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Abstract

A module M is called product closed if every hereditary pretorsion
class in σ[M ] is closed under products in σ[M ]. Every module which
is locally of finite length is product closed and every product closed
module is semilocal. Let M ∈ R-Mod be product closed and projective
in σ[M ]. It is shown that (1) M is semiartinian; (2) if M is finitely
generated then M satisfies the DCC on fully invariant submodules;
(3) if M is finitely generated and every hereditary pretorsion class
in σ[M ] is M -dominated, then M has finite length. If the ring R is
commutative it is proven that M is product closed if and only if M
is locally of finite length. An example is provided of a product closed
module with zero socle.

1991 Mathematics Subject Classification: primary 16S90.

It was shown by Beachy and Blair [2, Proposition 1.4, p. 7 and Corollary
3.3, p. 25] that the following three conditions on a ring R with identity are
equivalent:

(1) every hereditary pretorsion class in R-Mod is closed under arbi-
trary (and not just finite) direct products, or equivalently, every
left topologizing filter on R is closed under arbitrary (and not
just finite) intersections;

(2) every left R-module M is finitely annihilated, meaning (0 : M) =
(0 : X) for some finite subset X of M ;

(3) R is left artinian.
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In this paper we shall attempt to describe those modules M with the property
that every hereditary pretorsion class in the Grothendieck category σ[M ] is
closed under products in σ[M ]. A main theorem demonstrates that if M is a
finitely generated product closed module such that M is projective in σ[M ]
and every hereditary pretorsion class in σ[M ] is M -dominated (meaning,
every hereditary pretorsion class in σ[M ] is subgenerated by an M -generated
module), then M has finite length. This result extends Beachy and Blair’s
characterization of left artinian rings. Their proof is based on two results
due to Beachy [1, Proposition 1, p. 449 and Proposition 5, p. 451], but the
techniques used by Beachy are not easily generalized in a manner useful for
our purposes. We have thus had to develop new methods.

1 Preliminaries

The symbol ⊆ denotes containment and ⊂ proper containment for sets.
Throughout the paper R will denote an associative ring with identity and
R-Mod the category of unital left R-modules. If N, M ∈ R-Mod we write
N ≤ M [resp. N . M ] if N is a submodule of M [resp. N is embeddable in
M ]. If X, Y are nonempty subsets of M we define (X : Y ) = {r ∈ R : rY ⊆
X}. For subsets X, Y of R we define (X :l Y ) = {r ∈ R : rY ⊆ X}.

We recall some of the basic definitions and results of torsion theory. The
reader is refered to [3], [4], [12] and [13] for background information on hered-
itary pretorsion classes.

We say N ∈ R-Mod is subgenerated by a nonempty class C in R-Mod if
N is isomorphic to a submodule of a homomorphic image of a direct sum
of modules in C. We denote by σ[C] the class of all modules which are
subgenerated by C. If C = {M} is a singleton we write σ[M ] in place of
σ[{M}]. A nonempty class of modules in R-Mod which is closed under direct
sums, homomorphic images and submodules is called a hereditary pretorsion
class; σ[C] is the smallest such class containing C. Every hereditary pretorsion
class in R-Mod is of the form σ[M ] for some M ∈ R-Mod.

Given any hereditary pretorsion class T in R-Mod and N ∈ R-Mod, the
submodule

T (N) := Tr (T , N) =
∑

{Im f | f ∈ Hom(L, N) for some L ∈ T }

is the unique largest submodule of N belonging to T . For each ring R the
collection of all hereditary pretorsion classes in R-Mod is a complete lattice
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under the relation of inclusion.
If T and T ′ are hereditary pretorsion classes in R-Mod the extension of

T ′ by T is defined as

T : T ′ = {N ∈ R-Mod | there exists an exact sequence 0 → A → N → B → 0,
where A ∈ T and B ∈ T ′}.

It is easily verified that T : T ′ is a hereditary pretorsion class containing
both T and T ′ and (T : T ′)(M)/T (M) = T ′(M/T (M)) for all M ∈ R-Mod.
Observe that T is idempotent in the sense that T : T = T precisely if T is
closed under extensions and thus a hereditary torsion class.

The transfinite product T α (α an ordinal) is defined recursively as follows:

T 1 = T
T α+1 = T α : T
T β =

∨
α<β

T α if β is a limit ordinal.

If α is the smallest ordinal for which T α+1 = T α then T := T α is the unique
smallest hereditary torsion class containing T (see [4, Proposition VI.1.5, p.
137 and Corollary VI.3.4, p. 142]).

Each hereditary pretorsion class T in R-Mod is a Grothendieck category;
coproducts, quotient objects and subobjects in T are the same as in R-Mod
because of the defining closure properties of a hereditary pretorsion class [12,
15.1((1),(2)), p. 118]. It follows that the hereditary pretorsion classes of the
category T are precisely the hereditary pretorsion classes of R-Mod which
are contained in T . This means that the set of hereditary pretorsion classes
of T , when viewed as a lattice, coincides with an interval in the lattice of all
hereditary pretorsion classes of R-Mod. If {Ni | i ∈ Γ} is a family of modules
in T then ∏

i∈Γ

T
Ni := T (

∏
i∈ΓNi) = Tr (T ,

∏
i∈ΓNi)

is the product of {Ni | i ∈ Γ} in T and if N ∈ T then

ET (N) := T (E(N)) = Tr (T , E(N))

is the injective hull of N in T .
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2 Main results

Let T be a hereditary pretorsion class in R-Mod and N ∈ R-Mod. We call
a submodule N ′ of N , T -dense if N/N ′ ∈ T . The set L(N, T ) of all T -
dense submodules of N is a filter in the lattice theoretic sense on the lattice
of submodules of N (see [13, 9.7, p. 60]). We shall adopt the following
notation:

NT =
⋂
{N ′ ≤ N : N/N ′ ∈ T } =

⋂
L(N, T ).

In general, NT is not a T -dense submodule of N .

Theorem 1 The following assertions are equivalent for a left R-module M :
(i) for every hereditary pretorsion class T in σ[M ] and {Ni | i ∈ Γ} ⊆ T ,∏σ[M ]

i∈Γ Ni ∈ T ;
(ii) for every hereditary pretorsion class T in σ[M ] and N ∈ σ[M ] the set of
T -dense submodules of N is closed under arbitrary intersections, or equiva-
lently, NT is a T -dense submodule of N , i.e., NT ∈ L(N, T );
(iii) for every hereditary pretorsion class T in σ[M ] and finitely generated
N ∈ σ[M ] the set of T -dense submodules of N is closed under arbitrary
intersections.

Proof. (i)⇒(ii) N/NT .
∏

N ′∈L(N,T ) N/N ′. Since N ∈ σ[M ], N/NT ∈
σ[M ], so N/NT ⊆ Tr (σ[M ],

∏
N ′∈L(N,T ) N/N ′) =

∏σ[M ]
N ′∈L(N,T )N/N ′. Inas-

much as N/N ′ ∈ T for all N ′ ∈ L(N, T ), we must have N/NT ∈ T , so
NT ∈ L(N, T ).

(ii)⇒(iii) is obvious.
(iii)⇒(i) Let T be a hereditary pretorsion class in σ[M ] and {Ni | i ∈

Γ} ⊆ T . Take x = {xi}i∈Γ ∈
∏σ[M ]

i∈Γ Ni = Tr (σ[M ],
∏

i∈Γ Ni). Put N =

RR/(0 : x) ∼= Rx and Li = (0 : xi)/(0 : x) for each i ∈ Γ. Note that N
is finitely generated. Inasmuch as N/Li

∼= Rxi ≤ Ni ∈ T , Li is a T -dense
submodule of N for all i ∈ Γ. Since

⋂
i∈Γ(0 : xi) = (0 : x),

⋂
i∈Γ Li = 0, so

by (iii), N ∈ T . We conclude that
∏σ[M ]

i∈Γ Ni ∈ T , as required. �

We shall call M ∈ R-Mod product closed if it satisfies the equivalent
assertions in Theorem 1.

Remark 2 Observe that if M ∈ R-Mod is product closed then so is every
module in σ[M ].
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Recall that M ∈ R-Mod is said to be locally artinian [resp. locally of
finite length] if every finitely generated submodule of M is artinian [resp.
has finite length].

Proposition 3 Every locally artinian left R-module is product closed.

Proof. Suppose M ∈ R-Mod is locally artinian. Let T be a hereditary
pretorsion class in σ[M ] and N ∈ σ[M ] with N finitely generated. Since every
module in σ[M ] is locally artinian, N must be artinian, so every nonempty
set of submodules of N has a minimal element. Assertion (iii) of Theorem 1
thus holds. �

Remark 4 (i) The converse to Proposition 3 is not valid as shown in Ex-
ample 11. However, we shall prove in Theorem 16 that if M is a finitely
generated product closed module such that M is projective in σ[M ] and sat-
isfies a ‘weak generator’ type property, then M has finite length.
(ii) Every semisimple left R-module is locally artinian and therefore product
closed by Proposition 3.
(iii) Every torsion abelian group is a locally artinian Z-module and therefore
product closed.

We now establish some general properties of product closed modules.

Proposition 5 If a left R-module M is product closed then every cogenerator
for σ[M ] is a subgenerator for σ[M ].

Proof. Let C be a cogenerator for σ[M ]. If N is an arbitrary object in σ[M ]

then N .
∏σ[M ]

Γ C for some index set Γ. Since M is product closed we have

by Theorem 1(i) that
∏σ[M ]

Γ C ∈ σ[C]. We conclude that N ∈ σ[C], so C is
a subgenerator for σ[M ]. �

We shall denote by SOC the hereditary pretorsion class consisting of all
semisimple left R-modules. More generally, if M ∈ R-Mod we shall denote
by SOCM the hereditary pretorsion class of all semisimple modules in σ[M ].
Observe that if N ∈ σ[M ] then NSOCM equals J(N) the intersection of all
maximal proper submodules of N .

Theorem 6 Every product closed left R-module M is semilocal, that is to
say, M/J(M) is semisimple.
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Proof. By Theorem 1(ii), M/MSOCM ∈ SOCM . But, as noted above,
MSOCM = J(M), so M/J(M) is semisimple. �

A module N ∈ σ[M ] is called M-singular if N ∼= L/K for some L ∈ σ[M ]
and essential submodule K of L. The class of all M -singular left R-modules
is a hereditary pretorsion class in σ[M ] which we shall denote by SM (see [12,
17.3, p. 138 and 17.4, p. 139]). We call M polyform if SM(M) = 0, i.e., M is
SM -torsion-free. If N ∈ σ[M ] it is clear that every essential submodule of N
is SM -dense in N , i.e., {N ′ : N ′ is an essential submodule of N} ⊆ L(N,SM)
so SOCM(N) =

⋂
{N ′ : N ′ is an essential submodule of N} ⊇

⋂
L(N,SM) =

NSM .

Proposition 7 Every polyform product closed left R-module has essential
socle.

Proof. Suppose M ∈ R-Mod is polyform and product closed. Since M is
by definition SM -torsion-free, every SM -dense submodule of M is essential in
M . It follows that SOCM(M) =

⋂
L(M,SM) = MSM . Since M is product

closed, MSM is SM -dense and hence essential in M . �

Recall that M ∈ R-Mod is said to be semiartinian if M ∈ SOCα for some
ordinal α, or equivalently, if every nonzero factor module of M has nonzero
socle (see [12, 32.6, p. 270]).

Our next objective is to prove that if M is product closed and has the
property that M is projective in σ[M ] then M is semiartinian.

Lemma 8 The following assertions are equivalent for a left R-module M :
(i) M is semiartinian;
(ii) M/U has nonzero socle for all proper fully invariant submodules U of
M .

Proof. (i)⇒(ii) is obvious.
(ii)⇒(i) Let α be the smallest ordinal for which SOCα+1(M) = SOCα(M)

(this ordinal is the so-called Loewy length of M). Observe that U = SOCα(M)
is a fully invariant submodule of M . Inasmuch as SOC(M/U) = SOCα+1(M)/
SOCα(M) = 0, it follows from (ii) that M/U = 0, whence M = SOCα(M)
and M is semiartinian. �
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Lemma 9 Suppose M is a left R-module which is projective in σ[M ] and U
is any nonzero fully invariant submodule of M . Then:
(i) M/U is projective in σ[M/U ];
(ii) σ[M/U ] 6= σ[M ].

Proof. (i) follows easily from the fact that if A ∈ σ[M/U ] and f ∈
Hom(M, A) then f factors through M/U .

(ii) is proved in [11, Lemma 2.8, p. 3623]. �

Theorem 10 Let M be a product closed left R-module. If M is projective
in σ[M ] then M is semiartinian.

Proof. A cogenerator for σ[M ] is given by C =
⊕

i∈Γ Eσ[M ](Si) where
{Si | i ∈ Γ} is a representative set of simple modules in σ[M ]. It follows
from Proposition 5 that C is a subgenerator for σ[M ]. Since M is projective
in σ[M ], we must have M .

⊕
Λ C for some index set Λ. If M = 0 there is

nothing to prove. If M 6= 0 then SOC(M) 6= 0 because
⊕

Λ C has essential
socle. Now let U be any proper fully invariant submodule of M . By Lemma
9(i), M/U is projective in σ[M/U ]. Inasmuch as M/U ∈ σ[M ], M/U is
also product closed. The above argument, applied to M/U in place of M ,
shows that M/U has nonzero socle. We conclude from Lemma 8 that M is
semiartinian. �

Example 11 It is known [10, Lemma 6, p. 24] that if R is an arbitrary left
chain ring then every hereditary pretorsion class T in R-Mod has one of two
forms:

T = {N ∈ R-Mod | IN = 0}; or
T = {N ∈ R-Mod | (0 : x) ⊃ I for all x ∈ N}

for some ideal I of R. The lattice of hereditary pretorsion classes in R-Mod
thus constitutes a chain. Furthermore, if R is a domain and every ideal of
R is idempotent, then every hereditary pretorsion class in R-Mod is, in fact,
a hereditary torsion class [6, Theorem 28, p. 5539].

Now suppose that R is a left chain domain whose only proper nonzero ideal
is the Jacobson radical J(R). (The existence of such rings is established in [9,
Proposition 16, p. 1112] and [8, Theorem 9, p. 104].) It follows that there
are exactly two nontrivial proper hereditary pretorsion classes in R-Mod:

T1 = {N ∈ R-Mod | J(R)N = 0}, and
T2 = {N ∈ R-Mod | (0 : x) 6= 0 for all x ∈ N}.
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Observe that T1 consists of all the semisimple modules in R-Mod, i.e., T1(M)
= SOC(M) for all M ∈ R-Mod. Note also that T1 is closed under arbitrary
direct products in R-Mod because it consists precisely of all those left R-
modules which are annihilated by the ideal J(R). Observe that T2 consists of
all modules in R-Mod which are not cofaithful. (Recall that N ∈ R-Mod is
said to be cofaithful if (0 : X) = 0 for some finite subset X of N ; this is
equivalent to N being a subgenerator for R-Mod.)

Take N ∈ T2\T1 and put M = N/T1(N). Since T1 is a hereditary torsion
class and N /∈ T1, M is a nonzero module with SOC(M) = 0. Clearly, T2 =
σ[M ]. Since T1 is the only nontrivial hereditary pretorsion class contained
in σ[M ] and T1 is closed under arbitrary direct products, assertion (i) of
Theorem 1 is clearly satisfied. We conclude that M is product closed. Observe
that M cannot be semiartinian for SOC(M) = 0.

Let M ∈ R-Mod. A hereditary pretorsion class T in σ[M ] is said to
be M-dominated if T has an M -generated subgenerator. The set of all
M -dominated hereditary pretorsion classes in σ[M ] is closed under arbi-
trary joins. This is a consequence of the join operation in the lattice of
all hereditary pretorsion classes: if {Ti : i ∈ Γ} is a family of hereditary
pretorsion classes in R-Mod and each Ti = σ[Mi] with Mi ∈ R-Mod, then∨

i∈Γ Ti = σ[
⊕

i∈Γ Mi]. Observe that if M is a generator for σ[M ] then every
hereditary pretorsion class in σ[M ] is M -dominated.

The following result shows that an M -dominated hereditary pretorsion
class T in σ[M ] is determined by the set of all T -dense submodules of M .

Proposition 12 Let M be a left R-module. If T is an M-dominated hered-
itary pretorsion class in σ[M ] then T is subgenerated by the class of all
T -torsion factor modules of M .

Proof. Let N be an M -generated subgenerator for T . There exists an
epimorphism f : M (Λ) → N . For each i ∈ Λ let πi : M (Λ) → M and
κi : M → M (Λ) denote the canonical projection and embedding. Take i ∈ Λ.
Factor fκi through M/Kefκi as fκi = gihi for suitable homomorphisms
hi : M → M/Kefκi and gi : M/Kefκi → N . Observe that Kefκi is a
T -dense submodule of M . Let π′i :

⊕
i∈Λ M/Kefκi → M/Kefκi denote the

canonical projection. Consider the following commutative diagram:
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M (Λ)
πi−→ M

hi−→ M/Kefκi

⊕
i∈Λ

M/Kefκi

�
�

�
�

�
�

�*

?

N
?

Q
Q

Q
Q

Qs
fκi

gi

⊕i∈Λhi
π′i

Note that f =
∑

i∈Λ fκiπi =
∑

i∈Λ gihiπi. Since hiπi = π′i(⊕i∈Λhi)
for all i ∈ Λ, it follows that f =

∑
i∈Λ gihiπi =

∑
i∈Λ giπ

′
i(⊕i∈Λhi) =(∑

i∈Λ giπ
′
i

)
(⊕i∈Λhi). Thus f factors through

⊕
i∈Λ M/Kefκi. We conclude

that N is generated by {M/Kefκi : i ∈ Λ}, whence T = σ[
⊕

i∈Λ M/Kefκi].
�

If M ∈ R-Mod and T is an arbitrary hereditary pretorsion class in
σ[M ] then clearly σ[M/MT ] ⊇ σ[{M/N : N ∈ L(M, T )}]. The previous
proposition tells us that the right hand side of this containment coincides
with T in the case where T is M -dominated. If M is product closed then
T ⊇ σ[M/MT ]. The next result follows immediately.

Corollary 13 Let M be a product closed left R-module. If T is an M-
dominated hereditary pretorsion class in σ[M ] then T = σ[M/MT ].

Recall that an element c of a complete upper semilattice L is said to be
compact if c ≤

∨
X implies c ≤

∨
Y for some finite subset Y of X, whenever

X ⊆ L. If L is chosen to be the complete lattice of all hereditary pretor-
sion classes of R-Mod, then the compact elements of L are precisely those
hereditary pretorsion classes which possess a finitely generated subgenerator
(see [3, Proposition 2.16, p. 21]). We shall speak of a hereditary pretorsion
class as compact if it is a compact element in the lattice of all hereditary
pretorsion classes.
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Proposition 14 Let M be a product closed left R-module. If M is finitely
generated then all M-dominated hereditary pretorsion classes in σ[M ] are
compact. Consequently, there is no strictly ascending chain of M-dominated
hereditary pretorsion classes in σ[M ].

Proof. Let T be an M -dominated hereditary pretorsion class in σ[M ]. By
Corollary 13, T = σ[M/MT ]. Since M/MT is finitely generated, T is com-
pact.

The second assertion of the proposition is the consequence of a routine
and purely lattice theoretic argument: a complete upper semilattice satisfies
the ACC if and only if every element in the upper semilattice is compact. �

Proposition 15 Let M be a finitely generated product closed left R-module
with the property that M is projective in σ[M ]. Then M satisfies the DCC
on fully invariant submodules.

Proof. Suppose U1 and U2 are fully invariant submodules of M with U1 ⊃ U2.
We claim that σ[M/U1] ⊂ σ[M/U2]. To see this note first that M/U2 is
projective in σ[M/U2] by Lemma 9(i). Using the fact that M is projec-
tive in σ[M ] and U1 is fully invariant, it is easily shown that U1/U2 is a
fully invariant submodule of M/U2. We conclude from Lemma 9(ii), that
σ[M/U1] 6= σ[M/U2], as claimed.

Now suppose, contrary to the proposition, that U1 ⊃ U2 ⊃ U3 ⊃ . . . is a
strictly descending chain of fully invariant submodules of M . The above
argument shows that this induces a strictly ascending chain σ[M/U1] ⊂
σ[M/U2] ⊂ σ[M/U3] ⊂ . . . of hereditary pretorsion classes in σ[M ]. But
each σ[M/Ui] is M -dominated and this contradicts Proposition 14. �

The following result is a partial converse to Proposition 3.

Theorem 16 Let M be a finitely generated product closed left R-module with
the property that M is projective in σ[M ] and every hereditary pretorsion
class in σ[M ] is M-dominated. Then M has finite length.

Proof. Let L be the class of all modules in σ[M ] which are locally of finite
length. It is easily shown that L is a hereditary torsion class in σ[M ]. Con-
sider ML ≤ M . Note that M and hence ML is semiartinian by Theorem
10. It follows from the hypothesis and Proposition 14 that the lattice of all
hereditary pretorsion classes in σ[M ] satisfies the ACC. It follows that if T is
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an arbitrary hereditary pretorsion class in σ[M ] then T = T α for some finite
ordinal α. In particular then, ML = SOCn(ML) for some n ∈ N. Suppose
ML 6= 0. Then ML has a maximal proper submodule L, say. Since ML/L is
simple, ML/L ∈ L. Since M/ML, ML/L ∈ L and L is closed under exten-
sions, we must have M/L ∈ L, so L ⊇ ML, a contradiction. We conclude
that ML = 0, i.e., M ∈ L. Since M is finitely generated it must have finite
length. �

Remark 17 This identifies a possibly serious shortcoming in the previous
theorem.

The previous results show that if M is a finitely generated product closed
module which is projective in σ[M ], then M enjoys the following properties:
(1) M is semilocal (Theorem 6);
(2) M is semiartinian (Theorem 10);
(3) all M-dominated hereditary pretorsion classes in σ[M ] are compact (Propo-
sition 14);
(4) M satisfies the DCC on fully invariant submodules (Proposition 15).

It is conceivable that the above properties might be enough to force the
module M to have finite length, but I don’t see a proof. If such a proof can be
found then the requirement in Theorem 16 that ‘every hereditary pretorsion
class in σ[M ] is M-dominated’ can be dispensed with and a more satisfying
result obtained. The aforementioned requirement seems to be strong and looks
rather artificial, it’s a disappointing feature of Theorem 16. Of course it might
be that the requirement is necessary, but then we need to produce an example
of a finitely generated product closed module which is projective in σ[M ] but
which is not of finite length. Finding such a module looks like a difficult task.

If, in Theorem 16, the module M is chosen to be RR, we obtain Beachy
and Blair’s result [2, Proposition 1.4, p. 7 and Corollary 3.3, p. 25]:

Corollary 18 The following assertions are equivalent for a ring R:
(i) RR is product closed, i.e., every hereditary pretorsion class in R-Mod is
closed under direct products;
(ii) R is left artinian.

Proof. (ii)⇒(i) follows from Proposition 3.
(i)⇒(ii) The product closed module M = RR is a progenerator for R-Mod

and therefore satisfies the conditions of Theorem 16. �
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Theorem 19 Let R be a commutative ring. The following assertions are
equivalent for a left R-module M :
(i) M is product closed;
(ii) M is locally artinian.

Proof. (ii)⇒(i) follows from Proposition 3.
(i)⇒(ii) It clearly suffices to show that every cyclic submodule of M is

artinian. Let N ≤ M be cyclic. Then N ∼= R(R/I) for some ideal I of
R. Note that σ[N ] corresponds with the module category R/I-Mod and N
is a progenerator for σ[N ]. Consequently, N must satisfy the conditions of
Theorem 16. We conclude that N is artinian. �
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