Modules whose hereditary pretorsion
classes are closed under products

John E. van den Berg and Robert Wisbauer

Abstract

A module M is called product closed if every hereditary pretorsion
class in o[M] is closed under products in o[M]. Every module which
is locally of finite length is product closed and every product closed
module is semilocal. Let M € R-Mod be product closed and projective
in o[M]. Tt is shown that (1) M is semiartinian; (2) if M is finitely
generated then M satisfies the DCC on fully invariant submodules;
(3) if M is finitely generated and every hereditary pretorsion class
in o[M] is M-dominated, then M has finite length. If the ring R is
commutative it is proven that M is product closed if and only if M
is locally of finite length. An example is provided of a product closed
module with zero socle.
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It was shown by Beachy and Blair [2, Proposition 1.4, p. 7 and Corollary
3.3, p. 25] that the following three conditions on a ring R with identity are
equivalent:

(1) every hereditary pretorsion class in R-Mod is closed under arbi-
trary (and not just finite) direct products, or equivalently, every
left topologizing filter on R is closed under arbitrary (and not
just finite) intersections;

(2) every left R-module M is finitely annihilated, meaning (0 : M) =
(0 : X)) for some finite subset X of M;

(3) R is left artinian.



In this paper we shall attempt to describe those modules M with the property
that every hereditary pretorsion class in the Grothendieck category o[M] is
closed under products in o[M]. A main theorem demonstrates that if M is a
finitely generated product closed module such that M is projective in o[M]
and every hereditary pretorsion class in o[M] is M-dominated (meaning,
every hereditary pretorsion class in o[M] is subgenerated by an M-generated
module), then M has finite length. This result extends Beachy and Blair’s
characterization of left artinian rings. Their proof is based on two results
due to Beachy [1, Proposition 1, p. 449 and Proposition 5, p. 451], but the
techniques used by Beachy are not easily generalized in a manner useful for
our purposes. We have thus had to develop new methods.

1 Preliminaries

The symbol C denotes containment and C proper containment for sets.
Throughout the paper R will denote an associative ring with identity and
R-Mod the category of unital left R-modules. If N, M € R-Mod we write
N < M [resp. N < M]if N is a submodule of M [resp. N is embeddable in
M]. If X,Y are nonempty subsets of M we define (X :Y)={re R:rY C
X}. For subsets X,Y of R we define (X 3 Y)={re R:rY C X}.

We recall some of the basic definitions and results of torsion theory. The
reader is refered to [3], [4], [12] and [13] for background information on hered-
itary pretorsion classes.

We say N € R-Mod is subgenerated by a nonempty class C in R-Mod if
N is isomorphic to a submodule of a homomorphic image of a direct sum
of modules in C. We denote by o[C] the class of all modules which are
subgenerated by C. If C = {M} is a singleton we write o[M] in place of
o[{M}]. A nonempty class of modules in R-Mod which is closed under direct
sums, homomorphic images and submodules is called a hereditary pretorsion
class; o|C] is the smallest such class containing C. Every hereditary pretorsion
class in R-Mod is of the form o[M] for some M € R-Mod.

Given any hereditary pretorsion class 7 in R-Mod and N € R-Mod, the
submodule

T(N):=Tr(T,N)=>» {Imf|f € Hom(L,N) for some L € T}

is the unique largest submodule of N belonging to 7. For each ring R the
collection of all hereditary pretorsion classes in R-Mod is a complete lattice
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under the relation of inclusion.

If 7 and 7' are hereditary pretorsion classes in R-Mod the extension of
T' by T is defined as

T : 7' ={N € R-Mod | there exists an exact sequence 0 - A — N — B — 0,
where A € 7T and B € T'}.

It is easily verified that 7 : 7" is a hereditary pretorsion class containing
both 7 and 7" and (7 : 7")(M)/T (M) =T'(M/T(M)) for all M € R-Mod.
Observe that 7 is idempotent in the sense that 7 : 7 = 7 precisely if 7 is
closed under extensions and thus a hereditary torsion class.

The transfinite product 7 (« an ordinal) is defined recursively as follows:

T' = T
Tt = T T
TP = \/ T if § is a limit ordinal.

a<f

If o is the smallest ordinal for which 7%+ = 7% then 7:=7* is the unique
smallest hereditary torsion class containing 7 (see [4, Proposition VI.1.5, p.
137 and Corollary VI.3.4, p. 142]).

Each hereditary pretorsion class 7 in R-Mod is a Grothendieck category;
coproducts, quotient objects and subobjects in 7 are the same as in R-Mod
because of the defining closure properties of a hereditary pretorsion class [12,
15.1((1),(2)), p. 118]. It follows that the hereditary pretorsion classes of the
category 7 are precisely the hereditary pretorsion classes of R-Mod which
are contained in 7. This means that the set of hereditary pretorsion classes
of 7, when viewed as a lattice, coincides with an interval in the lattice of all
hereditary pretorsion classes of R-Mod. If {N; | i € ['} is a family of modules

in 7 then -
H Ni=T([LicrNi) = Te (T, I L;er Vi)
ier
is the product of {NV; |i € I'} in 7 and if N € 7 then
ET(N):=T(E(N)) =Tt (T, E(N))

is the injective hull of N in 7.



2 Main results

Let 7 be a hereditary pretorsion class in R-Mod and N € R-Mod. We call
a submodule N’ of N, T-dense if N/N' € T. The set L(N,T) of all 7-
dense submodules of N is a filter in the lattice theoretic sense on the lattice
of submodules of N (see [13, 9.7, p. 60]). We shall adopt the following
notation:

N7 =({N'<N:N/N'eT}=()L(N.T).
In general, N7 is not a T-dense submodule of V.

Theorem 1 The following assertions are equivalent for a left R-module M :
(i) for every hereditary pretorsion class T in o[M] and {N; | i € T} C T,
er[]I\“/ﬂ N;eT;

(i) for every hereditary pretorsion class T in o[M] and N € o[M] the set of
T -dense submodules of N is closed under arbitrary intersections, or equiva-
lently, N7 is a T-dense submodule of N, i.e., NT € L(N,T);

(iii) for every hereditary pretorsion class T in o[M] and finitely generated
N € o[M] the set of T-dense submodules of N is closed under arbitrary

ntersections.

Proof. (i)=(ii) N/N7 < [yvecovry N/N'. Since N € o[M], N/NT €

o[M], so N/NT C Tr (o[M], TIyrecpvry N/N) = g N/N'. Inas-
much as N/N' € T for all N' € L(N,7T), we must have N/N7 € T, so
N7 € L(N,T).

(ii)=-(iii) is obvious.

(iii)=(i) Let 7 be a hereditary pretorsion class in o[M] and {N; | i €
I} C 7. Take z = {zi}ier € [VIN; = Tr(o[M],TL,ep Ni). Put N =
rR/(0 : x) 2 Rx and L; = (0 : ;)/(0 : z) for each ¢ € . Note that N
is finitely generated. Inasmuch as N/L; = Rx; < N; € T, L; is a 7-dense
submodule of N for all ¢ € T'. Since (,cp(0: 2;) = (0: 2), ;e Li = 0, s0

by (iii), V € 7. We conclude that HU[M]Ni € T, as required. O

el

We shall call M € R-Mod product closed if it satisfies the equivalent
assertions in Theorem 1.

Remark 2 Observe that if M € R-Mod s product closed then so is every
module in o[M].



Recall that M € R-Mod is said to be locally artinian [resp. locally of
finite length] if every finitely generated submodule of M is artinian [resp.
has finite length].

Proposition 3 FEvery locally artinian left R-module is product closed.

Proof. Suppose M € R-Mod is locally artinian. Let 7 be a hereditary
pretorsion class in o[M] and N € o[M] with N finitely generated. Since every
module in o[M] is locally artinian, N must be artinian, so every nonempty
set of submodules of N has a minimal element. Assertion (iii) of Theorem 1
thus holds. O

Remark 4 (i) The converse to Proposition 3 is not valid as shown in Ex-
ample 11. However, we shall prove in Theorem 16 that if M is a finitely
generated product closed module such that M is projective in o[M| and sat-
isfies a ‘weak generator’ type property, then M has finite length.

(i1) Every semisimple left R-module is locally artinian and therefore product
closed by Proposition 3.

(11i) Every torsion abelian group is a locally artinian Z-module and therefore
product closed.

We now establish some general properties of product closed modules.

Proposition 5 If aleft R-module M is product closed then every cogenerator
for o[M] is a subgenerator for o[M].

Proof. Let C be a cogenerator for o[M]. If N is an arbitrary object in o[M]|
then N S H;[M}C for some index set I'. Since M is product closed we have

by Theorem 1(i) that H;[M}C’ € o[C]. We conclude that N € o[C], so C' is
a subgenerator for o[M]. O

We shall denote by SOC the hereditary pretorsion class consisting of all
semisimple left R-modules. More generally, if M € R-Mod we shall denote
by SOC, the hereditary pretorsion class of all semisimple modules in o[M].
Observe that if N € o[M] then N59» equals J(N) the intersection of all
maximal proper submodules of N.

Theorem 6 FEvery product closed left R-module M is semilocal, that is to
say, M/J(M) is semisimple.



Proof. By Theorem 1(ii), M/MS%» € SOC,;. But, as noted above,
MO = J(M), so M/J(M) is semisimple. O

A module N € o[M] is called M -singularif N = L/K for some L € o[M]|
and essential submodule K of L. The class of all M-singular left R-modules
is a hereditary pretorsion class in o[M] which we shall denote by Sy (see [12,
17.3, p. 138 and 17.4, p. 139]). We call M polyform if Sy, (M) =0, i.e., M is
Sy-torsion-free. If N € o[M] it is clear that every essential submodule of N
is Sps-dense in N, i.e., {N’: N’ is an essential submodule of N} C L(N, Sy)
50 SOCy(N) = N{N': N'is an essential submodule of N} D (L(N,Sy) =
NSM,

Proposition 7 Every polyform product closed left R-module has essential
socle.

Proof. Suppose M € R-Mod is polyform and product closed. Since M is
by definition Sy/-torsion-free, every Sy,-dense submodule of M is essential in
M. Tt follows that SOCy/ (M) = (N L(M,Sy) = M. Since M is product
closed, MM is Sy/-dense and hence essential in M. O

Recall that M € R-Mod is said to be semiartinian if M € SOC®* for some
ordinal «, or equivalently, if every nonzero factor module of M has nonzero
socle (see [12, 32.6, p. 270]).

Our next objective is to prove that if M is product closed and has the
property that M is projective in o[M] then M is semiartinian.

Lemma 8 The following assertions are equivalent for a left R-module M :
(i) M is semiartinian,

(i) M /U has nonzero socle for all proper fully invariant submodules U of
M.

Proof. (i)=-(ii) is obvious.

(ii)=(i) Let a be the smallest ordinal for which SOC*** (M) = SOC*(M)
(this ordinal is the so-called Loewy length of M). Observe that U = SOC*(M)
is a fully invariant submodule of M. Inasmuch as SOC(M/U) = SOC**'(M)/
SOC*(M) = 0, it follows from (ii) that M/U = 0, whence M = SOC*(M)
and M is semiartinian. O



Lemma 9 Suppose M is a left R-module which is projective in o[M] and U
1s any nonzero fully invariant submodule of M. Then:

(i) M/U is projective in o[M/U];

(ii) o[M/U] # o[M].

Proof. (i) follows easily from the fact that if A € o[M/U] and f €
Hom (M, A) then f factors through M/U.
(i) is proved in [11, Lemma 2.8, p. 3623]. O

Theorem 10 Let M be a product closed left R-module. If M is projective
in o[M] then M is semiartinian.

Proof. A cogenerator for o[M] is given by C = @, E°MI(S;) where
{S; | i € T'} is a representative set of simple modules in o[M]. It follows
from Proposition 5 that C' is a subgenerator for o[M]. Since M is projective
in o[M], we must have M < €, C for some index set A. If M = 0 there is
nothing to prove. If M # 0 then SOC(M) # 0 because @, C has essential
socle. Now let U be any proper fully invariant submodule of M. By Lemma
9(i), M/U is projective in o[M/U]. Inasmuch as M/U € o[M], M/U is
also product closed. The above argument, applied to M /U in place of M,
shows that M /U has nonzero socle. We conclude from Lemma 8 that M is
semiartinian. O

Example 11 [t is known [10, Lemma 6, p. 24] that if R is an arbitrary left
chain ring then every hereditary pretorsion class T in R-Mod has one of two
forms:

7 = {Ne€RMod]|IN =0}; or

7 = {NeRMod|(0:2)DI forallz € N}

for some ideal I of R. The lattice of hereditary pretorsion classes in R-Mod
thus constitutes a chain. Furthermore, if R is a domain and every ideal of
R is idempotent, then every hereditary pretorsion class in R-Mod is, in fact,
a hereditary torsion class [6, Theorem 28, p. 5539].

Now suppose that R is a left chain domain whose only proper nonzero ideal
is the Jacobson radical J(R). (The existence of such rings is established in [9,
Proposition 16, p. 1112] and [8, Theorem 9, p. 104].) It follows that there
are exactly two nontrivial proper hereditary pretorsion classes in R-Mod:

71, = {N € R-Mod | J(R)N =0}, and
7, = {Ne€RMod|(0:x)#0 forallz € N}.
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Observe that Ty consists of all the semisimple modules in R-Mod, i.e., T;(M)
= SOC(M) for all M € R-Mod. Note also that Ty is closed under arbitrary
direct products in R-Mod because it consists precisely of all those left R-
modules which are annihilated by the ideal J(R). Observe that Ty consists of
all modules in R-Mod which are not cofaithful. (Recall that N € R-Mod is
said to be cofaithful if (0 : X) = 0 for some finite subset X of N; this is
equivalent to N being a subgenerator for R-Mod.)

Take N € To)\T; and put M = N/T,(N). Since Ty is a hereditary torsion
class and N ¢ T, M is a nonzero module with SOC(M) = 0. Clearly, Ty =
o[M]. Since Ty is the only nontrivial hereditary pretorsion class contained
in o[M] and Ty is closed under arbitrary direct products, assertion (i) of
Theorem 1 is clearly satisfied. We conclude that M is product closed. Observe
that M cannot be semiartinian for SOC(M) = 0.

Let M € R-Mod. A hereditary pretorsion class 7 in o[M] is said to
be M-dominated if 7 has an M-generated subgenerator. The set of all
M-dominated hereditary pretorsion classes in o[M] is closed under arbi-
trary joins. This is a consequence of the join operation in the lattice of
all hereditary pretorsion classes: if {Z7; : ¢ € I'} is a family of hereditary
pretorsion classes in R-Mod and each 7; = o[M;] with M; € R-Mod, then
Vier o = o[, M;]. Observe that if M is a generator for o[M] then every
hereditary pretorsion class in o[M] is M-dominated.

The following result shows that an M-dominated hereditary pretorsion
class 7 in o[M] is determined by the set of all 7-dense submodules of M.

Proposition 12 Let M be a left R-module. If T is an M-dominated hered-
itary pretorsion class in o[M| then T is subgenerated by the class of all
T -torsion factor modules of M.

Proof. Let N be an M-generated subgenerator for 7. There exists an
epimorphism f : M® — N. For each i € A let m; : MW — M and
ki : M — M™ denote the canonical projection and embedding. Take i € A.
Factor fr; through M/Kefk; as fr; = g;h; for suitable homomorphisms
hi : M — M/Kefk; and g; : M/Kefr; — N. Observe that Kefr; is a
T-dense submodule of M. Let 7; : @,., M/Kefr; — M/Kefr; denote the

canonical projection. Consider the following commutative diagram:



@M/Kefm

;

T hz
MY — M — M/Kefx;

o s
N

Note that f = ZieA flii’ﬂ'i = ZieAgihiﬂ-i' Since h,iﬂ'i = W;(@zEAhz>
for all i € A, it follows that f = > ., gihimi = > ..\ 97 (Pienhi) =
(Xien 9im)) (®ieahs). Thus f factors through €, , M/Kefr;. We conclude
that NV is generated by {M/Kefr; : 1 € A}, whence T = o[, .y M/Kefk).

0

If M € R-Mod and 7 is an arbitrary hereditary pretorsion class in
o[M] then clearly o[M/M7?] D o[{M/N : N € L(M,T)}]. The previous
proposition tells us that the right hand side of this containment coincides
with 7 in the case where 7 is M-dominated. If M is product closed then
T 2 o[M/MT]. The next result follows immediately.

Corollary 13 Let M be a product closed left R-module. If T is an M-
dominated hereditary pretorsion class in o[M] then T = o[M/M7T].

Recall that an element ¢ of a complete upper semilattice L is said to be
compact if ¢ <'\/ X implies ¢ < \/ Y for some finite subset Y of X, whenever
X C L. If L is chosen to be the complete lattice of all hereditary pretor-
sion classes of R-Mod, then the compact elements of L are precisely those
hereditary pretorsion classes which possess a finitely generated subgenerator
(see [3, Proposition 2.16, p. 21]). We shall speak of a hereditary pretorsion
class as compact if it is a compact element in the lattice of all hereditary
pretorsion classes.



Proposition 14 Let M be a product closed left R-module. If M 1is finitely
generated then all M-dominated hereditary pretorsion classes in o[M] are
compact. Consequently, there is no strictly ascending chain of M -dominated
hereditary pretorsion classes in o[M].

Proof. Let 7 be an M-dominated hereditary pretorsion class in o[M]. By
Corollary 13, 7 = o[M/M7]. Since M/M7 is finitely generated, 7 is com-
pact.

The second assertion of the proposition is the consequence of a routine
and purely lattice theoretic argument: a complete upper semilattice satisfies
the ACC if and only if every element in the upper semilattice is compact. [J

Proposition 15 Let M be a finitely generated product closed left R-module
with the property that M is projective in o[M]. Then M satisfies the DCC
on fully invariant submodules.

Proof. Suppose U; and Us are fully invariant submodules of M with U; D Us.
We claim that o[M/U;] C o[M/Us,]. To see this note first that M /U, is
projective in o[M/Us] by Lemma 9(i). Using the fact that M is projec-
tive in o[M] and U, is fully invariant, it is easily shown that U;/U, is a
fully invariant submodule of M/U,. We conclude from Lemma 9(ii), that
o[M/Uy| # o[M /U], as claimed.

Now suppose, contrary to the proposition, that Uy D U, D U3 D ... is a
strictly descending chain of fully invariant submodules of M. The above
argument shows that this induces a strictly ascending chain o[M/U;| C
g[M/Uy| C o[M/Us] C ... of hereditary pretorsion classes in o[M]. But
each o[M/U;] is M-dominated and this contradicts Proposition 14. 0

The following result is a partial converse to Proposition 3.

Theorem 16 Let M be a finitely generated product closed left R-module with
the property that M is projective in o[M] and every hereditary pretorsion
class in o[M] is M-dominated. Then M has finite length.

Proof. Let £ be the class of all modules in o[M] which are locally of finite
length. It is easily shown that £ is a hereditary torsion class in o[M]. Con-
sider M* < M. Note that M and hence M* is semiartinian by Theorem
10. It follows from the hypothesis and Proposition 14 that the lattice of all
hereditary pretorsion classes in o[M] satisfies the ACC. It follows that if 7 is
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an arbitrary hereditary pretorsion class in ¢[M] then 7 = T for some finite
ordinal a. In particular then, M* = SOC"(M¥*) for some n € N. Suppose
M* # 0. Then M* has a maximal proper submodule L, say. Since M*/L is
simple, M*/L € L. Since M/M* , M*/L € £ and L is closed under exten-
sions, we must have M/L € L, so L O M¥*, a contradiction. We conclude
that M* = 0, i.e., M € L. Since M is finitely generated it must have finite
length. 0

Remark 17 This identifies a possibly serious shortcoming in the previous
theorem.

The previous results show that if M s a finitely generated product closed
module which is projective in o[M|, then M enjoys the following properties:
(1) M is semilocal (Theorem 6);

(2) M is semiartinian (Theorem 10);

(3) all M -dominated hereditary pretorsion classes in o[M| are compact (Propo-
sition 14);

(4) M satisfies the DCC on fully invariant submodules (Proposition 15).

It is conceivable that the above properties might be enough to force the
module M to have finite length, but I don’t see a proof. If such a proof can be
found then the requirement in Theorem 16 that ‘every hereditary pretorsion
class in o[M| is M-dominated’ can be dispensed with and a more satisfying
result obtained. The aforementioned requirement seems to be strong and looks
rather artificial, it’s a disappointing feature of Theorem 16. Of course it might
be that the requirement is necessary, but then we need to produce an example
of a finitely generated product closed module which is projective in o[M] but
which is not of finite length. Finding such a module looks like a difficult task.

If, in Theorem 16, the module M is chosen to be g R, we obtain Beachy
and Blair’s result [2, Proposition 1.4, p. 7 and Corollary 3.3, p. 25]:

Corollary 18 The following assertions are equivalent for a ring R:

(i) rR is product closed, i.e., every hereditary pretorsion class in R-Mod is
closed under direct products;

(ii) R is left artinian.

Proof. (ii)=-(i) follows from Proposition 3.
(i)=-(ii) The product closed module M = R is a progenerator for R-Mod
and therefore satisfies the conditions of Theorem 16. O]
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Theorem 19 Let R be a commutative ring. The following assertions are
equivalent for a left R-module M :

(i) M is product closed;

(11) M s locally artinian.

Proof. (ii)=(i) follows from Proposition 3.

(i)=(ii) It clearly suffices to show that every cyclic submodule of M is
artinian. Let N < M be cyclic. Then N = g(R/I) for some ideal I of
R. Note that o[N] corresponds with the module category R/I-Mod and N
is a progenerator for o[N]. Consequently, N must satisfy the conditions of
Theorem 16. We conclude that N is artinian. O
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