithfully (M,Z)-injective if and only if N is (M,x)- 

injective and a-torsion-free. 
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1464 WISBAUER 

(1.7) The 2-quotient of a module NEU[M] is defined to 

be the (M,X)-injective hull of the factor module 

By construction, %(N) is 2-torsion-free and (M,X)-in- 

jective, which means %(N) is faithfully (M,2)-injec- 

tive (see (1.6)). 

For N, LEO [M] and fcHomR(N,L) we obtain in a canoni- 
- 

cal way a homomorphism ~:N/x(N) + L/x(L). Since 

$(L) is faithfully (M,2)-injective, the diagram 

can be completed to a commutative diagram by exactly 

Thus building the quotient modules defines a (left 

exact) functor 

$( ) : O[M] +  MI. 
For a monomorphism f : N 4 L the quotient map &(f) is 

an isomorphism if and only if L/N~EZ. 

(1.8) For any module NCU[M] the set of %-dense sub- 

modules B(N,Z) is left directed with respect to in- 

clusion (see ( 1 . 4 ) ) .  

Take UCU [M] and K,LsQ.(N,2) with KcL. We have a canoni- 

cal I -homomorphism 
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MODULES AND RINGS 1465 

and this gives us an inductive system of Z-modules 

(HomR(K,U! , hL,K, c(N,x) ) .  

(1.9) THEOREM Let 2 be a torsion class in U[M], 

N,UEU[M] and 9(U) = 0. With the notations above we 

have : 

( 1 )  HomR(N,%(U)) - Q HomR(K,U), KEG(N,X); 
( 2 )  HomR(N, %(U)) = HomR(%(N), %(U)) ; 

(3) if N generates %(U), then @(N) also generates 

L 2 - p  ; 

(4) EndR(%(N)) 9 HO~~(K,N/X(K)), K&P(N,Z). 

Proof: ( 7 )  For KE~(N,Z), any fsHomR(K,U) can be ex- 

tended to a unique ?sHomR(~,$(U)). This ,,T' - lelds an 
inverse system of Z-monomorphisms 

By the universal property of direct limits we obtain 

a monomorphism 

@ is epimorphic since, for h€HomR(N,%(U)), we have 

7 V = ~ h -  EB(N,Z). By restriction we get H=hlVsHornR(~,U) 

and @V(h)=h. 

(2) Any fs~orn~(~,%(~)) defines a unique f'c~om ( R %(N) ' 

%(U)). On the other hand every gcHomR(%(N), %(U)) 

is uniquely determined by its restriction to N/Z(N). 
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1466  WISBAUER 

(4) This follows from (I) and (2). 

(1.10) We call M a subgenerator in R-MOD, if M has 

one of the three equivalent properties 

(i) REU [M] ; 
k (ii) RcrM for a ki[N; 

(iii) R-MOD = a [MI. 

In this case the torsion theory considered above is 

just a torsion theory in R-MOD and is determined by 

the set of all X-dense left ideals of R (Gabriel 

filter), 
c(R,2) = {Kc-~R ( R/KEz}. 

From Theorem (1.9) we obtain the following well-known 

properties of localization in R-Mod: 

(1.11) THEOREM Let X be a torsion class in R-Mod and 

N, LC R-Mod. Then 

(1)  %(N) = 9 HomR(K,N/x(N)), KcS.(R,5) ; 

(2) %(R) xndR(%(R)) as H-modules; by 

this isomorphism a ring structure is 

defined on %(R); 

( 3 )  QJN) - HOmR(R,(&(N)) - HomR((&(R) ,Q(N)); 

this isomorphism allows the structure of 

a left %(R)-module for (&(N) which ex- D
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MODULES AND RINGS 1467 

EndR(%'(M)) is just the maximal ring of quotients 

of EndR(M) in case M satisfies the following c,ondition : 

(*) For any X-dense submodule KcM there is a mono- 

morphism g:M+K with Img 2-dense in K (hence in M). 

(1.12) THEOREM Let 2 be a torsion class in U [ M ] .  If 

M is X-torsion-free and M satisfies condition (*), 

then EndR(%(M)) = Qcl(S), the classical left ring of 

quotients of S = EndR(M). 

Proof: We have to show that any cl~T=~nd~(%(M)) can 

be written as q=s-'t for s,t€S: 

Take N=M~-~TIM and chose a monomorphism s : h N  with Ms 

X-dense in M (condition ("1). Then O&sq=t€s. Since s 

is invertible in T (see end of (1.7)) we get ~~=s-lt. 

A special case of (1.12) will appear in Corollary (3.2). 

2. The singular torsion theorx 

As in torsion theories in R-MOD, the essential 

submodules play a special part here too. A first ob- 

servation is : 

(2.1) PROPOSITION Let Z be a torsion class in a[~]. If 

every essential submodule LcM is %-dense in M 

(i. e. M/LES), then 

(I) T=~nd~(%(Mj) is (von Neumann) regular 

and TT is injective; 
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WISBAUER 

(2) if M/z(M) has finite (Goldie) dimension, 

then T is semisimple artinian. 

Proof: (I) Under the given assumption, Q=s(M) is 

just the M-injective hull of M/'s(M) (see (1.5)). Hence 

H~ is quasi-injective and T/J~c(T) is self-injective 

and regular. It remains to show that Jac(T)=O. For 

fcJac(T) we have K=Ker f is essential in Q. Then, for 

any acHomR(M, Q) , ~a-' is essential -hence ?-dense- in M. 

Since M generates the M-injective module Q, this means 

Q/KEZ and Q/K~(Q)=o, i.e., f=O. 

(3) If M/x(M) is finite dimensional, the same is true 

for Q. In this case the regular ring T has no infinite 

set of orthogonal idempotents and hence it is semi- 

simple artinian. 

(2.2) COROLLARY Let 2 be a torsion class in u[M]. If 

M is X-torsion-free and every non-zero submodule is 

2-dense in M, then T=EndR(s(M)) is a skew field. If, 

in addition, HomR(M,~)fO for all submodules NcM, then 

T is the quotient skew field of S=EndR(M). 

h 
Proof: Under the given condition, %(M)=M, the M-injec- 

tive hull of M. Every tsT is a monomorphism. Thus T is 

a regular ring (by (2.1)) without zero divisors, i.e. 

T is a skew field. The second assertion follows from 

Theorem (1.12). 
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MODULES AND R I N G S  1469  

(2.3) A module NEU [M] is called singular in a [MI, or 

M-singular, if there is an exact sequence in o[M] 

O.K+hN+O, with K essential in L. Observe that a pro- 

jective module N in U[M] is never M-singular, since 

the above sequence splits. If cr[M]=~-MOD, the notion 

"M-singular" is identical to the usual "singular" for 

modules. Of course, every M-singular module is singu: 

lar in R-MOD. However, a simple module M can be singu- 

lar in R-MOD but never is M-singular, because it is 

projective in O[M]. 

The class 6' of all M-singular modules in U[M] is 

closed by taking submodules, factor modules and direct 

sums (e.g.Prop.(T.l) in Goodearl [12]). Therefore any 

LEU [M] has a largest M-singular submodule T~(E' ,L). 

L is M-singular if and only if T~(E',L)=L; L is 

called non M-singular, if Tr(5' ,L)=O. For example, 

a semihereditary module P in a[M] (Wisbauer [27]) is 

non M-singular; Since every finitely generated sub- 

module of P is M-projective, P cannot contain an 

M-singular submodule. 

(2.4) By 6 we denote the smallest torsion class in U[M] 

(as defined in (1.1)) which contains all M-singular 

modules, and the resulting torsion theory is called 

the singular torsion theory in a[~]. Applying standard 

arguments we obtain (LEU[M]): 
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1470 WISBAUER 

( 1 )  If L is non M-singular, then L is 6-torsion-free 

and every E-dense submodule is essential in L 

(see (1.4)); 

(2) Any (M,E)-injective module is M-injective (see 

(1.5)); 
h 

(3) L& if and only if its M-injective hull L be- 

longs to 6 ;  
A 

(4) If M is projective in u [ M ] ,  then LEG iff, for 
A 

every bcHomp(M,L), Kerb is 6-dense in M. In 

this case the class 6 is uniquely determined 

by the set of all 6-dense submodules of M. 

( 5 )  In case M is non M-singular and projective in 

U[M], B is determined by the set of all essen- 

tial submodules of M (this follows from (1 )  

and (4)). 

(6) ~nd~(%(L)) is a regular, left self-injective 

ring (~rop.(2.1)). 

If M is a subgenerator in R-MOD (see (1.10)), the 

M-singular modules are just the singular modules and 

the singular torsion theory is the Goldie torsion theory 

in R-MOD. We know from Theorem (1.11) that in this case 

the quotient module s ( R )  allows a ring structure. 

(2.5) THEOREM Let M be a subgenerator in R-MOD and 6 

the smallest torsion class containing the (M-)singular 

modules. Then 
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MODULES AND RINGS 1471  

(1) %(M) is a generator In %(R)-MOD; 

(2) T=EndR(@(M))=hd 
Q&) (@(M)) is a regular, 

left self-in jective ring; 

(3) C&(M)* is a finitely generated, projective 

T-module ; 

(4) @(R) ' EndT(9g(M)). 
Proof: (1) By part (2) of (2.4), s(R) is M-injective 

(=R-injective), hence generated by M, and the assertion 

follows from part (3) of Theorem (1.9). (2) This is a 

special case of Prop. (2.1) and Theorem(l.ll), (4). 

(3) and (4) are consequences of (1). 

Results on non M-singular modules M will be special 

cases of the more general theorems of the next paragraph. 

3. The torsion theory determined by the M-inJective 

hull of M 

( 3 . 1 )  As mentioned in (1.3) any M-injective module 

in o[M] defines a torsion theory in a [ ~ ] .  Here we are 

concerned with the torsion theory determined by the 
r\ 

M-injective hull M of M. Thus we are considering the 

torsion class 
A zM= t ~ s u  [M] I HomR(K,M)=O) . 

It is immediate that M is 2-torsion-free, and XM is, 

in fact, the largest torsion class in U [ M ]  for which M 

is torsion-free. %(M) is just the (M,ZH)-injective 

hull of M. 
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1 4 7 2  WISBAUER 

We call a XM-dense submodule UCM rational in M and 

M a rational extension of U. The following assertions 

are equivalent for a submodule UCM: 

(a) U is rational in M; 
h 

(b) HO~~(M/U,M)=~; 

(c) for all UcVcM, HO~~(V/U,M)=O. 

Since M is XM-torsion-free, every rational submodule 

is essential in M (see (1.4)). We will be mainly 

interested in modules M, whose essential submodules 

are rational in M. These modules are related to non 

M-singular modules in the following way: 

(3.2) PROPOSITION Let M be an R-module. 

( I )  If M is non M-singular, then every essential 

submodule is rational in M. 

(2) If M is projective in a[M] and every essential 

submodule is rational in M, then 

HO~~(M,T~(G' ,M) ) =O. 

(3) If M is projective in U[M] and HomR(M,~)fO for 

all KcM, then M is non M-singular iff every 

essential submodule is rational in M. 

Proof: 

( 1 )  Let U be an essential submodule of M, UcVcM, 

and fe~orn~(~/U,~). Since U is essential in V, 

we get (V/U)~CT~(G' ,M)=O and f=O. 

(2) Take gs~omR(~,~r(6' ,M)) . Then Ker g is essential 
and hence rational in M by assumption. This im- 

plies g=O. 
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MODULES AND RINGS 1473 

(3) This is a consequence of ( 7 )  and (2). 

(3.3) Applying our theory to the case M=R we obtain 

the torsion class in R-MOD defined by the injective 
A 

hull R of R: 
h 

XR= {KER-MOD I HomR(K,R)=O). 

This leads to the Lambek torsion theory in R-MOD. The 

quotient module %(R) may be considered as a ring 

extension of R (see (1.11)) and is called the maximal 

left ring of quotients Qm(R) of R. By (2.8), all 

essential left ideals are rational in R if and only 

if R is non singular. In this case %(R) coincides 

with the injective hull of R and is a regular, left 

self-injective ring (Compare (2.4), (6)). This situ- 

ation is generalized in: 

(3.4) THEOREM Let M be an R-module with every essential 

submodule rational in M. Then 
n 

(1) T=EndR(M) is a regular and left self-injective 

ring ; 

(2) S=EndR(M) is a subring of T; 
A 

(7) EndR(M)=l3 HomR(K,M), K essential in M; 

(4) every monomorphism fcS with Im f essential in M 

is invertible in T; 

(5) if M is (Goldie) finite dimensional, then T is 

semisimple artinian. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

s 
un

d 
L

an
de

sb
ib

lio
th

ek
] 

at
 0

7:
10

 2
3 

N
ov

em
be

r 
20

11
 



1474 WISBAUER 

Proof: ( 7 )  and (5) follow from Proposition (2.7) since, 
A 

under the given condition, %(M)=M. 

(2), (4) are special cases of the general situation 

described in (1.7). (3) was shown in Theorem (1.9)~ (4). 

The following theorem gives a connection between 
A 

EndR(M) and a quotient ring of ~nd~(M): 

(7.5) THEOREM Let M be an H-module with every essential 

submodule rational in M and HomR(M,N)fO for all sub- 
h 

modules NCH. Then EndR(M)=Qm(S), the maximal left ring 

of quotients of s=~nd~(M). 

A 
Proof: Since T=End (M) is a self-injective extension R 

of S by (3.4), it remalns to show that S is an essential 

S-submodule of T. For 0facl' the submodule K=M~-'~M is 

essential in M. From HornH(M,~)f0 for all NcM we deduce 

that Tr(M,K)=M.HomR(M,K) is essential in K and hence 

essential and rational in M. This implies M.HomR(M,~)afO 

and we can find P<HomE(M,K) with O f ~ a ~ s .  Thus pa~8-1Saf0. 

Notice that in (3.5) an sfS is a non zero divisor if 

and only if Ker s = 0 and Im s is essential in M. 

Examples for the conditions in (3.5): 

(i) Let R be a semiprime ring and M a non singular 

K-module cogenerated by R. Then HornR(M,lt)#0 

for all NCM and (3.5) yields part of Theorem (2.2) 

in Zelmanowitz 1281. 
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MODULES AND RINGS 1475 

(ii) Let M be a non singular module and T'r(M,R) 

essential in M. Then the standard Morita con- 

text (R,M,M*,S) is non degenerate and (3.5) is 

a special case of Theorem ( 7 . 1 )  in Hutchinson- 

Leu 1141 (see also Leu [16]).  

(iii)If the standard Morita context is semiprime 

and M is noetherian, then we also have the 

situation of (7.5). This is described in ZeL- 

manowitz [29] (e.g., Corollary (3.6)). 

(iv) For any M-projective module M with Rad(M)=O 

we have HomR(M,~)fO for all NcM: 

Since N is not small in M there is a KcM, K ~ M ,  

with N+K=M. Then the composition N+WM/K is 

an epimorphism and the diagram 

M 
.i 

N + M/K -, o 

can be completed to a commutative diagram by 

an a€HomR(M,N), a f 0 .  

Other interesting applications will occur in $4. 

We call a submodule KcM a kernel submodule (or 

annihilator submodule) if it is the kernel of an endo- 

morphism of M. For the next theorem we need: 

( 3 . 6 )  LEMMA For an M-injective module M the following 

properties are equivalent: 

(a) M has the ascending chain condition on kernel 

submodules; 
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1 4 7 6  WISBAUER 

(b) S=EndR(M) has the descending chain condition 

on cyclic right ideals. 

Proof: This follows from the fact that for any teS we 

have ~ o m ~ ( ~ / ~ e r  t ,M) = tS (compare Harada-Ishii [13 ]  , 

Prop. I). 

(3.7) THEOREM Let M be an R-module with finite (Goldie) 

dimension and every essential submodule rational in M. 

Consider the conditions: 

(i) HO~~(M,N){O for all NCM and s=~nd~(M) is 

semiprime ; 

(ii) for every essential submodule NcM there is a 

monomorphism M -+ N; 

(iii) ~=~nd~(fi) is the (semisimple artinian) 

classical left quotient ring of S and for 
h 

every essential submodule LcM we have L.T=M. 

For these conditions the implications (i)*(ii)=.<iii) 

are true. 

Proof: (i)*(ii) From (3.5) we know that T is the 

maximal left ring of guotients of S and by Propositi- 

on (2.1) T is semisimple artinian. Thus S is a left 

finite-dimensional, non-singular ring. By assumption 

it is also semiprime and hence S is a Goldie ring and 

has a classical left ring of quotients which must be 
h 

equal to T. According to Lemma (3.6) M has acc on 

kernel submodules; since S T  this implies acc on 

kernel submodules for M. 
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MODULES AND RINGS 1477 

Now assume L to be an essential submodule of M 

(compare Goldie [ T O ] ,  Theorem 2): HomR(M,L) is not a 

nil ideal in S (=Goldie ring) and hence there is 

2 a,eHomR(M,~) with Ker a, = Ker a,. 

If ~era~#0, we chose an a2cHomR(M,NlKeral) with 

2 Kera -Kera2. Continuing this way we get a direct sum 2 - 

of submodules 

with ak+l $0 as long as PSIKera,n. . .i\Kerak#O. 
Since M is finite dimensional and N is essential in M 

we finally must have Kera,fKera ,$I... nKerak=O for some 
kdN. Then @=a +a2+...akeHomR(M,N) is a monomorphism. 

1 

(ii) 3 (iii) Since M is finite dimensional, for any 

monomorphism fcS Mf is essential in M: Assume 

2 MfnK=O for KcM. Then the sum ~f ' + ~ f  + ~ f  3+. . . is direct 
and, if K#O, ~ f ~ f 0  for all r m .  So we must have K=O. 

By (ii) we know that for any essential L c M  there is a 

monomorphism M - N with essential image in N (and M). 
Now Theorem (1.12) tells us that T is the classical 

ring of quotients of S. 
6 

For an essential L c M ,  the M-injective hull L is equal 
r\ 

to M. The L-injective hull of L can be written an 

L.E~~~(?)=L.T. Since a copy of M is contained in L 

(by (ii)), the L-injective hull is in fact M-injective 
A 

and hence L.T=M. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

s 
un

d 
L

an
de

sb
ib

lio
th

ek
] 

at
 0

7:
10

 2
3 

N
ov

em
be

r 
20

11
 



1478 WISBAUER 

(3.8) COROLLARY Assume the R-module M to be a self- 

generator with finite (Goldie) dimension and every 

essential submodule rational in M. Then the following 

properties ere equivalent: 

(a) S=EndR(M) is a semiprime ring; 

(b) for every essential submodule LcM there is a 

monomorphism M -+ L; 
h 

(c) T=EndH(M) is the classical left quotient ring 

of S (and is semlsimple artinian). 

For M=R this is substantially one of  oldie's theorems. 

A module M is called compressible, if every submodule 

of M contains an isomorphic copy of M. 

(3.9) COROLLARY Let M be a compressible N-module in 

which every submodule is rational. 
h 

Then T = E ~ ~ ~ ( M )  is the auotient skew field of S=EndR(M) 
h 

and for every submodule KcM we have K.T=M. 

This is actually again the situation of Corollary (2.2). 

Modules satisfying the conditions of (7.9) are called 

critically compressible and the first assertion of the 

corollary is Lemma 2 in Zelmanowitz [30]. 

Analogous to Theorem (2.5), we want to study the 

ZN-torsion theory for a subgenerator in R-MOD: 

(3.10) THEOREM Assume M to be a subgenerator in H-MOD 

with every essential submodule rational in M. Then 
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MODULES AND RINGS 

( 1 )  R is ZH-torsion-free (since RCM~'); 

(2) ( R ) ,  the (R-)injective hull of R; 
A A 

(3) M is a generator in R-MOD; 
h A 

( 4 )  T=E~c~(M)=E~~~(M) is a regular, left self-in- 
A 

Jective ring and P'+ is a finitely generated, 

projective T-nodule; 
h h 

(5) & ~ n d ~ ( ~ ~ ) ,  hence R is regular and k is non 

singular; 
h 

(6) if M is finite dimensional, then T and R are 

semisimple artinian; 

(7) if M is finite dimensional and S=EndR(M) (or R) 
h 

is semiprime, then T (resp. R) is the classical 

ring of quotients of S (resp. R). 

Proof: (2) Because of (I), s(R) is the M-injective 

hull of R; since M is subgenerator, (&(I?) is even 
h 

h-injective. ( 3 )  M generates R and by part ( 3 )  of 
A A h 

Theorem (1.9), M generates R; R gets a rlng structure 

by Theorem (7.11). (4) T is regular and self-injective 
h 

by Theorem (3.5), and ~ n d ~ ( ~ ) = ~ n d ~ ( A )  was shown in 

Theorem (1.11). The rest of (4) and the isomorphism in 

(5) are conseguences of (3). (6) If M is finite dimen- 

sional, then T is semisimple artinian ((2.7)) and the 
h 

same is true for R because of (5). (7) If M is finite 

dimensional, then S and R are finite dimensional non 

singular rings; in case they are semiprime they allow 

classical rings of quotients (Goldie theorem) which 
A 

must be equal to T resp. R. 
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1480 WISBAUER 

(3.11) COROLLARY Let M be an R-module whose essential 
A 

submodules are rational in M and T=EndR(M). The follow- 

ing properties are equivalent: 

(a) M is a subgenerator in R-MOD; 
h 

(b) MT is a finitely generated T-module and is 

faithful. 

h 
Proof: (a)*(b) was seen in (3.10). (b)*(a) M and M are 

h 

faithful R-modules. Since MT is finitely generated as 

k T-module, there is a monornorphism E+h , km, which 

means Heo [fi] =a [M] . 

4. The central closure of a (nonassociative) ring 

Let A be a not necessarily associative ring and 

Q(A) (or G) its multiplication ring, i.e. the subring 

of E~$(A) generated by the left and right multipli- 

cations in A and the identity in Endz(A). Consider A 

as module over E(A). The B(A)-submodules are just the 

two-sided ideals in A. Endg)(A) is the centroid c(A) of 

A. It coincides with the centre C(A) of A if A has a 

unit element. 

~ Q [ A ]  denotes the subcategory of O(A)-MOD subgene- 

rated by the &(A)-module A (see $1 ) .  The A-injective 
h h 

hull 2 in o ~ [ A ]  is generated by A, i.e. A=A.HO%(A,A). 

We are going to interpret the rational torsion theory 

of F 3  in this context. 
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MODULES AND RINGS 1 4 8 1  

According to (3.1) an ideal UcA is called rational in A, 

if Hom ( A U , ) = O  ( A )  denotes the quotient module of A 

in the rational torsion theory. Since A is torsion-free 

in this theory we have 

for the P(A)-modules A, Q~(A) and 2. 
The following observation allows us to apply the re- 

sults of F3 to semiprime rings: 

(4.1) LEMl"IA Let A be a semiprime ring. Then 

(1) Any essential ideal is rational in A; 

(2) Q (~)=2, the A-injective hull of A in o g ; [ ~ ]  ; r 

( 3 )  End (t)=* Homo(U,A), U essential in A; Q 
(4) ~nds;($) is a commutative ring. 

Proof: (1) Take an essential ideal UcA, U c V c A ,  and 

aeHomc(V/U,~). Then (v/U)a is an ideal in A and 

2 (w'I(v/u)~) -0; hence UP(V/U)a=O since A is semiprime 

and (v/u)~=o slnce U is essential in A, i.e., a=O. 

Thus HO%(V/U,A)=O and by (3.1) U is rational in A. 

(2) is a consequence of (1) (see (1.5)). 

(3) is a special case of Theorem (1.9). 

(4) Take f ,@~E~Q(S) and u=A~-'PA~-'~~A. U is essential 

in A and the ideal generated by u2 is also essential, 

hence rational in A, since for any ideal 

KcA O#(W?K) *~u%K. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

s 
un

d 
L

an
de

sb
ib

lio
th

ek
] 

at
 0

7:
10

 2
3 

N
ov

em
be

r 
20

11
 



1482 WISBAUER 

NOW, for a, bcU we have 

(ab)fg=(a(bf))g=(ag)(bf)=(ab)gf. 

2 This means U (fg-gf)=O and f p g f  is zero on the ratio- 
'? nal ideal generated by U , i.e. fg=gf. 

Remark: For a torsion class 2 in U~-[A] the ring 

End+(%(A)) is commutative if for any 2-dense ideal 

UcA the ideal generated by U* is also 2-dense in A. 

A 
(4.2) THEOREM Let A be a semiprime ring and A the 

A-injective hull of A in uc[A]. Then 

( 1 ) T = E ~ Q  (A)=H~% (A,$) is a commutative, regular, 

selfinjective rlng; 

(2) the centroid c(A)=En%(A) is a subring of T; 

(3) if A is a finite dimensional d(A)-module, then 

T is semisimple artinian; 
A A 

(4) A=A-Ho% (A,A)=A.T allows a ring structure and 
A 

A is a subring of the ring A; 
h 

(5) 2 is a semiprime ring with centroid c(A)=T; 
(6) 2 is a self-injective module over its multi- 

h 
pllcation ring (A). 

Proof: ( ? ) ,  (2), (3) are application of Theorem (7.4) 

and Lemma (4.1). 

(4) For a,beA and s , t ~ T  we define 

(as).(bt) = (ab)st. 

As readily checked this determines a multiplication 
h h 

on A=A.T and A is a subring of A. 
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MODULES AND RINGS 

2 A 2 (5) Assume J =O for an ideal J in A. Then (JnA) =O 

and therefore J n A = O  since A is semiprime. A being 

essential in A this means J=0. From the definition 
h 

of the multiplication in A and the commutativity of T 
h 

we deduce T=E~% (A) ( a ) = ~ n ~  (8) (A)=c($), 
(6) follows from (5) and the fact that A is self-in- 

jective as Q(A)-module. 

(4.1)and (4.2) show that for a semiprime ring A 

~ n %  (2) is just the extended centroid of A (intro- 
h 

duced in [17], [7])and A -with the multiplication 

given above- is the central closure of A. 

Theorem (4.2) extends Theorem (2.5) and (2.15) of 

Baxter-Martindale [4] . 

We will be concerned with rings, whose non-zero 

ideals have non-zero intersection with the centre. 

This is clearly a generalization of commutative asso- 

ciative rings and like for these we can show: 

(4.3) PROPOSITION Let A be a ring with centre C ( A )  

and ~C(A)#O for any ideal U#O. Then the following 

properties are equivalent: 

(a) A is semiprime; 

(b) every essential ideal is rational in A and A has 

no absolute zero divisors. 

Proof: (a)*(b) was seen in (4.1). 
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1484,  WISBAUER 

2 (b)a(a) Assume U to be an ideal in A with U =O. 

Then there is an ideal KcA for which U a K is essential 
and hence rational in A and U(U @ K)=O. Any element 

O+UEW?C(A) defines a non-zero homomorphism A-Auc-U with 

rational kernel U O K .  This means U~C(A)=O and there- 

fore U=O. 

(4.4) THEOREM Let A be a semiprime ring with centre 

C(A). If for every non-zero ideal UCA u~c(A)#o, then 

En%($) is the maximal ring of quotients of the cen- 

troid En% (A). 

Proof: The given condition implies that HO% (A,u)#o 

for every non-zero ideal UCA, and the assertion follows 

from Theorem (3.5). 

For the finite dimensional case we get the following 

two-sided analogue of   oldie's theorem on semiprime 

rings : 

(4.5) THEOREM Let A be a semiprime ring with unit, C(A) 
A h 

the centre of A and T=E~%(A)=c(~) the centre of A. 

The following conditions are equivalent: 

(a) A has finite (Goldie) dimension as Q(A)-module 

and one of the equivalent properties: 

1) for every non-zero ideal UCA WC(A)#O; 

2) for every essential ideal VcA there is a 

monomorphism A-V; 
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MODULES AND RINGS 1485 

3) for every essential ideal VcA V('IC(A) contains 

a regular element; 
A 

4) for every essential ideal VcA we have V.T=A 

and T is the classical auotient ring of C(A); 

(b) 2 is (finite) direct sum of simple rings and T 
is the classical auotient ring of C(A). 

Remark:Since the classical quotient ring of C(A) is a 
h 

flat C(A)-module we have in (4.5) A=AeT AaC(*)T. 

Proof: (a.l)*(a.2) Under the given condition T is the 

maximal ring of quotients of C(A) by Theorem (3.5). 

Since T is commutative and regular, C(A) is semiprime 

and we can apply (i)*(ii) of Theorem (3.7). 

(a.2)o(a.3) Given a monomorphism f:A+V, If is a regular 

element in VnC(A). 

(a.3)*(a.4) corresponds to the implication (ii)*(iii) 

of Theorem (3.7). 
h 

(a.4)3(b) Let X be an essential ideal in A. For any 
h h 

Q(A)-submodule K of A, K - T  is an ideal in A and hence 

X7K-TfO. 

Assume O{x=a t +. . .+  aktk for XEX, ai&K, ti&T. 1 1  

Then there exists a regular element seC(A) with 

tis€C(A)for izk and hence xs=altls+ . . . +  aktkscmK. 

We conclude that X is essential as Q(A)-submodule and 
h h 

(a.4) implies X=X.T=A. Thus A has no non-trivial essen- 
A .  

tial (two-sided) ideals, i.e., A 1s direct sum of 

simple ideals. 
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1486 WISBAUER 

(b)=(a.i] Since T=E~Q(~) has no infinite sequence of 
h 

orthogonal idempotents, A and A are finite dimensional 

ii(~)-modules. For any non-zero ideal UCA, U-T is an 
h A 

ideal in A, hence direct summand in A and U.TT'T~O. 

If O#ultl+ . . . +  uktk=qcT for uitU, ticT, then there 

exists a regular element scC(A) with tiscC(A) for 

izk and ascC(A). This means O#u,tls+ . . . +  uktks = 

= qscUOC(A). 

(4.6) COROLLARY For a prime ring A with unit and 

centre C ( A )  the following properties are equivalent: 

(a) for any non-zero ideal UCA PC(A)#O; 

(b) for any non-zero ideal UcA there is a monomor- 

phism A-tU; 
A 

(c) A is a simple ring and its centre is the quotient 

fiele of C(A). 

Proof: A prime ring is finite dimensional and every 

ideal is rational in it. Thus (4.6) follows from (4.5). 

It is also a special case of Corollary (2.2). 

In (4.6), A is a critically compressible module 

over a(A) and hence o ( A )  is a weakly primitive ring in 

the sense of Zelmanowitz [3o]. This generalizes the 

fact that the multiplication ring of a simple ring is 

primitive . 

For associative rings the result of (4.6) was pro- 

ved in Delale [6], Proposition 11.9.6. (see also Ver- 
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MODULES AND RINGS 1487 

schoren [24], Theorem 1.3.19). Notice that in (4.5) 
f i  

and (4.6) A=A-T is a central extension of A as consi- 

dered, e.g., in Amitsur [ 2 ] .  

The next theorem will describe the case when A is 

a subgenerator in Q(A)-MOD, that is we have one of the 

following eauivalent conditions: 

(i) Q(A)  sap[^]; 
(ii) G(A)CA~, km; 

(ill) cL, [A]=Q(A)-MOD. 

If A is semiprime, then D ( A )  is torsion-free in the 
h 

torsion theory defined by A (because of (ii)). The 

quotient module %(Q) is just the (Q-) injective 
4 

hull 51 of and can be made into a ring by Theorem 

(1.11). We readily deduce from Theorem (3.10): 

(4.7) THEOREM Let A be a semiprime ring. If A 1s a 

subgenerator in C(A)-MOD, then 
h 

( 1 )  2 is a generator in Q-MOD (Q=Q(A)); 
A n 

(2) T=End (A)=Endfi(A) is commutative, regular and 0 

self-injective; 
h (3) AT is a finitely generated, projective T-module; 
A h 

(4) OEEndT(h) is regular and 0 is non singular. 

(4.8) COROLLARY For a semiprime ring A the following 

assertions are equivalent: 

(a) A is a subgenerator in Q(A)-MOD; 
A 

(b) AT is a finitely generated module over 
h 

T=Endg (A). 
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Proof: Coro l la ry  (3 .11  ) . 

h 
I n  genera l ,  t he re  i s  a  d i f fe rence  between 8 ( A ) ,  

6 A 
t he  n u l t i p l i c a t i o n  r i n g  of A ,  and Q ,  t h e  maximal quo- 

t i e n t  r i n g  of 9=9(A). Under t he  condi t ions  of (4.7)  

h 
I n  case 3 i s  d i r e c t  sum of simple r i ngs  (and % f i n i t e -  

l y  generated)  Q ( 2 )  i s  semisimple a r t i n i a n ,  hence s e l f -  

i n j e c t i v e  and we conclude 

4 
~ ( k ) = E n d , ( $ ) = ~ ,  

which means t h a t  A i s  an Azumaya a lgebra  over T .  

So we s t a t e  t h e  fol lowing a s  a  f i n a l  theorem: 

( 4 . 9 )  THEOREM For a  semiprime r i n g  A with u n i t  and 

cen t re  C(A) t he  fol lowing p rope r t i e s  a r e  eau iva len t :  

( a )  A i s  a  subgenerator i n  Q(A)-MOD, A has f i n i t e  

(Goldie) dimension over Q(A) and U~C(A)#O f o r  

any non-zero i d e a l  U; 
A 

( b )  T = E ~ ~ ( A )  i s  t h e  c l a s s i c a l  quot ien t  r i n g  of 
h 

C(A) and A has  one of t h e  fol lowing equivalent  

p rope r t i e s :  
h 

1 )  3 i s  d i r e c t  sum of simple r i ngs  and AT i s  a  

f i n i t e l y  generated T-module; 
A 

2)  Q(A), t h e  mu l t i p l i ca t i on  ring of 2, i s  semi- 

simple a r t i n i a n  and f i n i t e l y  generated a s  

T-module ; 
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3) 2 is Azumaya algebra over T. 

Proof: We have seen in (4.5) that, under the conditions 

of (a), T is the classical quotient ring of C(A). 

(a)*(b. I) 2 is direct sum of simple rings by (4.5) 
and finitely generated as T-module by (4.7). 

(b.?)*(b.2)s(b.3) was shown above. 

(b.3)3(a) From (4.8) we know that A is a subgenerator 

in &?(A)-MOD and the rest follows from Theorem (4.5). 

(4. lo) COROLLARY For a prime ring A with unit and 

centre C(A) the following conditions are eguivalent: 

(a) A is a subgenerator in Q(A)-MOD and U~C(A) fO 

for any non-zero ideal UcA; 

(b) 2 is a finite dimensional central simple alge- 
bra and T=E~% (2)=~(2) is the quotient field 

of C(A). 

(4.11) EXAMPLES 

(i) Rings A (with unit) whose non-zero ideals 

intersect the centre non-trivially: 

I) A is Azumaya algebra; 

2) A is self-generator as Q(A)-module; 

3) A is an associatjve semiprime PI-ring; 

4) A is a (purely) alternative prime ring 

with 3 ~ f 0  (Slater [22]); 

5) A is a semiprime NPI Jordan ring (Rowen 

[20], Theorem (2.5)); 
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1490 WISBAUER 

6) A is centrally admissible (Rowen [21], 

Theorem (3.3)). 

(ii) Zings A (with unit) which are subgenerators 

in C (A) -MOD : 

I )  examples I) and 4) above; 

2) A ~ E  finitely generated module over its 

cent re; 

3 )  A is an associative prime PI-ring; 

4) A is a (nonassociative) prime NPI-ring of 

finite degree (Rowen [2o], Theorem ( 1 . 5 ) ) .  

(iii) An example of an associative prime ring A 
h 

for which T=En%'(A) is a transcendental field 

extension of the quotient field of the centre 

of A is given in Delale [5]. 

(iv) For an associative prime ring A with unit . 

the following construction for T=En% (2) 
is given in Delale [6], Proposition 11.9.5.2: 

Take E=((a,b)cAxA / b#O and axb=bxa for all 

X E A ~  . 
Define an equivalence relationon E by 

(a,b)~(%' ,bl) iff axbl=bxa' for all xcA. 

Then the equivalence classes by this relation 

allow the structure of a field which is iso- 

morphic to T. 
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