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Abstract

The paper is concerned with the study of coprime elements in the
big lattice of preradicals of module categories. In particular we are in-
terested in the module theoretic characterization of this property. Since
preradicals are closely related to fully invariant submodules the results
are different to those for coprimeness in the lattice of submodules of a
given module.

1 Introduction

The definition of primeness of ideals in a ring R is based on the product of ideals.

A similar formalism can be developed replacing the product by the intersection

of ideals and the resulting theory is concerned with reducibility of rings and

factor rings. For the dual notions one may start with some ”coproduct” or else

the sum of ideals.

The class R-pr of preradicals (subfunctors of the identity) on the category of

R-modules allows four operations, that is, the meet ∧, the join ∨, the product

· and the coproduct : (see Section 2). The triple (R-pr,∧,∨) behaves like a

lattice, except that R-pr need not be a set; hence it is called a big lattice.

Now primeness can be considered with respect to the product as well as the

∧ and this was done in various papers (e.g., [4], [6], [5]). Since for any preradical

τ and N ∈ R-Mod, τ(N) ⊆ N is a invariant submodule, the application of the

resulting theory focusses on the structure of fully invariant submodules rather

than of (ordinary) submodules.
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Dually coprimeness can be studied in R-pr based on the coproduct : or on

the join ∨. The purpose of this paper is to develop such theories. For the sake

of generality we do not only consider preradicals on R-Mod but on the category

σ[M ], consisting of submodules of M -generated modules, where M is any R-

module. We denote the class of preradicals of σ[M ] by M -pr and it is obvious

that the operations ∧,∨, ·, : are also defined on M -pr.

On the lattice M -hpr of hereditary preradicals on σ[M ], coprimeness with

respect to : was investigated in [10] (where the coprime modules are called

duprime). As we shall see these notions in general differ from those derived in

M -pr since there are obviously more preradicals than left exact preradicals.

Applied to modules, the coproduct of preradicals induces a ”coproduct” of

fully invariant submodules of any module N and the notions of coprimeness of

modules and fully invarinat submodules. Again there is a difference between

these notions and the notion of coprimeness considered in [3] and [2].

In Section 2 basic facts about the big lattice M -pr are provided.

In Section 3 coprime preradicals are defined and investigated. In particular

the case when the top element 1 is coprime is considered. The results are used

to introduce a coproduct for fully invariant submodules for any module and to

observe its properties in Section 4. We learn that the condition for 1 to be

coprime in M -pr in general is stronger then to be coprime in the lattice of left

exact preradicals (see Remarks 4.7). Applied to the ring R the first condition

forces the ring to be simple (see 3.10), whereas the latter condition requires R

to be a left strongly prime ring (see [10, Theorem 3.3]).

In Section 5 we consider coprimeness based on the join ∨, a condition which

is weaker than coprimeness derived from the coproduct : . The results are related

to decompositions of modules into fully invariant submodules.

To place our results within similar investigations let us recall that there

are various (big) lattices associated to a category σ[M ]: The big lattices of all

preradicals, all idempotent preradicals, all radicals, all idempotent radicals, and

the lattices of all hereditary preradicals and all hereditary radicals on σ[M ]. All

these lattices have (possibly different) meets and joins, some of them have in

addition products and coproducts. Notice that all these lattices except M -pr

can be characterized by certain classes of modules (pretorsion or pretorsion free

classes). Although they are all subclasses of M -pr, in general they need not

be sublattices, that is, the binary operations may be different. However, the

operations ∧, · and : on M -pr can be restricted to the lattice of all hereditary
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preradicals M -hpr where ∧ and · coincide. There is a surjective assignment

h : M -pr → M -hpr, τ 7→ h(τ),

defined by putting h(τ)(N) = N ∩ τ(N̂) for any N ∈ σ[M ], where N̂ denotes

the M -injective hull of N . This assignment respects arbitrary meets and

h(τ : ρ) ≤ (h(τ) : h(ρ)).

From this context it is clear that hereditary preradicals which are coprime in

M -pr are certainly coprime in M -hpr. In particular, a coprime module M is

duprime (i.e., 1 is coprime in M -hpr).

Investigating coprimeness in a general setting is expected to be of help for

studying this notion for coalgebras. This will be done elsewhere.

2 Preliminaries

Let R be an associative ring with unit and R-Mod the category of unital left R-

modules. For a (fixed) left R-module M , we denote by σ[M ] the full subcategory

of R-Mod whose objects are all modules subgenerated by M , and by M -pr the

big lattice of all preradicals in σ[M ], that is, the class of all subfunctors of the

identity functor of σ[M ]. By 1 and 0 we denote the top and bottom element of

this lattice, respectively. For M = R, σ[M ] is equal to R-Mod and R-pr is the

big lattice of preradicals in R-Mod.

Recall that a preradical ρ is said to be hereditary if for any submodule K ⊂ N ,

ρ(K) = K ∩ ρ(N), and ρ is cohereditary (or right exact) if for any epimorphism

f : N → L, ρ(L) = f(ρ(N)).

2.1. Basic preradicals. For N ∈ σ[M ] and any fully invariant submodule

K ⊂ N , the preradicals αN
K and ωN

K are defined by putting, for any L ∈ σ[M ],

αN
K(L) =

∑
{f(K) | f : N → L},

ωN
K(L) =

⋂
{g−1(K) | g : L → N}.

The following assertions are easy to verify.

Properties. Let N, L ∈ σ[M ] and K ⊆ N a fully invariant submodule.

(i) αN
N (L) is the trace of N in L.

(ii) ωN
0 is the reject of N in L.
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(iii) If L is N -injective, then αN
K(L) = αK

K(L).

(iv) If L is N -projective, then ωN
K = ω

N/K
0

(v) If N is projective in σ[M ], then αN
K is a cohereditary preradical.

(vi) If N is M -injective, then ωN
K is a hereditary preradical.

Note that for N, K ∈ σ[M ] and τ ∈ M -pr, τ(N) = K holds if and only if K

is a fully invariant submodule of N and

αN
K ≤ τ ≤ ωN

K .

M -pr is an atomic lattice and the atoms are precisely the set of (hereditary)

preradicals

{αbS
S |S a simple module in σ[M ]},

where Ŝ denotes the M -injective hull of S.

2.2. Operations on M-pr. There are four binary operations in M -pr denoted

by ∧, ∨, · and : and defined by putting, for τ, ρ ∈ M -pr and N ∈ σ[M ],

(τ ∧ ρ)(N) = τ(N) ∩ ρ(N),

(τ ∨ ρ)(N) = τ(N) + ρ(N),

(τ · ρ)(N) = τ(ρ(N)),

(τ : ρ)(N) such that (τ : ρ)(N)/τ(N) = ρ(N/τ(N)).

The meet ∧ and the join ∨ can be defined for classes of preradicals by (X an

index class)

(
∧
{τi | i ∈ X})(N) =

⋂
{τi(N) | i ∈ X},

(
∨
{τi | i ∈ X})(N) =

∑
{τi(N) | i ∈ X}.

Any preradical τ in M -pr may be described in terms of the α’s or ω’s in the

following way:

τ =
∨
{αN

τ(N) | N ∈ σ[M ]} or τ =
∧
{ωN

τ(N) | N ∈ σ[M ]}.

Recall that τ in M -pr is said to be idempotent if τ · τ = τ , and it is a radical if

(τ : τ) = τ .

2.3. Associated preradicals. To any τ ∈ M -pr we assign the preradicals

e(τ) =
∧
{ρ ∈ M -pr | ρ · τ = τ} = the equalizer of τ ,

a(τ) =
∨
{ρ ∈ M -pr | ρ · τ = 0} = the annihilator of τ

c(τ) =
∨
{ρ ∈ M -pr | (τ : ρ) = τ} = the coequalizer of τ ,

t(τ) =
∧
{ρ ∈ M -pr | (τ : ρ) = 1} = the totalizer of τ .
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Pseudo complements have been studied in various lattices and big lattices

in ring theory, for example in the lattice of hereditary torsion theories by Golan

[7], in the big lattice of Serre subcategories by Raggi and Signoret [8], in the

lattice of hereditary pretorsion classes by Raggi, Ŕıos and Wisbauer [9], in the

big lattice of herdeditary and cohereditary classes by Alvarado, Rincon and Ŕıos

[1] and in the big lattice of preradicals over a ring [6].

2.4. Pseudo complements. Let τ ∈ M-pr.

(1) There exists a unique pseudo complement τ⊥ ∈ M-pr such that

(i) τ ∧ τ⊥ = 0, and

(ii) for any ρ ∈ M-pr with τ ∧ ρ = 0, ρ ≤ τ⊥.

(2) τ⊥ is a left exact radical.

(3) τ⊥ ≤ a(τ) and τ⊥ ≤ t(τ).

(4) For any simple module S ∈ σ[M ], (α
bS
S)⊥ = ω

bS
0 .

Proof. (1) and (2) can be shown similar to the proof of [6, Theorem 4].

(3) and (4) are easy to verify. tu

Recall that maximal elements in (big) lattices are called coatoms, and M -pr

is said to be coatomic if for any 1 6= τ ∈ M -pr there exists a maximal ρ ∈ M -pr

such that τ ≤ ρ. For any ring R with identity the big lattice R-pr is coatomic

whereas for arbitrary M the big lattice M -pr need not be so.

The following observation is obvious.

2.5 Lemma. Let G be a generator in σ[M ] and τ ∈ M-pr. Then τ = 1 if and

only if τ(G) = G.

The next theorem describes when M -pr is coatomic.

2.6 Theorem. For M and a generator G in σ[M ], the following conditions are

equivalent:

(a) The big lattice M-pr is coatomic;

(b) every fully invariant proper submodule of G is contained in a maximal fully

invariant submodule.

Proof. (a) ⇒ (b) Let K ⊂ G be a fully invariant proper submodule. Then

there exists a preradical τ such that τ(G) = K and hence τ 6= 1. By (a) there

exists a coatom ρ ∈ M -pr such that τ ≤ ρ, thus K ⊆ ρ(G). We claim that
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ρ(G) is maximal fully invariant submodule of G. Since ρ 6= 1 whe know from

the preceding Lemma that ρ(G) 6= G. Now suppose ρ(G) ⊆ L ⊆ G where L is

a fully invariant submodule of G. Assume L 6= G; then ωG
L 6= 1 and ρ ≤ ωG

L .

Since ρ is a coatom this implies ρ = ωG
L and so ρ(G) = L.

(b) ⇒ (a) Let τ ∈ M -pr different from 1, that is, τ(G) 6= G, and choose

a maximal fully invariant submodule L ⊂ G containing τ(G). Then ωG
L is a

coatom in M -pr such that ρ ≤ ωG
L . tu

The following example shows that M -pr need not be atomic.

2.7 Example. Let R = Z and M = Zp∞ , for some prime p.. Then G =
⊕

N Zpn

is a generator in σ[M ] without any maximal fully invariant submodules. Hence,

by 2.6, M -pr is not coatomic.

Notice that τ = αM
M ∈ M -pr with τ(M) = M and τ(Zp) = 0, thus τ 6= 1.

Now we characterize some classes of modules by the lattice structure of M -pr.

2.8 Theorem. For M the following conditions are equivalent:

(a) M is a homogeneous semisimple module;

(b) αN
K = ωN

K for all 0 6= N ∈ σ[M ] and fully invariant submodules K ⊆ N ;

(c) αN
N = ωN

N for all 0 6= N ∈ σ[M ].

Proof. (a) ⇒ (b) Let M be homogeneous semisimple. Then any nonzero

N ∈ σ[M ] is homogeneous semisimple and 0 and N are its only fully invariant

submodules. For K = 0, ωN
0 = 0 = αN

0 , since N is a cogenerator in σ[M ]. For

K = N , αN
N = 1 = ωN

N , since N is a generator in σ[M ].

(b) ⇒ (c) is obvious.

(c) ⇒ (a) Condition (c) implies for any nonzero N ∈ σ[M ], αN
N = ωN

N =

1, that is, N is a generator. Thus σ[M ] has a simple generator and M is

homogeneous semisimple. tu

2.9 Theorem. Assume that σ[M ] has a non-zero M-projective module P . Then

the following conditions are equivalent:

(a) M is a homogeneous semisimple module;

(b) αN
0 = ωN

0 for all 0 6= N ∈ σ[M ];

(c) each 0 6= N ∈ σ[M ] is a cogenerator of σ[M ].
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Proof. (a) ⇒ (b) is immediate by 2.8.

(b) ⇒ (c) This is clear since αN
0 = 0.

(c) ⇒ (a) By the given condition it is clear that σ[M ] has a unique simple

module S which has to be M -injective. Since P cogenerates S, there is an

inclusion S → P which splits. Thus S is an M -projective module generating all

simple modules in σ[M ], that is, S is a generator in σ[M ] (e.g. [12, 18.5]). tu

3 Coprime preradicals

3.1 Definition. A nonzero τ ∈ M -pr is called coprime if τ ≤ (µ : ρ), where

µ, ρ ∈ M -pr, implies τ ≤ µ or τ ≤ ρ.

The existence of coprimes is guaranteed by the following fact.

3.2 Proposition. The atoms in M-pr are coprime preradicals.

Proof. Any atom τ of M -pr is of the form τ = α
bS
S , for a simple module

S ∈ σ[M ]. Now suppose τ ≤ (µ : ρ) for some µ, ρ ∈ M -pr and τ 6≤ µ. Then

µ(Ŝ) = 0 and

ρ(Ŝ) = ρ(Ŝ/µ(Ŝ)) = (µ : ρ)(Ŝ)/µ(Ŝ) = (µ : ρ)(Ŝ) ≤ τ(Ŝ) = S,

hence τ ≤ ρ. tu

As shown in the next theorem to any coprime preradical an idempotent

coprime preradical can be associated.

3.3 Theorem. For any coprime τ ∈ M-pr, its equalizer e(τ) is an (idempotent)

coprime preradical.

Proof. Suppose e(τ) ≤ (µ : ρ) for some µ, ρ ∈ M -pr. Then

τ = e(τ) · τ ≤ (µ : ρ) · τ ≤ (µ · τ : ρ · τ),

and hence τ ≤ µ · τ or τ ≤ ρ · τ , implying τ = µ · τ or τ = ρ · τ , and by definition

of the equalizer, e(τ) ≤ ρ or e(τ) ≤ ρ. tu

3.4 Lemma. Let K be a fully invariant submodule of N ∈ σ[M ].

(1) e(αN
K) = αK

K .

(2) If αN
K is a coprime preradical, then αK

K is coprime.
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Proof. (1) First observe that αK
KαN

K(N) = αK
K(K) = K and therefore

αK
KαN

K = αK
K .

On the other hand, e(αN
K)(K) = e(αN

K)αN
K(N) = αN

K(N) = K, thus e(αN
K) ≥

αK
K and so αK

K = e(αN
K).

(2) is a consequence of (1). tu

Note that αS
S = e(α

bS
S) and hence the trace of any simple module S ∈ σ[M ]

is a coprime preradical.

The following observation provides a sufficient condition for a coprime pre-

radical to be a maximal coprime preradical.

3.5 Theorem. Let τ ∈ M-pr be coprime. If τ is not small in M-pr, then τ is

a maximal coprime preradical.

Proof. Let η ∈ M -pr be coprime with τ ≤ η and let 1 6= ρ ∈ M -pr such

that τ ∨ ρ = 1. Hence we have η ≤ (τ : ρ) and thus η ≤ τ or η ≤ ρ. The latter

case implies τ ≤ η ≤ ρ, a contradiction. Hence η ≤ τ and so η = τ . tu

3.6 Definition. For τ, ρ ∈ M -pr define the totalizer of ρ relative to τ by

tτ (ρ) =
∧
{η ∈ M -pr | (ρ : η) ≥ τ}.

3.7. Properties of the relative totalizer.

(1) τ = 1, then tτ (ρ) = t(ρ).

(2) τ ≤ τ ′, then tτ (ρ) ≤ tτ ′(ρ).

(3) ρ ≤ ρ′, then tτ (ρ
′) ≤ tτ (ρ).

(4) τ ≥ tτ (ρ) and (ρ : tτ (ρ)) ≥ τ .

(5) ρ ≥ τ if and only if tτ (ρ) = 0.

(6) tτ (0) = τ .

Notice that tτ ( ) may be thought of as an assignment tτ : M -pr → M -pr.

3.8 Theorem. For τ ∈ M-pr the following are equivalent:

(a) τ is a coprime preradical;

(b) for each η ∈ M-pr, τ ≤ η or τ = tτ (η);

(c) Im tτ = {0, τ}.
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Proof. (a) ⇒ (b) Let η ∈ M -pr be such that τ 6≤ η and suppose τ ≤ (η : ρ).

Then τ ≤ ρ, hence τ ≤ tτ (η) and thus τ = tτ (η).

(b) ⇒ (c) Let η ∈ M -pr. If τ ≤ η we get tτ (η) = 0. Now suppose τ 6≤ η;

then τ = tτ (η) and hence Im tτ = {0, τ}.
(c) ⇒ (a) Assume now that τ ≤ (µ : ρ), hence tτ (µ) ≤ ρ. Now τ = tτ (µ)

implies τ ≤ ρ. On the other hand, τ 6= tτ (µ) implies tτ (µ) = 0 and hence τ ≤ µ

showing that τ is coprime. tu

3.9 Corollary. For M the following conditions are equivalent:

(a) 1 is a coprime preradical;

(b) for each 1 6= τ ∈ M-pr, t(τ) = 1;

(c) Im t = {0, 1}.

3.10 Theorem. Assume that M-pr is coatomic. Then the following are equiv-

alent:

(a) 1 is a coprime preradical;

(b) M-pr has a unique coatom which is a radical;

(c) each generator G ∈ σ[M ] is simple as an (R, End(G))-bimodule.

Proof. (a) ⇒ (b) Let ρ, ρ′ be two different coatoms in M -pr. Then

(ρ : ρ′) = 1 implying ρ = 1 or ρ′ = 1. This is a contradiction and hence there is

only one coatom ρ.

If (ρ : ρ) 6= ρ, then (ρ : ρ) = 1 contradicting our assumption. Thus (ρ : ρ) =

ρ, that is, ρ is a radical.

(b) ⇒ (c) Let G be a generator in σ[M ] and ρ the unique coatom in M -pr.

Thus if ρ(G) = N , we have ρ = ωG
N and N is the unique maximal fully invariant

submodule of G; since ωG
N is a radical we have ωG

N(G/N) = 0.

Let N1 = α
G/N
G/N (G); if N1 ⊆ N , then for each f ∈ Hom(G/N,G), Im f ⊂

N1 ⊆ N and so G/N ⊆ f−1(N). Thus G/N = ωG
N(G/N) = 0, a contradiction.

Therefore N1 = G, that is, α
G/N
G/N (G) = G and G ∈ σ[G/N ].

Since αG
N ≤ ωG

N , we have αG
N(G/N) = 0, so αG

N(K) = 0 for each K ∈ σ[G/N ].

In particular αG
N(G) = 0, thus N = 0 and so G is simple as an (R, End(G))-

bimodule.

(c) ⇒ (a) Let G be a generator in σ[M ] which is simple as an (R, End(G))-

bimodule. Then ωG
0 is the the unique coatom of M -pr and is a radical.

Consider τ, τ ′ ∈ M -pr with τ 6= 1 6= τ ′. Then τ ≤ ωG
0 and τ ′ ≤ ωG

0 and so

(τ : τ ′) ≤ (ωG
0 : ωG

0 ) = ωG
0 < 1. This implies that 1 is a coprime preradical. tu
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The hypothesis in 3.10 that M -pr is coatomic is necessary as Example 2.7

shows.

4 Coprime submodules and modules

The general properties of preradicals may be expressed by properties of certain

submodules and modules. For this we introduce an

4.1. Internal coproduct. For N ∈ σ[M ] and fully invariant submodules

L, L′ ⊆ N , define an internal coproduct as the fully invariant submodule of

N ,

(L′ :N L) = (ωN
L′ : ωN

L )(N),

which has the following properties:

(i) (L′ :N L) =
⋂
{f−1(L) | f ∈ End(N), L′ ⊂ Ke f}.

(ii) L + L′ ⊆ (L :N L′).

(iii) If H ⊆ N is a fully invariant submodule with L, L′ ⊆ H, then

(L :H L′) ⊆ (L :N L′).

(iv) For η, ρ ∈ M -pr and any N ∈ σ[M ],

(η : ρ)(N) ⊆ (η(N) :N ρ(N)).

4.2 Definition. Let N ∈ σ[M ] and K ⊆ N a fully invariant submodule. We

say that K is coprime in N if for any fully invariant submodules L, L′ ⊆ N ,

K ⊆ (L :N L′) implies K ⊆ L or K ⊆ L′.

N is called a coprime module if N is coprime in N .

4.3. Remark. Notice that the definition of the coproduct (L′ :N L) in 4.1

only applies to fully invariant submdodules L′, L ⊆ N (since it refers to ω’s).

However, its characterization in 4.1(i) can be used to define a coproduct L�NL′

for any submodules L′, L ⊆ N . This was considered in [3] and applied to define

”coprime” modules which differ from those defined in 4.2 (see Remarks 4.7).

The following observation gives us a relation between coprime preradicals

and coprime submodules.

4.4 Theorem. Let N ∈ σ[M ] and 0 6= K ⊆ N a fully invariant submodule.

Then the following properties are equivalent:
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(a) K is coprime in N ;

(b) αN
K is a coprime preradical.

Proof. (a) ⇒ (b) Since 0 6= K also αN
K 6= 0. Let µ, ρ ∈ M -pr be such that

αN
K ≤ (µ : ρ); then

K = αN
K(N) ⊆ (µ : ρ)(N) ⊆ (µ(N) :N ρ(N)),

and K being coprime in N we conclude K ⊆ µ(N) or K ⊆ ρ(N) and hence

αN
K ≤ µ or αN

K ≤ ρ.

(b) ⇒ (a) Let L, L′ ⊆ N be fully invariant submodules such that K ⊆ (L :N

L′) and therefore K ⊆ (ωN
L : ωN

L′)(N), hence αN
K ≤ (ωN

L : ωN
L′) and our condition

implies αN
K ≤ ωN

L or αN
K ≤ ωN

L′ . This means K ⊆ L or K ⊆ L′ proving that K

is coprime in N . tu

4.5 Theorem. For an R-module N , the following are equivalent:

(a) N is a coprime module;

(b) αN
N is a coprime preradical;

(c) for each proper fully invariant submodule K ⊂ N , αN
N = α

N/K
N/K ;

(d) for each proper fully invariant submodule K ⊂ N , N/K generates N ;

(e) for any τ, η ∈ M-pr, N ∈ T(τ :η) implies N ∈ Tτ or N ∈ Tη, where

Tη = {X ∈ σ[M ] | η(X) = X}.

Proof. (a) ⇔ (b) This is an immediate consequence of Theorem 4.4.

(b) ⇒ (c) For K ⊂ N a proper fully invariant submodule,

(αN
K : α

N/K
N/K)(N)/αN

K(N) = α
N/K
N/K(N/K) = N/K, and (αN

K : α
N/K
N/K)(N) = N,

so αN
N ≤ (αN

K : α
N/K
N/K) and hence αN

N ≤ α
N/K
N/K or αN

N ≤ αN
K . Since K ⊂ N this

implies αN
N = α

N/K
N/K .

(c) ⇒ (d) is obvious.

(d) ⇒ (a) Let K, L ⊆ N be fully invariant submodules such that N = (K :N

L) = (ωN
K : ωN

L )(N), and therefore (ωN
K : ωN

L )(N)/ωN
K(N) = ωN

L (N/K) = N/K.

Hence α
N/K
N/K ≤ ωN

L .

If N/K = 0 we obtain N = K, while N/K 6= 0 implies α
N/K
N/K(N) = N , hence

ωN
L (N) = N and so N = L.

(a) ⇒ (e) Let N ∈ T(τ :η), that is, N = (τ : η)(N) and hence (ωN
τ(N) :

ωN
η(N))(N) = N which means (τ(N) :N η(N)) = N . By hypothesis, N = τ(N)

or N = η(N), in other words N ∈ Tτ or N ∈ Tη.
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(e) ⇒ (a) Let N ∈ σ[M ] satisfy condition (e). Consider fully invariant

submodules K,L ⊆ N such that N = (K :N L). So N = (ωN
K : ωN

L )(N), hence

N ∈ T(ωN
K :ωN

L ) and hence (by (e)) N ∈ TωN
K

or N ∈ TωN
L

which means N = K or

N = L. tu

4.6 Corollary. (1) Let M be a module with no non-trivial fully invariant sub-

modules. Then M is a coprime module.

(2) Let M be projective in σ[M ]. Then M is a coprime module if and only if

it has no non-trivial fully invariant submodules.

(3) The ring R is coprime if and only if R is a simple ring.

Proof. (1) This is obvious.

(2) One direction follows by (1).

Assume M to be coprime and K ⊆ M a fully invariant submodule. Then

M/K generates M which - by [11, Lemma 2.8] - is not possible unless K = 0.

(3) This is a special case of (2). tu

Notice that Zp∞ is a coprime module which has many fully invariant sub-

modules.

4.7 Remarks. (1) In [10, Theorem 3.1], duprime modules M are defined as

modules, for which the identity is coprime in the lattice of hereditary preradicals

on σ[M ]. For modules M which are projective in σ[M ], this is equivalent to M

being strongly prime, that is, each nonzero submodule of M subgenerates M (see

[10, Theorem 3.3]). It follows from Corollary 4.6 that this condition is different

from M being coprime in M -pr. For example, Z is a duprime module but Z is

not coprime in our sense (see 4.2).

(2) Let M be self-injective. Then, as observed in 2.1, ωM
K is a hereditary

preradical for any fully invariant submodule K ⊆ M . Hence 1 coprime in M -pr

is equivalent to 1 being coprime in M -hpr, that is, M is coprime if and only if

it is duprime.

(2) The coprimeness derived from the comultiplication of submodules in [3]

also differs from coprimeness defined in 4.2. To illustrate this consider the

rationals Q as Z-module: Q is duprime (see [10]) and coprime (as in 4.2) but is

not coprime in the sense of [3].

(3) In general, M coprime as in [3] ⇒ M coprime (from 4.2) ⇒ M duprime.

Hence, since Zp∞ is coprime in the sense of [3] it is also coprime and duprime.
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We consider one more example to show the difference between the various

notions of coprimeness.

4.8 Example. Consider a (nonassociative) ring A with unit as module over

its multiplication algebra M(A), which is the subring of EndZ(A) generated by

left and right multiplication with elements from A (see [13, p. 6]). Then the

subcategory σ[M(A)A] of M(A)-Mod reflects ring properties of A. In particular,

a prime ring A is duprime if and only if its central closure is a simple ring

(see [10, Example 4.14]). However, A is coprime (as in 4.2) if and only if A is

a simple ring: To see this, recall that (by 4.5) A coprime implies that for any

proper ideal I ⊂ A, A is generated by A/I as an M(A)-module. Since the image

of any M(A)-morphism A/I → A is annihilated by I, this can only happen if

I = 0. Thus A is a simple ring.

Notice that all M(A)-submodules of A are in fact fully invariant submodules

(since EndM(A)(A) is just the center of A). Hence our coprimeness condition

coincides with that from [3].

4.9 Proposition. For a module N , let K ⊆ H ⊆ N be submodules such that K

is fully invariant in H and H fully invariant in N .

(1) If K is coprime in N then K is coprime in H.

(2) If K is coprime in N then K is a coprime module.

(3) If αN
K is a coprime preradical then so is αH

K.

Proof. (1) Let L, L′ ⊆ H be fully invariant submodules such that K ⊆
(L :N L′), that is, K ⊆ (ωH

L : ωH
L′)(H), hence

K + L/L ⊆ (ωH
L : ωH

L′)(H)/L = (ωH
L : ωH

L′)(H)/ωH
L (H) = ωH

L′(H/ωH
L ).

On the other hand, (L :N L′)/L = (ωN
L : ωN

L′)(N)/L = ωN
L′(N/L). Noting that

for any morphism f : N/L → N , f(H/L) ⊆ H, we obtain

K + L/L ⊆ (f |H/L)−1(L′) ⊆ f−1(L′).

Hence K ⊆ (L :H L′) and by hypothesis K ⊆ L or K ⊆ L′, showing that K is a

coprime submodule of H.

(2) and (3) are consequences of (1). tu

Observe that while item (2) above can be obtained from Lemma 3.4(2) and

Theorem 4.4, item (3) provides a generalization of Lemma 3.4(2).

Now we come to a partial converse of Proposition 4.9.
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4.10 Theorem. Let N ⊆ Q be a fully invariant submodule of a self-injective

module Q. Then N is a coprime module if and only if N is coprime in Q.

Proof. One implication is shown in Proposition 4.9.

Let K, L ⊆ Q be fully invariant submodules with N ⊆ (K :Q L), that is,

N/(K ∩N) ' (N + K)/K ⊆ ωQ
L (Q/K) = (ωQ

K : ωQ
L )(Q)/K = (K :Q L)/K.

Since K ∩N and L ∩N are fully invariant submodules of N ,

(K ∩N :N L ∩N)/(K ∩N) = (ωN
K∩N : ωN

L∩N)(N)/(K ∩N)

= ωN
L∩N(N/(K ∩N)) ⊆ N/(K ∩N).

Consider the diagram

0 // N/(K ∩N) //

f

��

Q/K

g

��
0 // N // Q .

Given any f , there is a g making the diagram commutative (by self-injectivity

of Q). On the other hand, any g yields an f by restriction. Hence

N/(K ∩N) = ωQ
L∩N(Q/K) ∩ (N/(K ∩N))

= [
⋂
{g−1(L) | g : Q/K → Q}] ∩ (N/(K ∩N))

=
⋂
{f−1(L ∩N) | f : N/(K ∩N) → N} ⊂ N/(K ∩N),

and therefore ωN
L∩N(N/(K ∩N)) = N/(K ∩N), that is, N = (K ∩N :N L∩N).

Since the module N is coprime this implies N = K ∩ N or N = L ∩ N which

means N ⊆ K or N ⊆ L, showing that N is a coprime submodule in Q tu

4.11. Remark. Let G be a generator in σ[M ]. Then for any coatom τ ∈ M -pr,

τ(G) is a maximal fuly invariant submodule of G and τ = ωG
τ(G). Therefore there

is a bijection between the coatoms of M -pr and the maximal fully invariant

submodules of G. Hence the class of all coatoms in M -pr is a set.

4.12 Theorem. Assume that the set of all coatoms in M-pr is not empty and

let τ ∈ M-pr be coprime.

(1) Either there exists a unique coatom ρ ∈ M-pr such that τ 6≤ c(ρ), or, for

each coatom ρ ∈ M-pr, τ ≤ c(ρ).

14



(2) Assume there exists a self-projective generator in σ[M ]. Then τ 6≤ c(ρ) for

a coatom ρ ∈ M-pr if and only if τ = α
G/N
G/N , where N ⊂ G is a maximal

fully invariant submodule.

Proof. (1) For any coatoms ρ1 6= ρ2, (c(ρ1) : c(ρ2)) = 1 and hence τ ≤
(c(ρ1) : c(ρ2)) implying τ ≤ c(ρ1) or τ ≤ c(ρ2).

(2) Let τ 6≤ c(ρ) for a coatom ρ ∈ M -pr and G a generator in σ[M ]. Then

N = ρ(G) ⊂ G is a maximal fully invariant submodule. Since ρ = ωG
N , τ 6≤ ω

G/N
0

and so τ(G/N) = G/N which means α
G/N
G/N ≤ τ . Notice that

(ω
G/N
0 : α

G/N
G/N )(G)/ω

G/N
0 (G) = α

G/N
G/N (G/N) = G/N.

So we get (ω
G/N
0 : α

G/N
G/N ) = 1. Hence τ ≤ (ω

G/N
0 : α

G/N
G/N ) and since τ 6≤ ω

G/N
0 this

implies τ ≤ α
G/N
G/N , that is, τ = α

G/N
G/N .

Conversely, assume that τ = α
G/N
G/N where N is a maximal fully invariant

submodule of a generator G in σ[M ]. Then τ = α
G/N
G/N 6≤ ω

G/N
0 where ωG

N is the

coatom in M -pr. tu

4.13 Corollary. For each maximal fully invariant submodule N of a self-projective

generator G in σ[M ], the preradical α
G/N
G/N is a maximal coprime preradical in

M-pr.

Proof. Let τ ∈ M -pr be coprime with α
G/N
G/N ≤ τ . Since G is self-projective

we have that αG
N(G/N) = 0 and so τ 6≤ αG

N . Since

(αG
N : α

G/N
G/N )(G)/N = α

G/N
G/N (G/N) = G/N,

this implies (αG
N : α

G/N
G/N ) = 1, therefore τ ≤ (αG

N : α
G/N
G/N ) and so τ ≤ α

G/N
G/N which

means τ = α
G/N
G/N . tu

4.14 Theorem. Let N ∈ σ[M ] be such that for any fully invariant submodules

K,L ⊆ N , (ωN
K : ωN

L ) = ωN
K:NL. Then for each coprime preradical τ ∈ M-pr

with τ(N) 6= 0, τ(N) is a coprime submodule in N .

Proof. Let K,L ⊆ N be fully invariant submodules with τ(N) ≤ (K :N L).

Then τ ≤ ωN
(K:NL) = (ωN

K : ωN
L ) and thus τ ≤ ωN

K or τ ≤ ωN
L . Therefore

τ(N) ⊆ K or τ(N) ⊆ L, showing that τ(N) is a coprime submodule in N . tu

4.15 Lemma. Let C be a subclass of coprime preradicals of M-pr which is

linearly ordered. Then
∨

τ∈C τ is a coprime preradical.
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Proof. Let ρ =
∨

τ∈C and suppose that ρ ≤ (µ : η) for µ, η ∈ M -pr.

Assume there exists τ ∈ C such that for each ν ∈ C with τ ≤ ν we have ν ≤ µ,

then ρ ≤ µ.

On the other hand, assume that for each τ ∈ C there exists ν ∈ C with τ ≤ ν

and ν 6≤ µ. In this case ν ≤ η and so, for every ν ∈ C with τ ≤ ν we get ν ≤ η

and therefore ρ ≤ η. Thus ρ is a coprime element in M -pr. tu

4.16. Remark. Referring to Zorn’s Lemma for classes, Lemma 4.15 implies that

for any coprime preradical τ ∈ M -pr there exists a maximal coprime ρ ∈ M -pr

such that τ ≤ ρ.

4.17 Theorem. For M the following conditions are equivalent:

(a) Each element in M-pr is coprime;

(b) M-pr is linearly ordered and each element of M-pr is a radical;

(c) M-pr is linearly ordered and for each N ∈ σ[M ] the fully invariant sub-

modules are coprime in N ;

(d) for each τ ∈ M-pr, the subclass {αN
τN |N ∈ σ[M ]} of M-pr is linearly

ordered, and, for each N ∈ σ[M ], the nonzero fully invariant submodules

are coprime in N .

Proof. (a) ⇒ (b) Consider τ 6= ρ in M -pr. Then τ ∨ ρ ≤ (τ : ρ) and hence

τ ∨ ρ ≤ τ or τ ∨ ρ ≤ ρ, thus ρ ≤ τ or τ ≤ ρ. Thus M -pr is linearly ordered.

Now, for each τ ∈ M -pr, (τ : τ) ≤ (τ : τ), hence (τ : τ) ≤ τ which means that

τ is a radical.

(b) ⇒ (a) Take τ, ρ, η ∈ M -pr and assume τ ≤ (ρ : η). Without loss of

generality suppose η ≤ ρ. Then τ 6≤ η implies η < τ and so (ρ : η) ≤ (η : η) =

η < τ , a contradiction.

(a) ⇒ (c) Let K be a nonzero fully invariant submodule of N ∈ σ[M ]. Then

αN
K is a coprime preradical and, by 4.4, K is coprime in N .

(c) ⇒ (d) is obvious.

(d) ⇒ (a) Since τ =
∨
{αN

τN |N ∈ σ[M ]} it follows by Lemma 4.15 that τ is

coprime. tu

4.18 Theorem. Let M be such that each element in M-pr is coprime. Then:

(1) For each N ∈ σ[M ] the lattice of fully invariant submodules of N is linearly

ordered.

(2) The category σ[M ] has a unique simple module (up to isomorphism).
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(3) Each nonzero N ∈ σ[M ] has maximal submodules.

(4) For any nonzero N, N ′ ∈ σ[M ], Hom(N, N ′) 6= 0 or Hom(N ′, N) 6= 0.

(5) If M-pr is coatomic, then any generator G of σ[M ] is simple as (R, End(G))-

bimodule.

Proof. (1) is clear.

(2) Let S, S ′ be simple modules in σ[M ]. Then αS
S ≤ αS′

S′ implies αS
S = αS′

S′

and hence S ' S ′.

(3) Since M -pr is linearly ordered and for any simple module S ∈ σ[M ],

ωS
0 (S) = 0 and αS

S(S) = S, we must have ωS
0 < αS

S . So TωS
0

is a proper pretorsion

subclass of TαS
S

and hence TωS
0

= 0 which means that, for each N ∈ σ[M ],

ωS
0 (N) 6= N and so N has a maximal submodule.

(4) Assume there exist two modules N, N ′ ∈ σ[M ] such that Hom(N, N ′) = 0

and Hom(N ′, N) = 0. Then 0⊕N ′ and N ⊕ 0 are fully invariant submodules of

N ⊕N ′ such that (0⊕N ′ :N⊕N ′ N ⊕ 0) = N ⊕N ′. This means that N ⊕N ′ is

not a coprime module, a contradiction.

(5) Assume M -pr to be coatomic and let G be a generator in σ[M ]. Then,

by Theorem 2.6, G has maximal fully invariant submodules. Now it follows by

(1) that there is a unique maximal fully invariant submodule in G. Applying

Theorem 3.10, we get G is simple as (R, End(G))-bimodule. tu

4.19. Remark. If M -pr is linearly ordered then in particular the lattice M -hpr

of left exact preradicals is linearly ordered, a condition which was investigated

in [11, Theorem 2.5].

5 ∨-coprime preradicals and modules

The definition of coprime preradicals was referring to the coproduct (τ : ρ) of two

preradicals τ, ρ ∈ M -pr. Similar definitions make sense when this is replaced by

the sum τ ∨ ρ of preradicals.

5.1 Definition. A preradical τ ∈ M -pr is called

∨-coprime if for any µ, ρ ∈ M -pr, τ ≤ µ ∨ ρ implies τ ≤ µ or τ ≤ ρ,

coirreducible if τ = µ ∨ ρ implies τ = µ or τ = ρ.

We collect basic properties of these notions.

5.2 Theorem. Let τ ∈ M-pr.
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(1) τ coprime ⇒ τ ∨-coprime ⇒ τ coirreducible.

(2) τ idempotent and coirreducible ⇒ τ ∨-coprime.

(3) If M-pr is distributive, then τ coirreducible ⇒ τ ∨-coprime.

Proof. (1) Let τ be coprime and assume τ ≤ µ ∨ ρ. Then τ ≤ (µ : ρ) and

hence τ ≤ µ or τ ≤ ρ, that is, τ is ∨-coprime.

Let τ be ∨-coprime and assume τ = µ ∨ ρ. Then τ ≤ µ or τ ≤ ρ which

means τ = µ or τ = ρ proving that τ is coirreducible.

(2) Let τ be idempotent and coirreducible and suppose τ ≤ µ ∨ ρ. Then

τ = τ 2 ≤ (µ ∨ ρ) · τ = µ · τ ∨ ρ · τ ≤ τ,

hence µ · τ ∨ ρ · τ = τ and µ · τ = τ or ρ · τ = τ . This implies τ ≤ µ or τ ≤ ρ

and thus τ is ∨-coprime.

(3) Assume τ ≤ µ ∨ ρ. Then τ = (µ ∨ ρ) ∧ τ = (µ ∧ τ) ∨ (ρ ∧ τ). Therefore

τ = µ ∧ τ or τ = ρ ∧ τ , thus τ ≤ µ or τ ≤ ρ showing that τ is ∨-coprime. tu

5.3 Theorem. Let τ ∈ M-pr be ∨-coprime but not small in M-pr. Then τ is

a maximal ∨-coprime element in M-pr.

Proof. Let ρ ∈ M -pr be ∨-coprime such that τ ≤ ρ and chose 1 6= η ∈
M -pr with τ ∨ η = 1, so ρ ≤ τ ∨ η, implying ρ ≤ τ or ρ ≤ η. The latter

implies τ ≤ ρ ≤ η and 1 = τ ∨ η = η, a contradiction. Thus τ = ρ showing the

maximality of τ . tu

5.4 Theorem. Let τ ∈ M-pr.

(1) τ coirreducible implies e(τ) coirreducible.

(2) τ ∨-coprime implies e(τ) ∨-coprime.

Proof. (1) Suppose e(τ) = η ∨ ρ for η, ρ ∈ M -pr. Then

τ = e(τ) · τ = (η ∨ ρ) · τ = η · τ ∨ ρ · τ,

and therefore τ = η · τ or τ = ρ · τ which implies e(τ) = η or e(τ) = ρ. Thus

e(τ) is coirreducible.

(2) The proof is similar to the proof of (1). tu

5.5 Definition. Let K, L, L′ be fully invariant submodules of an R-module N .

We say that K is ∨-coprime in N if K ⊂ L + L′ implies K ⊂ L or K ⊂ L′, and

K is bi-hollow in N if K = L + L′ implies K = L or K = L′.

Furthermore, N is called bi-hollow if it is bi-hollow as a submodule of itself.
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Clearly, if N has no non-trivial fully invariant submodules contained in K,

then K is trivially bi-hollow in N .

5.6. Remark. Let f : P → N be an epimorphism with P self-projective and

Ke f small in P . If N is bi-hollow then P is bi-hollow.

5.7 Theorem. Let K ⊆ N be a fully invariant submodule.

(1) The following conditions are equivalent:

(a) K is ∨-coprime in N ;

(b) αN
K is a ∨-coprime preradical.

(2) The following are equivalent:

(a) K is bi-hollow in N ;

(b) αN
K is a coirreducible preradical.

Proof. (1) (a) ⇒ (b) Assume that αN
K ≤ η ∨ ρ for η, ρ ∈ M -pr. Then

K = αN
K(N) ⊆ η(N) + ρ(N), hence N ≤ η(N) or N ≤ ρ(N), therefore αN

K ≤ ρ

or αN
K ≤ η, proving that αN

K is ∨-coprime.

(b) ⇒ (a) Suppose that K ⊆ L + L′ with fully invariant submodules L, L′ ⊆
N . Then αN

K ≤ αN
L ∨ αN

L′ , hence αN
K ≤ αN

L or αN
K ≤ αN

L′ , that is K ⊆ L or

K ≤ L′. Thus N is ∨-coprime in N .

(2) The proof is similar to the proof of (1). tu

5.8 Corollary. For an R-module N the following are equivalent:

(a) N is bi-hollow;

(b) αN
N is a coirreducible preradical.

5.9 Remarks. The notions of ∨-coprime and bi-hollow coincide if K = N , and,

by Theorem 5.2(2), αN
N is coirreducible if and only if it is ∨-coprime.

5.10 Corollary. Let f : P → N be an epimorphism of modules with Ke(f)

small in P and P self-projective. If αN
N is coirreducible then so is αP

P .

Proof. This follows from Theorem 5.7 and Remark 5.6. tu

5.11 Proposition. Let K ⊂ H ⊂ N be submodules with K fully invariant in

H and H fully invariant N . Then:

(1) K bi-hollow (∨-coprime) in N implies K bi-hollow (∨-coprime) in H.
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(2) K bi-hollow in N implies K bi-hollow.

(3) αN
K coirreducible (∨-coprime) implies αH

K coirreducible (∨-coprime).

(4) αN
K coirreducible implies αK

K coirreducible.

Proof. (1) Assume K ⊂ N to be ∨-coprime in N . Let K ⊆ L + L′ with

L, L′ fully invariant in H and hence in N . So we have K ⊆ L or K ⊆ L′ and

thus K is ∨-coprime in H. Similar arguments apply to bi-hollow submodules.

(2) This is an immediate consequence of (1).

(3) This is a consequence of (1) and Theorem 5.7.

(4) This is clear by (2) and Corollary 5.8. tu

5.12 Theorem. Let N be a fully invariant submodule of a self-injective module

Q. Then N is bi-hollow if and only if N is bi-hollow in Q.

Proof. The if part is immediate by Proposition 5.11(2).

Now suppose that N is bi-hollow and let L, K ⊂ Q be fully invariant sub-

modules such that N = K + L. Since Q is self-injective, K, L are also fully

invariant in N and N = K or N = L. Thus N is bi-hollow in Q. tu

5.13 Theorem. Assume that M-pr is coatomic and let G be a generator in

σ[M ]. The following conditions are equivalent:

(a) G has a unique maximal fully invariant submodule N ;

(b) 1 ∈ M-pr is coirreducible.

Proof. (a) ⇒ (b) Assume 1 = µ∨ρ for µ, ρ ∈ M -pr, hence G = µ(G)+ρ(G).

Now, if µ 6= 1, then µ(G) 6= G and so µ(G) ⊆ N . Since N is the unique maximal

fully invariant submodule of G, ρ(G) ⊆ N is not possible and hence ρ(G) = G

and ρ = 1.

(b) ⇒ (a) Suppose that 1 is coirreducible and let ρ 6= ρ′ be coatoms in M -pr.

Then ρ∨ ρ′ = 1, a contradiction. Therefore there is a unique coatom ρ in M -pr

and N = ρ(G) is the unique maximal fully invariant submodule of G. tu

Coirreducible preradicals need not be coprime; for this consider any ring R

with a unique nonzero maximal (two-sided) ideal I. Then 1 is coirreducible but

not coprime.

5.14 Theorem. Let M be such that M-pr is coatomic and σ[M ] has a self-

projective generator G. Then for a ∨-coprime τ ∈ M-pr, either
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(i) there exists a unique maximal fully invariant submodule N ⊂ G such that

τ 6≤ ω
G/N
0 , or

(ii) for each maximal fully invariant submodule N ⊂ G, τ ≤ ω
G/N
0 .

Proof. For distinct maximal fully invariant submodule N, N ′ ⊂ G, ω
G/N
0 ∨

ωG/N ′
= 1 ≥ τ , and therefore τ ≤ ω

G/N
0 or τ ≤ ω

G/N ′

0 . Hence τ 6≤ ω
G/N
0 implies

τ ≤ ω
G/N ′

0 for all fully invariant submodule N ′ ⊂ G distinct from N . tu

Notice that with the hypothesis of the preceding theorem, for any maximal

fully invariant submodule N ⊂ G, α
G/N
G/N 6≤ ω

G/N
0 , hence α

G/N
G/N is a ∨-coprime

preradical satisfying condition (i) in Theorem 5.14. On the other hand we ob-

serve:

5.15 Theorem. Let G be a generator in σ[M ] with a maximal fully invariant

submodule N ⊂ G. Assume there exists a projective cover p : P → G/N in

σ[M ]. Then αP
P is a maximal ∨-coprime element of M-pr.

Proof. By 5.10 (and 5.9) αP
P is ∨-coprime and α

G/N
G/N ≤ αP

P . Suppose αP
P ≤ τ

for some ∨-coprime τ ∈ M -pr. First observe that τ 6≤ ω
G/N
0 . By self-projectivity

of P , there exists a nonzero g : P → G, yielding a commutative diagram

P
g

}}zz
zz

zz
zz

z
p

��
G // G/N // 0.

Hence αP
P (G) 6⊆ N , and so (αP

P ∨ ω
G/N
0 )(G) = αP

P (G) + N = G, that is, αP
P ∨

ω
G/N
0 = 1. Since τ is ∨-coprime this implies τ ≤ αP

P , thus τ = αP
P . tu

The following example shows that even though α
G/N
G/N is a maximal coprime

preradical, it need not be maximal as ∨-coprime preradical.

5.16 Example. Let

R =

(
Q 0

R R

)
, P =

(
Q 0

R 0

)
, I =

(
0 0

R R

)
,

and S = R/I. Then the natural morphism P → S is a projective cover and

clearly αS
S < αP

P . Hence αP
P is ∨-coprime but cannot be coprime.
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[9] Raggi, F.; Ŕıos, J.; Wisbauer, R.; The lattice structure of hereditary pre-

torsion classes, Comm. Algebra 29(1), 131–140 (2001)

[10] van den Berg, J.; Wisbauer, R.; Duprime and dusemiprime modules, J.

Pure Appl. Algebra 165, 337–356 (2001)

[11] Viola-Prioli, A.M. and J.E.; Wisbauer, R.; Module categories with linearly

ordered closed categories, Comm. Algebra 22, 3613–3627 (1994)

[12] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach,

Reading-Paris (1991)

22



[13] Wisbauer, R., Modules and Algebras: Bimodule Structure and Group Ac-

tions on Algebras, Pitman Mono. PAM 81, Addison Wesley, Longman, Es-

sex (1996)

Addresses:

Instituto de Matemáticas, UNAM
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