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Abstract. A relationship between coseparable corings and separable non-
unital rings is established. In particular it is shown that a coseparable A-coring

C has an associative A-balanced product. A Morita context is constructed for
a coseparable coring with a grouplike element. Biseparable corings are defined,

and a conjecture relating them to Frobenius corings is proposed.

1. Introduction

Corings were introduced by Sweedler in [22] as a generalisation of coalgebras and a
means for dualising the Jacobson-Bourbaki theorem. Recently, corings have resur-
faced in the theory of Hopf-type modules, in particular it has been shown in [5]
that the category of entwined modules is an example of a category of comodules
of a coring. Since entwined modules appear to be the most general of Hopf-type
modules studied since the mid-seventies, the theory of corings provides one with a
uniform and general approach to studying all such modules. This simple observa-
tion renewed interest in general theory of corings.
Corings appear naturally in the theory of ring extensions. Indeed, they provide
an equivalent description of certain types of extensions (cf. [6]). In this paper
we study properties of corings associated to extensions. In particular, we study
coseparable corings introduced by Guzman [13] (and recently studied in [12] from
a different point of view) and we reveal an intriguing duality between such corings
and a non-unital generalisation of separable ring extensions. We also show that to
any grouplike element in a coseparable coring one can associate a Morita context.
This leads to a pair of adjoint functors. One of these functors turns out to be fully
faithful. Furthermore, we introduce the notion of a biseparable coring and study
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its relationship to Frobenius corings introduced in [6]. This allows us to consider
a conjecture from [9], concerning biseparable and Frobenius extensions in a new
framework.
Our paper is organised as follows. In the next section, apart from recalling some
basic facts about corings and comodules, we introduce a non-unital generalisation
of separable extensions, which we term separable A-rings. We show that any cosep-
arable coring is an example of such a separable A-ring, and conversely, that every
separable A-ring leads to a non-unital coring. We then proceed in Section 3 to con-
struct a Morita context associated to a grouplike element in a coseparable coring.
We consider some examples coming from ring extensions and bialgebroids. Finally
in Section 4 we introduce the notion of biseparable corings. These are closely related
to biseparable extensions, and may serve as a means for settling the question put
forward in [9] of whether biseparable extensions are Frobenius.
Throughout the paper, A denotes an associative ring with unit 1A, and we use
the standard notation for right (resp. left) A-modules MA (resp. AM), bimodules,
such as HomA(−,−) for right A-module maps, AHom(−,−) for left A-module maps
etc. For any (A,A)-bimodule M the centraliser of A in M is denoted by MA, i.e.,
MA := {m ∈ M | ∀a ∈ A, am = ma}.

2. Coseparable A-corings and separable A-rings

2.1. Coseparable corings

We begin by recalling the definition of a coring from [22]. An (A,A)-bimodule
C is said to be a non-counital A-coring if there exists an (A,A)-bimodule map
∆C : C → C ⊗A C rendering the following diagram commutative

C
∆C //

∆C

��

C⊗AC

IC⊗∆C

��
C⊗AC

∆C⊗IC // C⊗AC⊗AC .

The map ∆C is termed a coproduct. Given a non-counital A-coring C with a co-
product ∆C , an (A,A)-bimodule map εC : C → A such that

(εC⊗IC) ◦∆C = IA⊗AC = IC , (IC⊗εC) ◦∆C = IC⊗AA = IC .

is called a counit of C. A non-counital A-coring with a counit is called an A-coring.
If C is an (non-counital) A-coring, a right A-module M is called a non-counital right
C-comodule if there exists a right A-module map %M : M → M ⊗A C rendering the
following diagram commutative

M
%M

//

%M

��

M⊗AC

%M⊗IC
��

M⊗AC
IM⊗∆C // M⊗AC⊗AC .

The map %M is called a C-coaction. If, in addition, a C-coaction satisfies the condi-
tion

(IM⊗εC) ◦ %M = IM⊗AA = IM ,
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then M is called a right C-comodule. Similarly one defines left C-comodules, and
(C, C)-bicomodules. Given right C-comodules M , N , a right A-linear map f : M →
N is called a morphism of right C-comodules provided the following diagram

M
f //

%M

��

N

%N

��
M⊗AC

f⊗IC // N⊗AC

is commutative. The category of right C-comodules is denoted by MC . We use
Sweedler notation to denote the action of a coproduct or a coaction on elements,

∆C(c) =
∑

c(1)⊗c(2), %M (m) =
∑

m(0)⊗m(1).

An immediate example of a left and right C-comodule is provided by C itself. In
both cases coaction is given by the coproduct ∆C . Also, for any right (resp. left)
A-module M , the tensor product M ⊗A C (resp. C⊗AM) is a right (resp. left) C-
comodule with the coaction IM⊗∆C (resp. ∆C⊗IM ). This defines a functor which
is the right adjoint of a forgetful functor from the category of C-comodules to the
category of A-modules. This functor can be defined for non-counital corings and
non-counital comodules, and adjointness holds for corings with a counit.
In particular C ⊗A C is a (C, C)-bicomodule, and ∆C is a (C, C)-bicomodule map,
and following [13] we have

Definition 2.1. A (non-counital) coring C is said to be coseparable if there exists
a (C, C)-bicomodule splitting of the coproduct ∆C .

Although Definition 2.1 makes sense for non-counital corings, it is much more mean-
ingful in the case of corings with a counit. In this case (C, C)-bicomodule splittings
of ∆C , π : C⊗AC → C are in bijective correspondence with (A,A)-bimodule maps
γ : C⊗AC → A such that for all c, c′ ∈ C,∑

γ(c⊗c′(1))c′(2) =
∑

c(1)γ(c(2)⊗c′),
∑

γ(c(1)⊗c(2)) = εC(c).

Such a map γ is termed a cointegral in C, and the first of the above equations is said
to express a colinearity of a cointegral. The correspondence is given by γ = εC ◦ π
and π(c⊗c′) =

∑
c(1)γ(c(2)⊗c′). Furthermore, C is a coseparable A-coring if and

only if the forgetful functor MC → MA is separable (cf. [5, Theorem 3.5]).
Corings appear naturally in the context of ring extensions. A ring extension B → A
determines the canonical Sweedler A-coring C := A ⊗B A with coproduct ∆C :
C → C⊗AC given by ∆C(a⊗a′) = a⊗1A⊗a′ and counit εC : C → A given by
εC(a⊗a′) = aa′ for all a, a′ ∈ A. Recall from [19] that an extension B → A is said
to be split if there exists a (B,B)-bimodule map E : A → B such that E(1A) = 1B .
The map E is known as a conditional expectation. The canonical Sweedler coring
associated to a split ring extension is coseparable. A cointegral γ coincides with
the splitting map E via the natural isomorphisms

BHomB(A,B) ⊂ BHomB(A,A) ∼= AHomA(A⊗BA⊗AA⊗BA,A)

(cf. [5, Corollary 3.7]).
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2.2. Separable A-rings

Corings can be seen as a dualisation of A-rings and coseparable corings turn out
to be closely related to a generalisation of separable extensions of rings. In this
subsection we describe this generalisation.

Definition 2.2. An (A,A)-bimodule B is called an A-ring provided there exists
an (A,A)-bimodule map µ : B ⊗A B → B rendering commutative the diagram

B⊗AB⊗AB
IB⊗µ //

µ⊗IB

��

B⊗AB

µ

��
B⊗AB

µ // B .

This means that µ is associative. Note that an A-ring is necessarily a (non-unital)
ring in the usual sense. Equivalently, an A-ring can be defined as a ring and an
(A,A)-bimodule B with product that is an A-balanced (A,A)-bimodule map.
Note further that the notion of an A-ring in Definition 2.2 is a non-unital general-
isation of ring extensions. Indeed, it is only natural to call an (A,A)-bilinear map
ι : A → B a unit (for (B,µ)) if it induces a commutative diagram

B
IB⊗ι //

ι⊗IB

��

=

%%KKKKKKKKKKK B⊗AB

µ

��
B⊗AB

µ // B .

If this holds then ι(1A) = 1B is a unit of B in the usual sense. One can then easily
show that ι is a ring map, hence a unital A-ring is simply a ring extension.

Definition 2.3. Given an A-ring B, a right A-module M is said to be a right
B-module provided there exists a right A-module map %M : M⊗AB → M making
the following diagram

M⊗AB⊗AB
%M⊗IB //

IM⊗µ

��

M⊗AB

%M

��
M⊗AB

%M // M

commute. The map %M is called a right B-action. On elements the action is
denoted by a dot in a standard way, i.e., m · b = %M (m⊗b). Remember that for all
a ∈ A, (ma) · b = m · (ab).
A morphism f : M → N between two B-modules is an A-linear map which makes
the following diagram

M⊗AB
f⊗IB //

%M

��

N⊗AB

%N

��
M

f // N
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commute. A right B-module M is said to be firm provided the induced map
M ⊗B B → M , m⊗b 7→ m · b is a right B-module isomorphism. The category of
firm right B-modules is denoted by MB .

Obviously left B-modules are defined in a symmetric way. Similarly one defines
(B,B)-bimodules, (A,B)-bimodules etc.
Dually to the definition of coseparable corings we can define separable A-rings.

Definition 2.4. An A-ring B is said to be separable if the product map µ :
B⊗AB → B has a (B,B)-bimodule section δ : B → B⊗AB.

If B is a separable A-ring then clearly µ is surjective and the induced map B⊗BB →
B is an isomorphism. Therefore B is a firm left and right B-module, i.e., B is a
firm ring.
Note that if B has a unit ι : A → B then B is a separable A-ring if and only
if B is a separable extension of A. Thus Definition 2.4 extends the notion of a
separable extension to non-unital rings. Note, however, that in general this is not
an extension, since there is no (ring) map A → B.

Remark 2.5. In consistency with A-corings, we use the terminology of [3] in Defi-
nition 2.2. In [19, 11.7] A-rings are termed multiplicative A-bimodules. Following
[23] one might call a separable A-ring (as defined in Definition 2.4) an A-ring with
a splitting map.

2.3. Coseparable A-corings are separable A-rings

The main result of this section is contained in the following

Theorem 2.6. If C is a coseparable A-coring then C is a separable A-ring.

Proof. Let π : C ⊗A C → C be a bicomodule retraction of the coproduct ∆C , and
let γ = εC ◦ π be the corresponding cointegral. We claim that C is an associative
A-ring with product µ = π. Indeed, since the alternative expressions for product
are cc′ =

∑
γ(c⊗c′(1))c′(2) =

∑
c(1)γ(c(2)⊗c′), for all c, c′, c′′ ∈ C we obtain, using

the left A-linearity of γ and ∆C ,

(cc′)c′′ =
∑

(γ(c⊗c′(1))c′(2))c′′ =
∑

γ(c⊗c′(1))γ(c′(2)⊗c′′(1))c′′(2).

On the other hand, the colinearity and right A-linearity of γ, and the left A-linearity
of ∆C imply

c(c′c′′) =
∑

c(γ(c′⊗c′′(1))c′′(2)) =
∑

γ(c⊗γ(c′⊗c′′(1))c′′(2))c′′(3)

=
∑

γ(c⊗c′(1)γ(c′(2)⊗c′′(1)))c′′(2) =
∑

γ(c⊗c′(1))γ(c′(2)⊗c′′(1))c′′(2).

This explicitly proves that the product in C is associative. Clearly this product is
(A,A)-bilinear. Note that ∆C is a (C, C)-bimodule map since

c∆C(c′) =
∑

cc′(1)⊗c′(2) =
∑

π(c⊗c′(1))⊗c′(2) = ∆C ◦ π(c⊗c′) = ∆C(cc′),

from the right colinearity of π. Similarly for the left C-linearity. Finally π is split
by ∆C since π is a retraction of ∆C . This proves that C is a separable A-ring.
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Proposition 2.7. Let C be a coseparable A-coring with a cointegral γ. View C as
an A-ring with product π as in Theorem 2.6. Then any right C-comodule M is a
firm right C-module with the action %M = (IM⊗γ) ◦ (%M⊗IC).

Proof. Take any m ∈ M and c, c′ ∈ C. Then explicitly the action reads m · c =∑
m(0)γ(m(1)⊗c), and we can compute

(m · c) · c′ =
∑

(m(0)γ(m(1)⊗c)) · c′ =
∑

m(0)γ(m(1)γ(m(2)⊗c)⊗c′)

=
∑

m(0)γ(γ(m(1)⊗c(1))c(2)⊗c′) =
∑

m(0)γ(m(1)⊗c(1))γ(c(2)⊗c′)

=
∑

m(0)γ(m(1)⊗c(1)γ(c(2)⊗c′)) =
∑

m(0)γ(m(1)⊗cc′) = m · (cc′),

as required. We used the following properties of a cointegral: colinearity to derive
the third equality and A-bilinearity to derive the fourth and fifth equalities. Obvi-
ously the action is right A-linear. Thus M is a C-module. We need to show that it
is firm.
Note that M ⊗C C is defined as a cokernel of the following right C-linear map

λ : M ⊗A C ⊗A C → M ⊗A C, m⊗c⊗c′ 7→ mc⊗c′ −m⊗cc′.

Since γ is a cointegral, %M is a right C-linear retraction of %M , hence, in particular
it is a surjection and there is the following sequence of right C-module maps

M ⊗A C ⊗A C
λ //M ⊗A C

%M //M //0.

We need to show that this sequence is exact. Clearly the associativity of the action
of C on M implies that %M ◦ λ = 0, so that Imλ ⊆ ker %M . Furthermore, for all
m ∈ M and c ∈ C,

(%M ◦ %M − λ ◦ (IM⊗∆C))(m⊗c) =
∑

m(0)⊗m(1)γ(m(2)⊗c)

−
∑

m · c(1)⊗c(2) +
∑

m⊗π(c(1)⊗c(2))

=
∑

m(0)γ(m(1)⊗c(1))⊗c(2)

−
∑

m(0)γ(m(1)⊗c(1))⊗c(2) + m⊗c

= m⊗c,

where we used the colinearity of a cointegral. This implies that ker %M ⊆ Imλ, i.e.,
the above sequence is exact as required.

As an example of a coseparable coring one can take the canonical Sweedler coring
associated to a split ring extension B → A. In this case the product in A⊗BA
comes out as

(a⊗a′)(a′′⊗a′′′) = aE(a′a′′)⊗a′′′, ∀a, a′, a′′, a′′′ ∈ A

where E is a splitting map. This is known as the E-multiplication. Since a co-
module of the canonical coring is a descent datum for a ring extension B → A,
Proposition 2.7 implies that every descent datum is a firm module of the A-ring
A⊗BA with the E-multiplication (cf. [5, Example 2.1], [8, Section 25] or [10, Sec-
tion 4.8] for a discussion of the correspondence between descent data and comodules
of a canonical coring).
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Theorem 2.6 has the following (part-) converse.

Proposition 2.8. Let B be a separable A-ring. Then B is a coseparable non-
counital coring.

Proof. Let ∆ : B → B ⊗A B be a (B,B)-bimodule map splitting the product µ in
B. The B-linearity of ∆ implies that the following diagram

B⊗AB⊗AB

µ⊗IB

��

B⊗AB
IB⊗∆oo

µ

��

∆⊗IB // B⊗AB⊗AB

IB⊗µ

��
B⊗AB B

∆
oo

∆
// B⊗AB

is commutative. For all b ∈ B we write (∆⊗IB)◦∆(b) =
∑

b(1)(1)⊗b(1)(2)⊗b(2) and
(IB⊗∆) ◦∆(b) =

∑
b(1)⊗b(2)(1)⊗b(2)(2), and use the above diagram to obtain

∆(b) = (∆ ◦ µ ◦∆)(b) = (IB⊗µ) ◦ (∆⊗IB) ◦∆(b) =
∑

b(1)(1)⊗µ(b(1)(2)⊗b(2))
= (µ⊗IB) ◦ (IB⊗∆) ◦∆(b) =

∑
µ(b(1)⊗b(2)(1))⊗b(2)(2).

Using these identities we can compute

(IB⊗∆) ◦∆(b) =
∑

b(1)(1)⊗(∆ ◦ µ)(b(1)(2)⊗b(2))
=

∑
b(1)(1)⊗((µ⊗IB) ◦ (IB⊗∆))(b(1)(2)⊗b(2))

=
∑

b(1)(1)⊗µ(b(1)(2)⊗b(2)(1))⊗b(2)(2) ,

and
(∆⊗IB) ◦∆(b) =

∑
(∆ ◦ µ)(b(1)⊗b(2)(1))⊗b(2)(2)

=
∑

((IB⊗µ) ◦ (∆⊗IB))(b(1)⊗b(2)(1))⊗b(2)(2)

=
∑

b(1)(1)⊗µ(b(1)(2)⊗b(2)(1))⊗b(2)(2) ,

i.e., (∆⊗IB)◦∆ = (IB⊗∆)◦∆. This proves that B is a non-counital A-coring with
coproduct ∆.
Next note that the above diagram can also be understood as a statement that µ
is a (B,B)-bicomodule map. Since µ is a retraction for ∆, B is a coseparable
non-counital coring as required. This completes the proof.

3. Morita contexts for coseparable corings

Although the Morita theory is usually developed for rings with unit, it can be
extended to firm rings without units (cf. [4, Exercise 4.1.4]). Recall that a right
module M of a non-unital ring R is said to be firm if the map M ⊗R R → M
induced from the R-product in M is an R-module isomorphism. Similarly one
defines left firm modules. A non-unital ring is a firm ring if it is firm as a left and
right R-module.

Definition 3.1. Given a pair of firm non-unital rings R,S, a Morita context con-
sists of a firm (R,S)-bimodule V and a firm (S, R)-bimodule W and a pair of
bimodule maps

σ : W ⊗R V → S, τ : V ⊗S W → R,
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such that the following diagrams

W⊗RV⊗SW
σ⊗IW //

IW⊗τ

��

S⊗SW

∼=
��

V⊗SW⊗RV
τ⊗IV //

IV ⊗σ

��

R⊗RV

∼=
��

W⊗RR
∼= // W V⊗SS

∼= // V

commute. A Morita context is denoted by (R,S, V,W, τ, σ). A Morita context is
said to be strict provided σ and τ are isomorphisms.

The Morita theory for non-unital rings can be developed along the same lines as
the usual Morita theory [18]. The aim of this section is to show that there is a
Morita context associated to any coseparable coring with a grouplike element. To
construct such a context we employ techniques developed in recent papers [1], [11].
First recall that an element g of an A-coring C is said to be a grouplike element,
provided ∆C(g) = g⊗g and εC(g) = 1. Obviously, not every coring has grouplike
elements. The results of this section are contained in the following

Theorem 3.2. Let C be a coseparable A-coring with a cointegral γ and a grouplike
element g. View C as a separable A-ring as in Theorem 2.6 and let MC denote
the category of firm right modules of the A-ring C (cf. Definition 2.3). For any
M ∈ MC define

MC
g,γ = {m ∈ M | ∀c ∈ C, m · c = mγ(g⊗c)}.

Then:
(1) B = AC

g,γ = {b ∈ A | ∀c ∈ C, γ(gb⊗c) = bγ(g⊗c)}, is a subring of A.
(2) The assignment (−)Cg,γ : MC → MB, M 7→ MC

g,γ is a covariant functor which
has a left adjoint −⊗B A : MB → MC.

(3) Q = CCg,γ is a firm left ideal in C and hence a (C, B)-bimodule.
(4) For every M ∈ MC, the additive map

ωM : M ⊗C Q → MC
g,γ , m⊗q 7→ m · q,

is bijective.
(5) Define two maps

σ : Q⊗BA → C, q⊗a 7→ qa and τ : A⊗CQ → B, a⊗q 7→ γ(ga⊗q).

Then (B, C, A, Q, τ, σ) is a Morita context, in which τ is surjective (hence an
isomorphism).

Proof. (1) First note that A is a right C-comodule with the coaction a 7→ 1A⊗ga.
Thus by Proposition 2.7, A is a firm C-module with the action a · c = γ(ga⊗c), for
all a ∈ A and c ∈ C. Therefore the definition of B makes sense and takes the form
stated. Obviously 1A ∈ B. Furthermore, for all b, b′ ∈ B and c ∈ C,

γ(gbb′⊗c) = γ(gb⊗b′c) = bγ(g⊗b′c) = bb′γ(g⊗c),

so that bb′ ∈ B as required. Alternatively, we note that B ∼= EndC(A) and is
therefore a ring.
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(2) We note that MC
g,γ

∼= HomC(A,M) via f 7→ f(1A) has the left adjoint −⊗BA.
In more detail, take any M ∈ MC , m ∈ MC

g,γ , b ∈ B and c ∈ C, and use the
definitions of B and MC

g,γ to compute

(mb) · c = m · (bc) = mγ(g⊗bc) = mbγ(g⊗c).

This shows that MC
g,γ is a right B-module, hence (−)Cg,γ is a functor as stated. In

the opposite direction, for any right B-module N , N⊗BA is a firm right C-module
with the action (n⊗a) ·c = n⊗γ(ga⊗c). Note that this action is well-defined by the
construction of B. More precisely, A is a left B-module and a firm right C-module
(since it is a right C-comodule). It is a (B, C)-bimodule, since for every b ∈ B,
a ∈ A and c ∈ C,

(ba) · c = γ(gba⊗c) = γ(gb⊗ac) = bγ(g⊗ac) = b(a · c),

by (1). The above action is simply induced from the action of C on A and thus
well-defined. Therefore there is a functor as required. Now, one can easily check
that the unit and counit of the adjunction are given by

ηN : N → (N⊗BA)Cg,γ , n 7→ n⊗1A,

εM : MC
g,γ⊗BA → M, m⊗a 7→ ma,

for all N ∈ MB and M ∈ MC .
(3) Note that Q ∼= HomC(A, C) and is therefore a natural (C, B)-bimodule. In more
detail, (cq)c′ = c(qc′) = cqγ(g⊗c′) for any c, c′ ∈ C and q ∈ Q , so cq is an element
of Q, hence Q is a left C-ideal. By (2) Q is also a right B-module, and since the
product in C is an (A,A)-bimodule map, Q is a (C, B)-bimodule. We only need to
show that Q is firm as a left C-module. This can be shown by the same technique
as in the proof of Proposition 2.7. C ⊗C Q is defined as a cokernel of the following
left C-linear map

λ : C ⊗A C ⊗A Q → C ⊗A Q, λ = IC⊗π − π⊗IQ,

where π is the product map in C (i.e., the splitting of ∆C) corresponding to the
cointegral γ. Observe that the product map π : C⊗AQ → Q is a surjection. Indeed,
first note that since for all c ∈ C, π(g⊗c) = gγ(g⊗c) by the relationship between π
and γ, the grouplike element g is in Q. For any q ∈ Q take q⊗g ∈ C⊗AQ. Then
π(q⊗g) = qγ(g⊗g) = q, by the properties of the cointegral γ. Thus π is a surjection
as claimed.
Consider the following sequence of left C-module maps

C ⊗A C ⊗A Q
λ //C ⊗A Q

π //Q //0.

We need to show that this sequence is exact. Clearly the associativity of π implies
that π ◦ λ = 0, so that Imλ ⊆ ker π. Furthermore,

∆C◦π−λ◦(∆C⊗IQ) = (IC⊗π)◦(∆C⊗IQ)−(IC⊗π)◦(∆C⊗IQ)+(π◦∆C)⊗IQ = IC⊗IQ,

where we used the colinearity of π and the fact that π is a splitting of ∆C . This
implies that ker π ⊆ Imλ, i.e., the above sequence is exact as required.
(4) Note that ωM is the natural map M⊗CHomC(A, C) → HomC(A,M) ∼= MC

g,γ ,
m⊗f 7→ [a 7→ f(1)m], and hence it is well-defined. Explicitly, for all m ∈ M , q ∈ Q
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and c ∈ C we compute (m · q) · c = m · (qc) = m · qγ(g⊗c), as required. We need to
show that ωM is bijective. Consider a map

θM : MC
g,γ → M⊗CQ, m 7→ m⊗g.

This is well-defined, since as shown in the proof of (3), g ∈ Q. Take any m ∈ MC
g,γ .

Then
ωM (θM (m)) = m · g = mγ(g⊗g) = m,

by the definition of MC
g,γ and properties of a cointegral. Conversely, for any simple

tensor m⊗q ∈ M⊗CQ,

θM (ωM (m⊗q)) = m · q⊗g = m⊗qg = m⊗qγ(g⊗g) = m⊗q,

again by the definition of Q and properties of cointegrals.
(5) Note that σ is the evaluation mapping HomC(A, C)⊗BA → C, while τ is the
canonical map A⊗CHomC(A, C) → EndC(A). In more detail, we show that the
maps σ and τ are well-defined as bimodule maps. Obviously, σ is left C-linear.
Take any q ∈ Q, a ∈ A and c ∈ C and compute

σ(q⊗a · c) = qγ(ga⊗c) = qγ(g⊗ac) = π(q⊗ac) = π(qa⊗c) = (qa)c.

This shows that σ is (C, C)-bilinear as required. Note that τ = ωA, and since
B = AC

g,γ it is well defined and surjective. Clearly τ is right B-linear. An easy com-
putation which involves the definition of B confirms that τ is (B,B)-bilinear. Next
we need to check the commutativity of diagrams in Definition 3.1. The commuta-
tivity of the second diagram follows immediately from A-linearity of the cointegral.
Now take any a ∈ A, and q, q′ ∈ Q and compute

σ(q⊗a)q′ = (qa)q′ = q(aq′) = qγ(g⊗aq′) = qτ(a⊗q′),

where the definition of Q was used to derive the third equality. Thus there is a
Morita context as required. A standard argument in Morita theory confirms that
τ is an isomorphism (cf. [2, II (3.4) Theorem]).

Corollary 3.3. With the assumptions and notation as in Theorem 3.2 we have:
(1) Q is a subring of C with a right unit g.
(2) The functor −⊗B A : MB → MC is fully faithful, i.e., the unit of adjunction

η is an isomorphism.
(3) AC and CQ are direct summands of Cn for some (finite) n ∈ N.
(4) A and Q are generators as left resp. right B-modules.

Proof. (1) follows immediately from the proof of Theorem 3.2(3), while (2)-(4)
follow from Morita theory with surjective τ , and can be proven by the same methods
as in the unital case (cf. [2, Ch. II.3]). In particular, in the case of (3) the “dual
bases” of A and Q can be constructed as follows. Let {ai ∈ A, qi ∈ Q}i=1,...,n be
such that 1B =

∑
i τ(ai⊗qi). Define σi = σ(qi⊗−) ∈ HomC(A, C). Then for every

a ∈ A, ∑
i

ai · σi(a) =
∑

i

ai · σ(qi⊗a) =
∑

i

τ(ai⊗qi)a = a,

so that {ai, σ
i}i=1,...,n is a dual basis for AC . Similarly a dual basis for CQ can be

constructed as {qi, σi} with σi = σ(−⊗ai).
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One can easily find a sufficient condition for the Morita context of Theorem 3.2 to
be strict.

Proposition 3.4. Let C be a coseparable A-coring with a grouplike element g.
Then the Morita context (B, C, A, Q, τ, σ) in Theorem 3.2 is strict, provided g is
a left unit in C.

Proof. In this case γ(g⊗c) = εC(c), hence B and Q are characterised by relations
εC(bc) = bεC(c) and qc = qεC(c), respectively, for all c ∈ C. We need to show that
σ is an isomorphism. For any c ∈ C, σ(g⊗εC(c)) = gεC(c) = gc = c, since g ∈ Q.
Thus σ is surjective. Suppose now that

∑
i qi⊗ai ∈ ker σ, i.e.,

∑
i qiai = 0. This

implies that
∑

i εC(qi)ai = 0, so that

0 = g⊗B

∑
i

εC(qi)ai =
∑

i

gεC(qi)⊗ai =
∑

i

gqi⊗ai =
∑

i

qi⊗ai.

Here we used that for all q ∈ Q, εC(q) = γ(g⊗q) ∈ B, the fact that g ∈ Q and that
g is a left unit in C. This completes the proof.

Finally, we consider two examples of Theorem 3.2.

Example 3.5. Consider a split extension B̄
ι−→ A with splitting map E : A →

B̄. Then the canonical Sweedler coring C = A⊗B̄A is an A-ring with the E-
multiplication, 1A⊗1A ∈ C is a grouplike element, and the Morita context con-
structed in Theorem 3.2 comes out as follows. The ring B is just

B = ι(B̄),

while the (C, B)-bimodule Q ⊂ A⊗BA is

Q ∼= A

via a 7→ a⊗1A and the left module action of the A-ring C on A given by c · a =∑
c1E(c2a) (suppressing a possible summation in c =

∑
c1⊗c2 ∈ A⊗BA). The

module AC is similarly given by a · c =
∑

E(ac1)c2 for each a ∈ A, c ∈ C. The
Morita maps read σ(a⊗a′) = a⊗a′ and τ(a⊗a′) = E(aa′). This context is obviously
strict.
The proof of this involves applying the theorem, noting that

B = {b ∈ A | ∀a ∈ A, 1AE(ba) = bE(a)} = ι(B̄)

since ⊇ is clear and ⊆ follows from letting a = 1A. Next one notes that

Q = {q =
∑

i

qi⊗q̄i ∈ A⊗B̄A | ∀a ∈ A,
∑

i

qiE(q̄ia)⊗1A = qE(a)} = A⊗1A

since ⊇ is clear and ⊆ follows from taking a = 1A.

Example 3.6. Hopf algebroids over a noncommutative base k-algebra A, where
k is a commutative ring, provide examples of A-corings with grouplike elements;
in particular, the canonical bialgebroids End kA and A⊗kAop do (cf. [16] [7] for
the definition and examples of Hopf algebroids). They can be extended to ring
extensions via an algebraic formulation of depth two for subfactors [15]: a ring
extension B → A is of depth two (D2) if A⊗BA is isomorphic to a direct summand
of A⊕ · · ·⊕A as a (B,A)-bimodule, and similarly as an (A,B)-bimodule. The two
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conditions are equivalent respectively to the existence of finitely many elements
cj , bi ∈ (A⊗BA)B and γj , βi ∈ BEndB(A) such that for all a, a′ ∈ A,

a⊗a′ =
∑

i

biβi(a)a′ =
∑

j

aγj(a′)cj . (1)

Denoting the centraliser AB of a D2 extension B → A by R, the following R-coring
structure for C := BEndB(A) is considered in [15]. The (R,R)-bimodule structure
is rαr′ = rα(−)r′ (α ∈ C). The coproduct is given most simply by noting [15, 3.10]:
C⊗RC ∼= BHomB(A⊗BA,A) via

α⊗β 7−→ [a⊗a′ 7→ α(a)β(a′)].

Then
∆C(α)(a⊗a′) = α(aa′),

with counit
εC(α) = α(1A).

We also have the alternative formulae for the coproduct [15, Eqs. (66), (68)]:

∆C(α) =
∑

j

γj⊗Rc1
jα(c2

j−) =
∑

i

α(−b1
i )b

2
i⊗Rβi,

where cj =
∑

c1
j⊗c2

j and bi =
∑

b1
i⊗b2

i is a notation suppressing a possible sum-
mation index. We note the grouplike element IA.
Suppose the D2 extension B → A is separable with separability element e =∑

e1⊗e2 ∈ A⊗BA (summation index suppressed). Then the R-coring C is cosep-
arable with cointegral γ : C⊗RC → R given by γ(α⊗β) =

∑
α(e1)β(e2). The

corresponding R-ring structure on C is given by (x ∈ A)

(α ∗ β)(x) =
∑

α(xe1)β(e2) =
∑

α(e1)β(e2x)

with the R-bimodule structure above.
The Morita context in the theorem applied to C turns out as follows:

Proposition 3.7. The centre Z of A and the non-unital ring (C, ∗) are related by
the Morita context (Z, C, ZRC , CRZ , τ, σ) where ZRC is given by zr·α =

∑
ze1rα(e2),

CRZ by α · rz =
∑

α(e1)re2z,

σ : R⊗ZR → C, r⊗r′ 7−→ λ(r)ρ(r′) = ρ(r′)λ(r),

where λ(r), ρ(r) ∈ C denote left and right multiplication by r ∈ R, respectively, and

τ : R⊗CR
∼=−→ C, r⊗r′ 7−→

∑
e1rr′e2.

The Morita context is strict if B → A is H-separable.

Proof. We check that γ is a cointegral. Take any α ∈ C and compute∑
γ(α(1)⊗α(2)) =

∑
α(e1e2) = εC(α).

Thus γ is normalised. Furthermore, for all α, β ∈ C,∑
γ(α⊗β(1))β(2) =

∑
i

α(e1)β(e2b1
i )b

2
i βi =

∑
α(e1)β(e2−).
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On the other hand∑
α(1)γ(α(2)⊗β) =

∑
j

γj(−)c1
jα(c2

je
1)β(e2) =

∑
α(−e1)β(e2),

so that γ is colinear and hence a cointegral.
The subring of R in Theorem 3.2 is

RC
IA,γ = {r ∈ R | ∀a ∈ A,

∑
e1rα(e2) =

∑
re1α(e2)} = Z,

since ⊇ is clear, and ⊆ follows from taking α = IA and observing
∑

e1re2 ∈ Z.
The Morita context bimodule

Q = {q ∈ C | ∀α ∈ C,
∑

q(−e1)α(e2) =
∑

q(−)e1α(e2)} = λ(R),

since ⊇ is clear, and ⊆ follows from taking α = IA, whence q =
∑

q(−e1)e2 =∑
λ(q(e1)e2) ∈ λ(R).

That (Z, C, Q,R, σ, τ) is a Morita context is now straightforward; τ being epi by an
old lemma of Hirata and Sugano [14].
Recall that B → A is H-separable (after Hirata) if there are (Casimir) elements
ei ∈ (A⊗BA)A and ri ∈ R (the centraliser) such that 1A⊗1A =

∑
i eiri(=

∑
i riei)

(a very strong version of Eqs. (1) above). It is well-known that A is a separable
extension of B. Moreover,

R⊗ZRop ∼=−→ BEndB(A),

via r⊗r′ 7→ λ(r)ρ(r′) with inverse α 7→
∑

i α(e1
i )e

2
i⊗ri. Whence σ is an isomor-

phism if we begin with an H-separable extension.

If A is a separable algebra over a (commutative) ground ring B, then the proposition
shows that the center Z and EndB(A) (with the exotic multiplication above) are
related by a Morita context, which is strict if Z = B1A, i.e. A is Azumaya.
As a third example, we may instead work with the dual bialgebroid in [15] and
prove that a split D2 extension B → A has a coseparable R-coring structure on
(A⊗BA)B which is essentially a restriction of C in Example 3.5.

4. Are biseparable corings Frobenius?

In this section we will show that a one-sided, slightly stronger version of the problem
in [9] is equivalent to the problem if cosplit, coseparable corings with a condition
of finite projectivity are Frobenius. Given the techniques developed for corings and
the many examples coming from entwined structures [5], we expect this equivalence
to be useful in solving this problem.
As recalled in Section 2, an A-coring C is coseparable if the forgetful functor F :
MC → MA is separable (cf. [17] for the definition of a separable functor). Dually,
we say that C is cosplit if the functor −⊗AC is a separable functor from the category
of right A-modules MA into the category of right C-comodules MC . (Recall that
F is the left adjoint of −⊗A C [13].)
An A-coring C determines two ring extensions ι∗ : A → C∗ and ∗ι : A → ∗C where
C∗ := HomA(C, A) and ∗C := AHom(C, A), i.e., the right and left duals of C. The
ring structure on C∗ is given by (ξξ′)(c) =

∑
ξ(ξ′(c(1))c(2)) (ξ, ξ′ ∈ C∗, c ∈ C)

with unity εC and the natural Abelian group structure, while the ring structure



14 T. BRZEZIŃSKI, L. KADISON AND R. WISBAUER

on ∗C is given by (ξξ′)(c) =
∑

ξ′(c(1)ξ(c(2))). The mappings ι∗ and ∗ι are given
by ι∗(a) = εC(a−)(= aεC) and ∗ι(a) = εC(−a). We note by short calculations
that the induced (A,A)-bimodule structures on C∗ and ∗C coincide with the usual
structures, which we recall are given by (aξa′)(c) := aξ(a′c) for ξ ∈ C∗ and a, a′ ∈ A
and (aξa′)(c) = ξ(ca)a′ for ξ ∈ ∗C. Also note that ∗ι and ι∗ are monomorphisms if
εC : C → A is surjective.
Recall from [9] that a ring extension B → A is biseparable if it is split, separable
and the natural modules AB and BA are finitely generated projective. We will say
that B → A is left or right biseparable if B → A is split, separable but only one of
BA or AB , respectively, need be finitely generated projective. This motivates the
following

Definition 4.1. An A-coring C is said to be biseparable if CA and AC are finitely
generated projective and C is cosplit as well as coseparable.

Proposition 4.2. If B → A is a biseparable extension, then the canonical Sweedler
A-coring C := A⊗B A is a biseparable coring.

Proof. Since B → A is separable, the induction functor −⊗A C from MA into MC

is separable by [5, Corollary 3.4]. Since B → A is split, and AB is a projective
generator (therefore faithfully flat), the forgetful functor F : MC → MA is a
separable functor by [5, Corollary 3.7]. It follows by definition that the canonical
coring C is cosplit and coseparable.
Finally we note that BA finitely generated projective implies AA⊗BA finitely gen-
erated projective. Similarly, CA is finitely generated projective, and we conclude
that C is biseparable.

Recall that an A-coring C is said to be Frobenius if the forgetful functor F : MC →
MA is a Frobenius functor (has the same left and right adjoint), i.e. −⊗A C is also
a left adjoint of F [5, 6]. Motivated by the question in [9] let us make

Conjecture 4.3. A biseparable A-coring C is Frobenius.

Proposition 4.4. If Conjecture 4.3 is true, then biseparable extensions are Frobe-
nius.

Proof. Given a biseparable extension B → A, its canonical coring C = A⊗BA
is biseparable by the previous proposition. If C is then a Frobenius coring by
hypothesis, it follows from [6, Theorem 2.7] that B → A is a Frobenius extension,
since BA is faithfully flat.

We now proceed to establish a converse to this proposition.

Proposition 4.5. If C is a cosplit A-coring, then ι∗ : A → C∗ and ∗ι : A → ∗C are
both split extensions.

Proof. By [5, Theorem 3.3], C is cosplit if and only if there is e ∈ CA such that
εC(e) = 1A. (In other words, εC : C → A is a split (A,A)-epimorphism.) We now
define a “conditional expectation” or bimodule projection E∗ : C∗ → A, respectively
∗E : ∗C → A simply by

E∗(ξ) = ξ(e), ∗E(ξ′) = ξ′(e) (ξ ∈ C∗, ξ′ ∈ ∗C).
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Note that E∗(εC) = 1A = ∗E(1∗C) and

E∗(aξa′) = aξ(a′e) = aξ(ea′) = aξ(e)a′ = aE∗(ξ)a′

for a, a′ ∈ A, whence E∗ and similarly ∗E give (A,A)-bimodule splittings of ι∗ and
∗ι.

For example, the canonical Sweedler coring C of a ring extension B → A is cosplit
if and only if B → A is a separable extension. Now C∗ ∼= EndB(A) as rings via
ξ 7→ ξ(−⊗1A) with inverse

f 7−→ [a⊗a′ 7→ f(a)a′].

Since ι∗ corresponds to the left regular representation λ : A → EndB(A), we recover
results by Müller and Sugano that λ is a split extension if B → A is separable.

Proposition 4.6. Let C be an A-coring. If AC is finitely generated projective, then
C is coseparable if and only if ∗ι : A → ∗C is a separable extension. If CA is finitely
generated projective, then C is a coseparable A-coring if and only if ι∗ : A → C∗ is
a separable extension.

Proof. We will prove the first statement, the second follows similarly. If AC is
finitely generated projective, then the category of right comodules MC is isomorphic
to the category M∗C of right modules over ∗C [5, Lemma 4.3]. Recall that given a
coaction %M : MA → M⊗AC, we define an action of ξ ∈ ∗C on m ∈ M ∈ MC by
m · ξ =

∑
m(0)ξ(m(1)). It is trivial to check that (M, ·) ∈ M∗C . Inversely, given

dual bases {ξi ∈ ∗C} and {ci ∈ C} such that c =
∑

i ξi(c)ci for each c ∈ C, and right
action of ∗C on M ∈ M∗C , we define a coaction

%M (m) =
∑

i

m · ξi ⊗A ci.

It is easily checked that (M,%M ) ∈ MC , and that the two operations are natural
and inverses to one another, so that M∗C ∼= MC .
Now C is coseparable if and only if the forgetful functor F : MC → MA is a
separable functor. Since

m · ∗ι(a) =
∑

m(0)εC(m(1))a = ma

for each a ∈ A,m ∈ M ∈ MC , F corresponds under the isomorphism of categories
above to the forgetful functor G : M∗C → MA induced by ∗ι : A → ∗C. But G is a
separable functor if and only if ∗ι is a separable extension [17].

Proposition 4.7. Suppose C is an A-coring which is reflexive as a left and right
A-module. Then C is a Frobenius coring if and only if ∗ι : A → ∗C is a Frobenius
extension if and only if ι∗ : A → C∗ is a Frobenius extension.

Proof. The proof is quite similar to the proof of Proposition 4.6 (cf. [5, Theo-
rem 4.1]). If ∗ι is Frobenius, it follows that ∗CA is finitely generated projective, so
A(∗C)∗ is finitely generated projective, whence by reflexivity AC is finitely gener-
ated projective. Then the categories M∗C and MC are isomorphic. But the forgetful
functor G : M∗C → MA has equal left and right adjoint if ∗ι is Frobenius, in which
case F is Frobenius and C is a Frobenius coring. The other case is entirely similar.
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Conversely, if C is a Frobenius A-coring, then both CA and AC are finitely gener-
ated projective [6, Corollary 2.3]. The rest follows from the functorial definitions
of Frobenius extension and coring applied to either isomorphism of left or right
module and comodule categories.

Theorem 4.8. Biseparable corings are Frobenius if and only if left or right bisep-
arable extensions are Frobenius.

Proof. Without one-sidedness, we saw ⇒ in Proposition 4.4. (⇐) Suppose C is
a biseparable A-coring. Then ∗ι : A → ∗C and ι∗ : A → C∗ are split, separable
extensions by Propositions 4.5 and 4.6. Since AC and CA are finitely generated
projective, it follows that ∗CA and AC∗ are finitely generated projective. If either
left or right biseparable extensions are Frobenius, then either ι∗ or ∗ι is a Frobenius
extension. In either case, Proposition 4.7 shows C to be a Frobenius coring.

We note the following special “depth one” case for which there is a solution to
our conjecture. If C is a centrally projective A-bimodule, i.e., as (A,A)-bimodules
C ⊕W ∼= ⊕nA for some (A,A)-bimodule W , and C is moreover biseparable, then C
is Frobenius by a classical result of Sugano:

Proposition 4.9. If C is a centrally projective, cosplit, coseparable A-coring, then
C is Frobenius.

Proof. We easily obtain C∗⊕W ∗ ∼= ⊕nA as (A,A)-bimodules, whence ι∗ : A → C∗ is
a centrally projective separable extension by Proposition 4.6, and monomorphism
since εC is surjective. By [21, Theorem 2] ι∗ is a Frobenius extension. Then by
Proposition 4.7, C is a Frobenius coring.
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