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Abstract
A lattice ordered monoid is a structure 〈L;⊕, 0L;≤〉 where 〈L;⊕, 0L〉 is a

monoid, 〈L;≤〉 is a lattice and the binary operation ⊕ distributes over finite
meets. If M ∈ R-Mod then the set ILM of all hereditary pretorsion classes of
σ[M ] is a lattice ordered monoid with binary operation given by

α :M β := {N ∈ σ[M ] | there exists A ≤ N such that A ∈ α and N/A ∈ β},

whenever α, β ∈ ILM (the subscript in :M is omitted if σ[M ] = R-Mod). σ[M ]
is said to be duprime (resp. dusemiprime) if M ∈ α :M β implies M ∈ α or
M ∈ β (resp. M ∈ α :M α implies M ∈ α), for any α, β ∈ ILM . The main
results characterize these notions in terms of properties of the subgenerator
M . It is shown, for example, that M is duprime (resp. dusemiprime) if M is
strongly prime (resp. strongly semiprime). The converse is not true in general,
but holds if M is polyform or projective in σ[M ]. The notions duprime and
dusemiprime are also investigated in conjunction with finiteness conditions on
ILM , such as coatomicity and compactness.

Introduction

A classical example of lattice ordered monoid is given by the set of all ideals IdR of

an arbitrary ring R with identity. Here, the lattice structure is induced by the rela-

tion of reverse set inclusion with ideal multiplication the binary operation. Several

ring theoretic notions are characterizable as sentences in the language of the lattice

ordered monoid IdR. Primeness and semiprimeness are two examples. An ideal P

of a ring R is prime if and only if for any I, J ∈ IdR, IJ ⊆ P implies I ⊆ P or

J ⊆ P , and semiprime if and only if for any I ∈ IdR, I2 ⊆ P implies I ⊆ P .

IdR is embeddable in a larger lattice ordered monoid comprising the set of all

hereditary pretorsion classes of R-Mod (denoted ILR) via the mapping

η : IdR→ ILR, I 7→ η(I) := {M ∈ R-Mod | IM = 0}.
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The embedding η allows us to express the notions prime and semiprime, for example,

in terms of hereditary pretorsion classes thus: P ∈ IdR is prime if and only if for

all I, J ∈ IdR, η(I) : η(J) ⊇ η(P ) implies η(I) ⊇ η(P ) or η(J) ⊇ η(P ) and P is

semiprime if and only if for all I ∈ IdR, η(I) : η(I) ⊇ η(P ) implies η(I) ⊇ η(P ). This

observation motivates the introduction of a notion of ‘primeness’ and ‘semiprimeness’

in ILR. We call γ ∈ ILR dual prime, henceforth to be abbreviated duprime, if for all

α, β ∈ ILR, α : β ⊇ γ implies α ⊇ γ or β ⊇ γ, and γ is said to be dual semiprime,

henceforth dusemiprime, if for all α ∈ ILR, α : α ⊇ γ implies α ⊇ γ. (The prefix

‘dual’ is explained by the fact that the above sentence corresponds with the usual

notion of primeness (resp. semiprimeness) if interpreted in the order dual of IdR.)

Insofar as ILR may be viewed as a structure which properly contains IdR (via

the embedding η), it is not difficult to see that P will be a prime ideal of R if η(P )

is duprime in ILR. The latter condition is thus at least as strong as the former. In

particular, taking P to be the zero ideal, R will be a prime ring if the hereditary

pretorsion class consisting of all left R-modules, namely R-Mod, is duprime in ILR.

It is shown in [11, Theorem 26 and Remark 27] that the rings R for which R-Mod is

duprime are precisely the left strongly prime rings of Handelman and Lawrence [7].

It is shown similarly [11, Theorem 32 and Remark 33] that R-Mod is dusemiprime

if and only if R is left strongly semiprime in the sense of Handelman [6].

Viewing R-Mod as the hereditary pretorsion class subgenerated by the mod-

ule RR, these results can be seen as an attempt to characterize duprimeness and

dusemiprimeness of σ[RR] in terms of properties of the subgenerator RR. This paper

addresses the following natural generalization: if M is an arbitary module, charac-

terize duprimeness and dusemiprimeness of the hereditary pretorsion class σ[M ] in

terms of properties of the subgenerator M .

Results do not generalize easily from RR to a general M , for the module RR is

finitely generated and projective. These rather special properties impart a type of

finiteness to R-Mod which is absent in the case of a general σ[M ]. Every strongly

prime module, in the sense of [1], subgenerates a duprime hereditary pretorsion class.

But the converse turns out to be false, in general.

Results in this paper have a mixed flavour; they make use of standard module

theoretic techniques, but are also reliant on the body of theory on lattice ordered

monoids developed in [11].

1 Preliminaries

The symbol ⊆ denotes containment and ⊂ proper containment for sets. Throughout

the paper R will denote an associative ring with identity, R-Mod the category of

unital left R-modules, and M any object in R-Mod. If N is a submodule (resp.

essential submodule) of M we write N ≤ M (resp. N � M). We denote the left
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annihilator of a subset X of M by (0 : X). We call M cofaithful if (0 : X) = 0 for

some finite subset X of M .

1.1 Hereditary pretorsion classes. Let A be a nonempty class of modules in

R-Mod. We introduce the following abbreviations:

P(A) = {M ∈ R-Mod |M is a product of modules in A},
C(A) = {M ∈ R-Mod |M is a direct sum of modules in A},
S(A) = {M ∈ R-Mod |M is a submodule of some module in A},
E(A) = {M ∈ R-Mod |M is an injective hull of some module in A},
H(A) = {M ∈ R-Mod |M is a homomorphic image of some module in A}.

We say B ∈ R-Mod is subgenerated by A if B ∈ SHC(A) = HSC(A) and

cogenerated by A if B ∈ SP(A). A nonempty class in R-Mod which is closed under

direct sums, homomorphic images and submodules, is called a hereditary pretorsion

class. SHC(A) is the smallest hereditary pretorsion class of R-Mod containing A.

Dually, a nonempty class in R-Mod which is closed under submodules, products and

the taking of injective hulls, is called a torsion-free class. SPE(A) is the smallest

torsion-free class in R-Mod containing A [3, Corollary 1.8(ii)].

If A = {M} is a singleton, we write σ[M ] in place of SHC(A). Every hereditary

pretorsion class C has this form for it is easily shown that if M is the direct sum of

a representative set of cyclic modules in C, then C = σ[M ].

We shall not distinguish notationally between σ[M ] and the full subcategory of

R-Mod whose class of objects is σ[M ].

Associated with any hereditary pretorsion class σ[M ], there is a left exact pre-

radical (also called torsion preradical or kernel functor)

T M : R-Mod→ σ[M ], N 7→ T M(N) := Tr(σ[M ], N),

where Tr(σ[M ], N) denotes the trace of the class σ[M ] in N . Tr(σ[M ], N) corre-

sponds with the unique largest submodule of N contained in σ[M ]. It follows from

properties of injectives that Tr(σ[M ], N) = Tr(M,N) whenever N is injective in

σ[M ].

The collection of all hereditary pretorsion classes of R-Mod is a set [9, Proposition

VI.4.2, p. 145] whose elements we shall denote by α, β, . . . , or by σ[M ] if we wish

to refer to a specific subgenerator. We shall, for notational convenience, identify a

hereditary pretorsion class α with its associated left exact preradical and write α(N)

in place of Tr(α,N) wheneverN ∈ R-Mod. We callK ≤M a pretorsion submodule of

M if K = α(M), for some hereditary pretorsion class α. Every pretorsion submodule

of M is fully invariant in M . If M is injective in σ[M ], then the converse is also true,

for if U is a fully invariant submodule of M and α = σ[U ], then α(M) = U .
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1.2 The Grothendieck category σ[M ]. Coproducts, quotient objects and subob-

jects in σ[M ] are the same as in R-Mod because of the defining closure properties of

a hereditary pretorsion class [18, 15.1((1),(2)), p. 118]. It follows that the hereditary

pretorsion classes of σ[M ] are precisely the hereditary pretorsion classes of R-Mod

which are contained in σ[M ]. For the most part, these shall be our objects of study.

Put α = σ[M ]. If {Ni | i ∈ Γ} is a family of modules in α then
∏α
i∈ΓNi :=α(

∏
i∈ΓNi)

is the product of {Ni | i ∈ Γ} in α [18, 15.1(6), p. 118], and Eα(N) :=α(E(N)) is

the injective hull of N in α [18, 17.9(2), p. 141]. If A is a nonempty class of modules

in R-Mod we introduce two abbreviations:

Pα(A) = {N ∈ α | N = α(
∏
i∈ΓAi), for some family {Ai | i ∈ Γ} in A},

Eα(A) = {N ∈ α | N = α(E(A)) for some A ∈ A}.
We claim that

α ∩ SPE(A) = SPαEα(A).

Since SPE(A) is a torsion-free class inR-Mod containingA, it follows that SPαEα(A)

⊆ SPE(A). The containment in one direction follows. The reverse containment fol-

lows since α ∩ SPE(A) ⊆ SPαE(A) = SPαEα(A). Observe that if A ⊆ α then

α ∩ SPE(A) = SPαEα(A) is the smallest torsion-free class of α containing A.

1.3 The lattice ILM . We shall denote by ILM the set of all hereditary pretorsion

classes of σ[M ]. ILR is thus the set of all hereditary pretorsion classes of R-Mod. ILR
is partially ordered by inclusion and is a complete lattice under the operations:∨

i∈Λ σ[Ki] = σ[
⊕

i∈ΛKi],∧
i∈Λ σ[Ki] =

⋂
i∈Λ σ[Ki].

Observe that ILM is just the interval {α ∈ ILR | α ⊆ σ[M ]} of ILR. It follows

from the description of the join above, that if N is injective in
∨
i∈Λ σ[Ki], then

Tr(
∨
i∈Λ σ[Ki], N) =

∑
i∈Λ Tr(Ki, N). It follows from the description of the meet,

that for every M , the set of pretorsion submodules of M is a meet subsemilattice of

the submodule lattice of M .

Recall that an element x of a complete lattice IL is said to be compact if, whenever

X ⊆ IL is such that x ≤ ∨
X, we also have x ≤ ∨

X ′ for some finite X ′ ⊆ X. The

lattice IL is said to be compact if it has compact top element, and algebraic (or

compactly generated) if each of its elements is the join of a set of compact elements.

A complete lattice IL is said to be uniquely pseudocomplemented if, for each x ∈ IL,

the set {y ∈ IL | x ∧ y = 0IL} has a unique largest element.

α is a compact element of ILR if and only if α = σ[M ] for some finitely generated

M . (In fact, M can be chosen to be cyclic [5, Proposition 2.16, p. 21].) The lattice

ILR is known to be atomic, coatomic (because ILR is compact), algebraic, modular

and uniquely pseudocomplemented. Proofs establishing algebraicity and atomicity

may be found in [5, Corollaries 2.17, p. 22 and 2.24, p. 24] and modularity in [10,
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Proposition II.1.6, p. 68]. It is proved in [8, Corollary 17] that ILM is uniquely

pseudocomplemented for all M .

ILM , being an interval in ILR, inherits much from ILR. It is atomic, algebraic,

modular and uniquely pseudocomplemented. In general, ILM is not coatomic. ILM
will be compact precisely if σ[M ] is a compact element in ILR. This is a consequence

of the fact that ILR is upper continuous [9, Proposition III.5.3, p. 73].

1.4 Extension of hereditary pretorsion classes. If α, β ∈ ILR, the extension of

β by α is defined1 as

α : β := {N ∈ R-Mod | there exists A ≤ N such that A ∈ α and N/A ∈ β}.

It is easily verified that α : β ∈ ILR and (α : β)(M)/α(M) = β(M/α(M)) for all M .

Note that α : β ≥ α ∨ β.

Observe that α is idempotent in the sense that α : α = α precisely if α is closed

under extensions and thus a hereditary torsion class. The structure 〈ILR; :, {0};⊆〉
(here, {0} denotes the bottom element of ILR) is a lattice ordered monoid because:

(1) 〈ILR; :, {0}〉 is a monoid;

(2) 〈ILR;⊆〉 is a lattice; and

(3) α : (β ∧ γ) = (α : β) ∧ (α : γ) and (α ∧ β) : γ = (α : γ) ∧ (β : γ),

for all α, β, γ ∈ ILR [5, Proposition 4.1, p. 43].

〈ILR; :, {0};⊆〉 is said to be integral because the bottom element {0} of ILR coincides

with the monoid identity.

The interval ILM of ILR is, in general, not closed under the operation ‘:’. Never-

theless, we can define an associative operation ‘:M ’ on ILM by truncating at the top

element of ILM . If α, β ∈ ILM ,

α :M β := (α : β) ∩ σ[M ]

= {N ∈ σ[M ] | there exists A ≤ N such that A ∈ α and N/A ∈ β}.

〈ILM ; :M , {0};⊆〉 is thus an integral lattice ordered monoid for all M .

We warn the reader that, inasmuch as the operations :M and ‘:’ differ, an idem-

potent element of ILM , i.e., hereditary torsion class of σ[M ], need not be idempotent

in ILR.

1.5 The monus operation. For any α, β ∈ ILR, the set

{γ ∈ ILR | β : γ ≥ α}
1Notice that the operation ‘:’ defined here is opposite to the multiplication operation introduced

in [12], [13] and [11]. Consequently, properties which are prefixed with ‘left’ in the aforementioned
papers, become ‘right’ in this paper.
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has a unique smallest element [5, p. 44] called α monus β and written α .−β. The

existence of such a unique smallest element can be shown to be equivalent to the

identity

α : (
∧
i∈Λ

βi) =
∧
i∈Λ

(α : βi)

holding in ILR [11, Proposition 3]. It should be noted that in [8, Definition 9] the

element α .−β is referred to as the right supplement of β in α. A lattice ordered

monoid is said to be right residuated if it satisfies the above identity, and thus ad-

mits a monus operation defined in the above manner. Thus 〈ILR; :, {0};⊆〉 is right

residuated.

It is easily shown that ILM is closed under the monus operation. Hence if α, β ∈
ILM , then α .−β is the unique smallest element of {γ ∈ ILM | β :M γ ≥ α}. Thus the

monus operation, unlike the operation :M , is independent of M . We conclude that

〈ILM ; :M , {0};⊆〉 is a lattice ordered right residuated integral monoid (abbreviated

lorrim) for all M .

1.6 Lemma.[8, Theorem 10((1)⇔(4))] For any left R-module M and β ∈ ILR,

σ[M ] .−β = σ[M/β(M)].

1.7 Special subgenerators. Since σ[M ] is a Grothendieck category we can always

find an injective subgenerator for σ[M ], for example the M -injective hull M̂ of M .

We can even find an injective cogenerator for σ[M ] which is also a subgenerator for

σ[M ], for example M̂ ⊕ Q, where Q is any injective cogenerator for σ[M ]. Notice

that not every cogenerator is a subgenerator. For example, IQ/ZZ is an injective

cogenerator but not a subgenerator for ZZ-Mod since σ[ IQ/ZZ] is just the class of

torsion ZZ-modules.

Let Q ∈ R-Mod be injective in σ[M ]. We call Q a big cogenerator for σ[M ]

if SC({Q}) contains all finitely generated modules in σ[M ]. Big cogenerators are

important because they are both subgenerators and cogenerators. The former prop-

erty is a consequence of the fact that the hereditary pretorsion class HSC({Q}) ⊇
SC({Q}) contains all finitely generated modules in σ[M ], whence HSC({Q}) =

σ[M ]. To see the latter property, observe that if Q is a big cogenerator for α = σ[M ],

then the torsion-free class SPE({Q}) of R-Mod contains every finitely generated

module in α, whence SPE({Q}) ⊇ α and so α = α ∩ SPE({Q}) = SPαEα({Q}).
Since Q is injective in α, α = SPα({Q}) = SPαEα({Q}). We conclude that Q is a

cogenerator for σ[M ].

For example, if M is locally noetherian, then the direct sum of a representative

set of indecomposable (uniform) injective modules in σ[M ] is an (injective) big cogen-

erator for σ[M ]. If M is locally of finite length (i.e., locally artinian and noetherian)

then every injective cogenerator for σ[M ] is a big cogenerator for σ[M ].
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1.8 The Lambek torsion class. A nonempty class C of modules in σ[M ] is a

hereditary torsion class of σ[M ] if and only if C has the form

C = {N ∈ σ[M ] | HomR(N,E) = 0},

for some module E which is injective in σ[M ] [19, 9.5, p. 59]. It is easily shown that

such a class C is the unique largest element of ILM whose corresponding torsion-free

class contains E. In particular, taking E to be M̂ we obtain the M-Lambek torsion

class λM . Thus

λM := {N ∈ σ[M ] | HomR(N, M̂) = 0}.

Note that λM(M) = 0 and λM ≥ α whenever α ∈ ILM and α(M) = 0.

1.9 Correspondence Theorem. Suppose M is injective in σ[M ]. Put H =

EndRM and let L{RMH} denote the lattice of all fully invariant submodules (i.e.,

(R,H)-submodules) of M . Consider the interval [λM , σ[M ]] of ILM . We define a

map:

Θ : [λM , σ[M ]]→ L{RMH}, α 7→ Θ(α) :=α(M).

If U ∈ L{RMH} and α = σ[U ] it can be shown, using the injectivity of M , that

α(M) = U . Thus Θ is onto. It is easily shown that Θ preserves arbitrary meets and

joins and is thus a complete lattice epimorphism.

Now suppose M is a big (injective) cogenerator for σ[M ]. Let α ∈ [λM , σ[M ]].

Note that if N ∈ SC({M}) then α(N) ∈ SC({α(M)}). It follows that σ[α(M)] ⊇
α ∩ SC({M}). Since M is a big cogenerator, α ∩ SC({M}) contains every finitely

generated member of α, so σ[α(M)] = α. This shows that α may be recovered from

its image under Θ, whence Θ is one-to-one. Moreover, since M is a cogenerator for

σ[M ] we must have λM = {0}. We conclude that Θ : ILM → L{RMH} is a lattice

isomorphism.

2 Basic observations

If IL is a lattice with top element 1IL, then α ∈ IL is called small provided α∨β = 1IL
implies β = 1IL whenever β ∈ IL.

2.1 Lemma. For any left R-module M , the M-Lambek torsion class λM is small in

ILM .

Proof. Let λM = σ[K] for some K ∈ σ[M ] and assume σ[K] ∨ σ[L] = σ[K ⊕ L] =

σ[M ] for some L ∈ σ[M ]. Consider the M -injective hull M̂ of M . Observe that M̂

is (K ⊕ L)-generated and Tr(K, M̂) = Tr(λM , M̂) = 0. Consequently,

M̂ = Tr(K ⊕ L, M̂) = Tr(K, M̂) + Tr(L, M̂) = Tr(L, M̂),

implying that σ[K] is small in ILM . 2
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Recall that N ∈ σ[M ] is called singular in σ[M ] (or M-singular) provided N '
L/K for some L ∈ σ[M ] and essential submodule K of L. This notion is strongly

dependent on the category σ[M ]. We define

δM = {N ∈ σ[M ] | N is M -singular}.

It is known that δM ∈ ILM [18, 17.3, p. 138 and 17.4, p. 139] and δM ⊇ λM [19,

10.2, p. 72]. We call M polyform (or non-M-singular) if δM(M) = 0. Observe that

M will be polyform precisely if δM = λM .

It was remarked in [11, Proposition 29] that the class of singular modules in

R-Mod is small in ILR. In general, however, δM need not be small in ILM . For

example, in ZZ-Mod, if M = IQ/ZZ then σ[M ] consists of all torsion ZZ-modules and

these are precisely the M -singular modules. See also Examples 3.4 and 3.5.

2.2 Lemma. Assume M is projective in σ[M ] or M is polyform. Then δM is small

in ILM .

Proof. Write δM = σ[K] for some K ∈ σ[M ] and assume σ[K]∨σ[L] = σ[K ⊕L] =

σ[M ] for some L ∈ σ[M ]. Then there exists a monomorphism f : M → K ′ ⊕ L′

where K ′ ∈ σ[K] and L′ ∈ σ[L].

Composition with the canonical projections yields two maps:

fK : M
f→ K ′ ⊕ L′

π′K→ K ′ and fL : M
f→ K ′ ⊕ L′

π′L→ L′,

where Ke f = Ke fK ∩Ke fL = 0.

Since M is projective in σ[M ] (or polyform) and K ′ is M -singular, Ke fK �M .

This implies Ke fL = 0 and M ∈ σ[L].

We point out that the polyform case (δM = λM) also follows from Lemma 2.1. 2

It is an elementary fact that for any ideal I of R, R/I-Mod = R-Mod if and only

if I = 0. If U is a fully invariant submodule of M then the statement σ[M/U ] = σ[M ]

implies U = 0, does not hold in general. It does, however, hold if M is projective

in σ[M ], as shown in [17, Lemma 2.8, p. 3623]. Lemma 2.4 below identifies another

condition sufficient for the implication to hold. We first require a preliminary result.

Recall that the smallest hereditary torsion class of σ[M ] containing δM is called

the M-Goldie torsion class. It is shown in [19, 10.5, p. 74] that the M -Goldie torsion

class coincides with δM :M δM .

2.3 Lemma. Let U = α(M) where α is a hereditary torsion class of σ[M ]. If

σ[M/U ] = σ[M ], then U belongs to the M-Goldie torsion class.
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Proof. Let γ denote the M -Goldie torsion class and put V = U/γ(U). Take

f ∈ HomR(M/U,E(V )). If Ke f is not essential in M/U , then M/U contains a

nonzero submodule of E(V ). Since α(M/U) = 0 and V ∈ α, this is not possible.

Thus Ke f � M/U , whence Im f ∈ δM ⊆ γ. But γ(V ) = 0, so Im f = 0. It

follows that HomR(M/U,E(V )) = 0. Since V ∈ σ[M ] = σ[M/U ] we must have

HomR(V,E(V )) = 0, whence V = U/γ(U) = 0. We conclude that U ∈ γ, as

required. 2

2.4 Lemma. Suppose M is polyform and U = α(M) for some hereditary torsion

class α of σ[M ]. Then σ[M ] = σ[M/U ] if and only if U = 0.

Proof. The implication in one direction is obvious. Suppose σ[M ] = σ[M/U ] and

let γ denote the M -Goldie torsion class. By Lemma 2.3, U ∈ γ. But M is polyform

so δM(M) = 0. Since δM and γ have the same associated torsion-free class, we must

have γ(U) ⊆ γ(M) = 0. We conclude that U = 0, as required. 2

3 Duprime modules

Interpreting [11, Theorem 14] in the case where the lattice ordered monoid is chosen

to be ILM , we obtain:

3.1 Theorem. The following assertions are equivalent for a left R-module M :

(a) if α : β ⊇ σ[M ] for α, β ∈ ILR, then α ⊇ σ[M ] or β ⊇ σ[M ];

(b) if α :M β = σ[M ] for α, β ∈ ILM , then α = σ[M ] or β = σ[M ];

(c) if M ∈ σ[K] :M σ[L] for K,L ∈ σ[M ], then M ∈ σ[K] or M ∈ σ[L];

(d) for any α ∈ ILM , α = σ[M ] or σ[M ] .−α = σ[M ];

(e) for any α ∈ ILM , σ[M/α(M)] is equal to {0} or σ[M ];

(f) for any submodule K of M , M ∈ σ[K] or M ∈ σ[M/K];

(g) for any fully invariant submodule K of M , M ∈ σ[K] or M ∈ σ[M/K];

(h) for any pretorsion submodule K of M , M ∈ σ[K] or M ∈ σ[M/K].

We call M duprime if it satisfies the above equivalent conditions.

Proof. (a)⇒(b) is clear since α :M β = (α : β) ∩ σ[M ] for all α, β ∈ ILM .

(b)⇒(a) Suppose α : β ⊇ σ[M ] with α, β ∈ ILR. Then

(α ∩ σ[M ]) : (β ∩ σ[M ]) = (α : β) ∩ (α : σ[M ]) ∩ (σ[M ] : β) ∩ (σ[M ] : σ[M ])

⊇ (α : β) ∩ σ[M ] = σ[M ].
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Since α ∩ σ[M ], β ∩ σ[M ] ∈ ILM , it follows from (b) that α ∩ σ[M ] = σ[M ] in which

case α ⊇ σ[M ], or β ∩ σ[M ] = σ[M ] in which case β ⊇ σ[M ].

(b)⇔(c) is clear since every α ∈ ILM is of the form σ[K] for some K ∈ σ[M ].

(b)⇔(d) is a direct consequence of [11, Theorem 14((i)⇔(iii))].

(d)⇔(e) follows from Lemma 1.6 and the fact that σ[M ] .−α = {0} if and only if

σ[M ] = α.

(e)⇒(f) Let K ≤ M and put α = σ[K]. By hypothesis, σ[M/α(M)] = {0} or

σ[M ]. The former implies M ∈ α = σ[K]. The latter implies M ∈ σ[M/α(M)] ⊆
σ[M/K] (because α(M) ⊇ K).

(f)⇒(g)⇒(h) is obvious.

(h)⇒(e) Let α ∈ ILM . By hypothesis, M ∈ σ[M/α(M)] or M ∈ σ[α(M)] ⊆ α.

The latter implies σ[M/α(M)] = {0}. 2

The results which follow reveal a rich variety of characterizations of duprime

modules in the case where a finiteness condition is imposed on the lattice ILM .

Recall that M is said to be strongly prime if α(M) = 0 or α(M) = M for all

α ∈ ILR. The study of strongly prime modules was initiated in Beachy-Blair [1].

It is clear from the definition that M will be strongly prime if and only if every

proper element of ILM is contained in λM . Further characterizations of strongly

prime modules may be found in [19, 13.3, p. 96].

It is an immediate consequence of Theorem 3.1 that every strongly prime module

is duprime. In Example 3.4 we exhibit a module which is duprime but not strongly

prime. Thus duprimeness is a strictly weaker notion. The reader will observe that

the duprimeness of M depends only on properties of the lorrim ILM , and in fact, if M

is duprime then every subgenerator of σ[M ] inherits the same property. In contrast,

strong primeness is an intrinsic property of the module M . If M is strongly prime

it is not necessarily the case that every subgenerator for σ[M ] is strongly prime.

However, as Theorem 3.3 shows, if M is duprime then every projective or polyform

subgenerator for σ[M ] is strongly prime.

3.2 Theorem. The following assertions are equivalent for a nonzero left R-module

M :

(a) M is duprime and ILM is compact, i.e., σ[M ] has a finitely generated subgen-

erator;

(b) M is duprime and ILM contains coatoms;

(c) ILM is coatomic with a unique coatom and the coatom is idempotent;

(d) there is an idempotent γ ∈ ILM such that M/γ(M) is strongly prime and

subgenerates σ[M ];
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(e) σ[M ] has a strongly prime subgenerator.

Proof. (a)⇒(b) A routine application of Zorn’s Lemma shows that every nontrivial

compact lattice has coatoms.

(b)⇒(c) Let γ be a coatom of ILM . Suppose α ∈ ILM and α 6⊆ γ. It follows

from the maximality of γ that α :M γ ⊇ α ∨ γ = σ[M ]. Since M is duprime it

follows from Theorem 3.1(b) that α = σ[M ]. This shows that ILM is coatomic with

a unique coatom. Since M is duprime γ :M γ 6= σ[M ]. Hence γ :M γ = γ, i.e., γ is

idempotent.

(c)⇒(d) Let γ be the unique coatom of ILM . If α is a proper element of ILM
then α ⊆ γ and so α(M/γ(M)) ⊆ γ(M/γ(M)) = 0. This shows that M/γ(M) is

strongly prime. We must also have σ[M/γ(M)] 6⊆ γ (because γ(M/γ(M)) = 0).

Hence σ[M/γ(M)] = σ[M ].

(d)⇒(e) is obvious.

(e)⇒(a) Let N be a strongly prime subgenerator for σ[M ]. Certainly, N is

duprime and since σ[N ] = σ[M ], M must be duprime. Let K be any nonzero finitely

generated submodule of N . Since N is strongly prime, K is a subgenerator for

σ[N ] = σ[M ]. We conclude that σ[M ] is compact. 2

In general, the conditions: (1) M is projective in σ[M ], and (2) M is polyform,

are independent. If M is duprime then condition (1) is stronger than (2). To see

this, suppose M is duprime and projective in σ[M ]. Note that σ[M/δM(M)] = {0}
or σ[M ] by Theorem 3.1(e). The former implies M/δM(M) = 0, whence M ∈ δM .

But this contradicts the fact that δM is small in ILM (Lemma 2.2). Consequently, we

must have σ[M/δM(M)] = σ[M ]. This implies δM(M) = 0, i.e., M is polyform, as

noted in the discussion preceding Lemma 2.3. In Section 4 we shall improve on this

result by showing that (1) implies (2) under conditions weaker than M duprime.

3.3 Theorem. Assume M is projective in σ[M ] or M is polyform. Then the fol-

lowing assertions are equivalent:

(a) M is duprime;

(b) M is strongly prime.

Proof. (b)⇒(a) holds with no assumption on M .

(a)⇒(b) Since M is by hypothesis duprime, M will be polyform if M is projective

in σ[M ]. It therefore suffices to establish (b) in the case where M is polyform.

Suppose U = α(M) is a proper pretorsion submodule of M . To establish the

strong primeness of M we must show that U = 0. Since U is a proper submodule of

M we cannot have M ∈ σ[U ]. It follows from Theorem 3.1(h), that M ∈ σ[M/U ].
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Assume U is essential in M . Then M/U is M -singular, but M is non-M -singular,

so we cannot have M ∈ σ[M/U ], a contradiction. We conclude that U is not essen-

tial in M . Let α denote the unique smallest hereditary torsion class containing α.

Inasmuch as α and α have the same associated torsion-free class, α(M) 6= M . By

Theorem 3.1(h), M ∈ σ[M/α(M)]. Since M is polyform it follows from Lemma 2.4

that U ⊆ α(M) = 0, as required. 2

Taking M = RR in Theorem 3.3 we see that RR is duprime precisely if R is a left

strongly prime ring. This fact was observed in [11, Theorem 26 and Remark 27].

If M is duprime and polyform, in particular, if M is projective in σ[M ], then by

Theorem 3.3, σ[M ] satisfies the equivalent finiteness conditions listed in Theorem

3.2.

3.4 Example. Consider the Prüfer group M = ZZp∞ ∈ ZZ-Mod, p any prime. Put

α = {N ∈ ZZ-Mod | pN = 0}. Then

2α = α : α = {N ∈ ZZ-Mod | p2N = 0},
3α = α : α : α = {N ∈ ZZ-Mod | p3N = 0}, etc, and

σ[M ] =
∨∞
n=1 nα = {N ∈ ZZ-Mod | ∀x ∈ N ∃n ∈ IN such that pnx = 0}.

Moreover, every nonzero proper element of ILM is of the form nα for some n ∈ IN .

The lattice ILM is thus a chain, isomorphic to the ordinal ω + 1. It is clear that the

set of proper elements of ILM is closed under the operation ‘:’ so M is duprime by

Theorem 3.1. Observe that M does not satisfy the finiteness conditions of Theorem

3.2 because ILM has no coatom. From this we can infer that σ[M ] has no projective

subgenerator.

Alternatively, it is possible to deduce that M is duprime by considering only the

submodule structure of M : if K < M then M/K 'M , whence σ[M/K] = σ[M ]. It

follows from Theorem 3.1(f) that M is duprime.

Observe that δM = σ[M ] and λM = {0} since M cogenerates σ[M ].

3.5 Example. It is known [16, Lemma 6, p. 24] that if R is an arbitrary left chain

ring then every α ∈ ILR has one of two forms:

α = {N ∈ R-Mod | IN = 0}; or

α = {N ∈ R-Mod | (0 : x) ⊃ I for all x ∈ N}

for some ideal I of R. The elements of ILR thus constitute a chain. Furthermore, if

R is a domain and every ideal of R is idempotent, then every member of ILR is in

fact a hereditary torsion class [13, Theorem 28, p. 5539].

Now suppose that R is a left chain domain whose only proper nonzero ideal is the

Jacobson radical J(R). (The existence of such rings is established in [15, Proposition
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16, p. 1112] and [14, Theorem 9, p. 104].) It follows that ILR contains exactly two

nonzero proper members:

α = {N ∈ R-Mod | J(R)N = 0}, and

β = {N ∈ R-Mod | (0 : x) 6= 0 for all x ∈ N}.

Observe that α consists of all the semisimple modules in R-Mod while β consists of

all modules in R-Mod which are not cofaithful. Since ILR is a finite (4-element to be

precise) chain all of whose members are idempotent, every nonzero left R-module is

duprime and satisfies the finiteness conditions of Theorem 3.2.

If M is nonzero and semisimple then σ[M ] = α is the unique atom of ILR. In

this case, δM = λM = {0}.
If M is neither semisimple nor cofaithful (for example, if M = R(R/K) where K

is a left ideal of R such that 0 6= K ⊂ J(R)), then σ[M ] = β. In this case δM = β

and if α(M) = 0 then λM = α, otherwise λM = {0}.

4 Dusemiprime modules

Interpreting [11, Theorem 13] in the case where the lattice ordered monoid is chosen

to be ILM , we obtain the following analogue of Theorem 3.1.

4.1 Theorem. The following assertions are equivalent for a left R-module M :

(a) if α : α ⊇ σ[M ] for α ∈ ILR, then α ⊇ σ[M ];

(b) if α :M α = σ[M ] for α ∈ ILM , then α = σ[M ];

(c) if M ∈ σ[K] :M σ[K] for K ∈ σ[M ], then M ∈ σ[K];

(d) for any K,L ∈ σ[M ], M ∈ σ[K] :M σ[L] if and only if M ∈ σ[K ⊕ L];

(e) for any submodule K of M , M ∈ σ[K ⊕M/K];

(f) for any fully invariant submodule K of M , M ∈ σ[K ⊕M/K];

(g) for any pretorsion submodule K of M , M ∈ σ[K ⊕M/K].

We call M dusemiprime if it satisfies the above equivalent conditions.

Proof. (a)⇒(b) is clear since α :M α = (α : α) ∩ σ[M ], for all α ∈ ILM .

(b)⇒(c) is obvious.

(c)⇔(d) is a direct consequence of [11, Theorem 13((i)⇔(ii))]. Notice that

σ[K ⊕ L] = σ[K] ∨ σ[L].

(d)⇒(e) Let K ≤ M . Certainly, K,M/K ∈ σ[M ]. Inasmuch as M is an

extension of K by M/K, we must have M ∈ σ[K] :M σ[M/K]. By hypothesis,

M ∈ σ[K ⊕M/K].
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(e)⇒(f)⇒(g) is obvious.

(g)⇒(a) Let α ∈ ILR and suppose α : α ⊇ σ[M ]. There must exist a short exact

sequence 0 → A → M → B → 0 where A,B ∈ α. Since A ⊆ α(M) it follows that

M/α(M) ∈ σ[M/A] = σ[B] ⊆ α. By hypothesis, M ∈ σ[α(M) ⊕M/α(M)]. Since

α(M),M/α(M) ∈ α we must have M ∈ α, i.e., α ⊇ σ[M ]. 2

The following result allows us to generate new examples of dusemiprime modules

from old.

4.2 Proposition. Any direct sum of dusemiprime modules is dusemiprime.

Proof. Suppose {Mi | i ∈ Γ} is a family of dusemiprime left R-modules and

put M =
⊕

i∈ΓMi. Let α ∈ ILR. Then α(M) =
⊕

i∈Γ α(Mi) and M/α(M) '⊕
i∈Γ(Mi/α(Mi)). Since each Mi is dusemiprime, it follows from Theorem 4.1(g) that

Mi ∈ σ[α(Mi)⊕Mi/α(Mi)] for all i ∈ Γ. Hence M ∈ σ[
⊕

i∈ΓMi] = σ[
⊕

i∈Γ(α(Mi)⊕
Mi/α(Mi))] = σ[α(M) ⊕M/α(M)]. We conclude from Theorem 4.1(g) that M is

dusemiprime. 2

4.3 Example. In Example 3.4 it was shown that for each prime p the Prüfer group

M = ZZp∞ ∈ ZZ-Mod is duprime and hence dusemiprime. Any direct sum of Prüfer

groups is dusemiprime by Proposition 4.2. In particular, the ZZ-module IQ/ZZ =⊕
primes p ZZp∞ is dusemiprime.

Consider the ZZ-module M = IQ/ZZ. The fully invariant submodules of M are

precisely those submodules of the form
⊕

primes pNp where, for each prime p, Np ≤
ZZp∞ . (This is deduced easily from the fact that the fully invariant submodules of M

coincide with the pretorsion submodules of M because M is injective.) Specifically,

if U is a fully invariant submodule which is small in the lattice of submodules of M ,

then U =
⊕

primes pNp where, for each prime p, Np < ZZp∞ . Observe that M/U 'M

because ZZp∞/Np ' ZZp∞ whenever Np < ZZp∞ . Consequently, σ[M ] = σ[M/U ]. The

situation described here is a special case of the following more general result:

4.4 Proposition. Let M be a self-injective dusemiprime left R-module. If U is any

small, fully invariant submodule of M , then M ∈ σ[M/U ].

Proof. By Theorem 4.1(f), M ∈ σ[U ⊕M/U ]. Since M is injective in σ[M ],

M = Tr(U ⊕M/U,M) = Tr(U,M) + Tr(M/U,M) = U + Tr(M/U,M).

But U is small in M , so U + Tr(M/U,M) = Tr(M/U,M). Hence M ∈ σ[M/U ]. 2
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As was the case with duprime modules, a variety of characterizations of dusemi-

prime modules is obtained if a finiteness condition is imposed on ILM .

We recall the notion of a strongly semiprime module introduced by Beidar-

Wisbauer [2]. Put H = EndRM̂ . We call M strongly semiprime if RM̂H is semisimple

as an (R,H)-bimodule. We noted in the previous section that M is strongly prime

if and only if M is duprime and every proper element of ILM is contained in λM ,

which is to say, ILM is coatomic and λM is the unique coatom of ILM . Assertion (d)

of Theorem 4.6 below provides us with an analogous characterization for strongly

semiprime modules. We first recall some elementary facts on lattices.

If IL is a complete lattice then Rad IL denotes the meet of all coatoms of IL. If s

denotes the join of all small elements of IL then s ≤ Rad IL. Equality holds if IL is

coatomic or if IL is modular, algebraic and for each a ∈ IL the set {b ∈ IL | a∨b = 1IL}
has a unique smallest element. To see the latter, consider the interval [s, 1IL] of IL.

Take a ∈ [s, 1IL] and let b be the unique smallest element of {b ∈ IL | a ∨ b = 1IL}.
Using the modularity of IL it can be shown that a ∧ b is small in IL and that b ∨ s
is the unique complement of a in the lattice [s, 1IL]. Thus [s, 1IL] is boolean. Since

IL is algebraic, every element in [s, 1IL] is a join of atoms of the lattice [s, 1IL] [9,

Proposition III.5.5, p. 74]. By duality, every element in [s, 1IL] is a meet of coatoms

of [s, 1IL]. In particular, s is a meet of coatoms of [s, 1IL]. But every coatom of [s, 1IL]

is a coatom of IL, so s ≥ Rad IL, whence equality.

4.5 Proposition. If M is dusemiprime and s denotes the join of all small elements

of IL, then:

(1) s = Rad ILM ; and

(2) if α and β are small elements of ILM then so is α :M β.

Proof. (1) In view of the preceding paragraph, it suffices to show that for any

α ∈ ILM the set {β ∈ ILM | α ∨ β = σ[M ]} has a unique smallest element. Such an

element is given by σ[M ] .−α because, by Theorem 4.1(d), α ∨ β = σ[M ] if and only

if α :M β = σ[M ].

(2) Suppose (α :M β) ∨ γ = σ[M ] for some γ ∈ ILM . Certainly, (α :M β) :M
γ = σ[M ]. By associativity of the operation ‘:M ’, we have α :M (β :M γ) = σ[M ].

Since M is dusemiprime this implies α ∨ (β :M γ) = σ[M ], whence β :M γ = σ[M ],

because α is small. Again, it follows from dusemiprimeness and the smallness of β

that γ = σ[M ]. We conclude that α :M β is small in ILM . 2

4.6 Theorem. The following assertions are equivalent for a left R-module M :

(a) M is strongly semiprime;

(b) the lattice of all fully invariant submodules of M̂ contains no proper essential

element;
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(c) the meet subsemilattice of all pretorsion submodules of M contains no proper

essential element;

(d) M is dusemiprime and Rad ILM = λM .

Proof. (a)⇔(b) Let H = EndRM̂ and L{RM̂H} denote the lattice of all (R,H)-

submodules of RM̂H . Observe that L{RM̂H} coincides with the lattice of all fully

invariant submodules of M̂ . Since L{RM̂H} is a modular algebraic lattice, the join

of all atoms of L{RM̂H} is equal to the meet of all essential elements of L{RM̂H} [9,

Proposition III.6.7, p75]. Hence (b) is equivalent to the requirement that RM̂H be a

sum of simple (R,H)-submodules. The equivalence of (a) and (b) follows.

(c)⇒(b) Let U be an essential element in L{RM̂H}. Since M̂ is injective in

σ[M ], the pretorsion submodules and fully invariant submodules of M̂ coincide.

Consequently, U = α(M̂) for some α ∈ ILM . Note that α(M) = M ∩α(M̂) = M ∩U .

If β ∈ ILM and α(M) ∩ β(M) = 0 then

M ∩ [β(M̂) ∩ U ] = [M ∩ β(M̂)] ∩ [M ∩ U ] = β(M) ∩ α(M) = 0.

Since M is an essential submodule of M̂ , this entails β(M̂)∩U = 0. By hypothesis,

we must have β(M̂) = 0, whence β(M) = 0. It follows that α(M) is essential in

the meet subsemilattice of all pretorsion submodules of M . By (c) we must have

α(M) = M ∩ U = M , whence U ⊇ M and so α ⊇ σ[U ] = σ[M ] = σ[M̂ ]. It follows

that M̂ ∈ α, whence U = α(M̂) = M̂ .

(d)⇒(c) Let {ρi | i ∈ Λ} be the set of all coatoms of ILM . Since λM is small

in ILM (Lemma 2.1), it follows from (d) that Rad ILM is small in ILM , whence ILM
is coatomic. Suppose α(M) ⊂ M where α ∈ ILM . We shall demonstrate that

α(M) ∩ N = 0 for some nonzero pretorsion submodule N of M . Since ILM is

coatomic, α ⊆ ρj for some j ∈ Λ. Taking N = (
⋂
i∈Λ\{j} ρi)(M), we have

α(M) ∩N ⊆ ρj(M) ∩N = (
⋂
i∈Λ ρi)(M)

= (Rad ILM)(M) = λM(M) = 0,

as required.

(a)⇒(d) We first show that M is dusemiprime. Let K be a fully invariant sub-

module of M̂ . Since RM̂H is semisimple as an (R,H)-module, the lattice L{RM̂H}
is complemented. We can therefore choose a fully invariant L ≤ M̂ such that

M̂ = K⊕L. It follows that σ[M̂ ] = σ[K⊕L] = σ[K⊕M̂/K]. The dusemiprimeness

of M now follows from Theorem 4.1(f).

We now show that ILM is coatomic. Since λM is small in ILM (Lemma 2.1) it

suffices to show that every proper element of the interval [λM , σ[M ]] is contained in

a coatom of ILM . By the Correspondence Theorem there is a lattice epimorphism Θ

from [λM , σ[M ]] onto L{RM̂H}. Let α be a proper element of [λM , σ[M ]]. Since σ[M ]
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is the only element of [λM , σ[M ]] which has image M̂ under Θ, it follows that Θ(α)

is a proper element of L{RM̂H}. Since M is strongly semiprime, RM̂H is semisimple

so L{RM̂H} is coatomic. Choose a coatom U of L{RM̂H} such that Θ(α) ⊆ U

and consider β =
∨

Θ−1(U) ∈ [λM , σ[M ]]. Note that Θ(α ∨ β) = Θ(α) + Θ(β) =

Θ(α) + U = U , whence α ∨ β ∈ Θ−1(U) and so α ∨ β ⊆ β. Hence α ⊆ β. We show

now that β is a coatom of [λM , σ[M ]]. Suppose γ ∈ [λM , σ[M ]] and γ ⊇ β. Then

Θ(γ) ⊇ Θ(β) =
∑

Θ[Θ−1(U)] = U . Inasmuch as U is a coatom of L{RM̂H} this

implies Θ(γ) = M̂ in which case γ = σ[M ], or Θ(γ) = U in which case γ ∈ Θ−1(U)

and γ ⊆ β. We conclude that [λM , σ[M ]] and hence ILM is coatomic.

It remains to show that Rad ILM = λM . Certainly, since λM is small in ILM
(Lemma 2.1), Rad ILM ⊇ λM . Since ILM is coatomic, Rad ILM is small in ILM and

hence in [λM , σ[M ]]. Using the fact that σ[M ] is the only element of [λM , σ[M ]] which

has image M̂ under Θ, it can be shown that Θ(Rad ILM) is small in L{RM̂H}. But

L{RM̂H} being complemented, has no nonzero small elements. Therefore Θ(Rad ILM)

= 0, whence Rad ILM = λM . 2

The equivalence of assertions (a) and (d) in Theorem 4.6 can be used to show

that every strongly semiprime duprime module is strongly prime. It follows that the

Prüfer group ZZp∞ of Example 3.4, being duprime but not strongly prime, cannot

be strongly semiprime. This shows that the notion strongly semiprime is strictly

stronger than dusemiprime.

If M is semisimple then N is a pretorsion submodule of M if and only if N is a

direct sum of homogeneous components of M . From this it can be seen that the meet

subsemilattice of all pretorsion submodules of M is complemented and thus satisfies

Theorem 4.6(c). It follows that every semisimple module is strongly semiprime. In

an attempt to generalize this result it is natural to ask whether every direct sum of

strongly prime modules is strongly semiprime. In general, the answer to this question

is no. As counter-example take M = S ⊕ RR where R is a left strongly prime ring

which is not semisimple and S a nonzero simple left R-module. Clearly S is the only

nonzero proper pretorsion submodule of M . Hence M is not strongly semiprime by

Theorem 4.6(c).

Interpreting Theorem 4.6(c) in the case where M is chosen to be a direct sum of

strongly prime modules we obtain the following:

4.7 Corollary. The following assertions are equivalent for a family {Ni | i ∈ Γ} of

strongly prime left R-modules:

(a)
⊕

i∈ΓNi is strongly semiprime;

(b) if α ∈ ILR and α(
⊕

i∈ΓNi) =
⊕

i∈Γ′ Ni with Γ′ ⊂ Γ, then there exists β ∈ ILR
such that β(

⊕
i∈ΓNi) =

⊕
i∈Γ′′ Ni where ∅ 6= Γ′′ ⊆ Γ\Γ′.

The next theorem is the dusemiprime analogue of Theorem 3.2.
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4.8 Theorem. The following are equivalent for a nonzero left R-module M :

(a) M is dusemiprime and ILM is coatomic;

(b) ILM is coatomic and for any α ∈ ILM , if σ[M/α(M)] is small in ILM then

α = σ[M ];

(c) ILM is coatomic and every coatom of ILM is idempotent;

(d) if {γi | i ∈ Λ} is the family of all coatoms of ILM then each γi is idempotent,

M/γi(M) is strongly prime and {M/γi(M) | i ∈ Λ} subgenerates σ[M ];

(e) Rad ILM is idempotent and M/(Rad ILM)(M) is strongly semiprime and sub-

generates σ[M ];

(f) σ[M ] has a strongly semiprime subgenerator.

Proof. (a)⇔(b)⇔(c) follows directly from [11, Theorem 13((i)⇔(iv)⇔(v))]. Note

that in (b), σ[M/α(M)] can be replaced by σ[M ] .−α in view of Lemma 1.6.

(c)⇒(d) By hypothesis, each γi is idempotent. Take i ∈ Λ and let α ∈ ILM . If α ⊆
γi then α(M/γi(M)) ⊆ γi(M/γi(M)) = 0. If α ⊆\ γi then γi :M α ⊇ γi ∨ α = σ[M ]

(because γi is a coatom). Hence α(M/γi(M)) = (γi :M α)(M)/γi(M) = M/γi(M).

This shows that each M/γi(M) is strongly prime.

We now show that {M/γi(M) | i ∈ Λ} subgenerates σ[M ]. If the contrary

were true then
∨
i∈Λ σ[M/γi(M)] =

∨
i∈Λ(σ[M ] .−γi) ⊆ γj for some j ∈ Λ, since

ILM is coatomic. In particular, γj ⊇ σ[M ] .−γj, whence γj :M γj = γj = σ[M ], a

contradiction.

(d)⇒(e) Since the set of idempotent elements of ILM is closed under arbitrary

meets, it follows that Rad ILM =
⋂
i∈Λ γi is idempotent.

PutM = M/(Rad ILM)(M). Inasmuch as γi(M) ⊇ (Rad ILM)(M) for all i ∈ Λ we

must have σ[M/γi(M)] ⊆ σ[M ] for all i ∈ Λ. Since {M/γi(M) | i ∈ Λ} subgenerates

σ[M ], it follows that M subgenerates σ[M ].

It remains to show that M is strongly semiprime. Observe that
⊕

i∈ΛM/γi(M)

is dusemiprime (by Proposition 4.2) and a subgenerator for σ[M ]. Therefore M is

dusemiprime. Since λM is small (Lemma 2.1) it follows from Proposition 4.5 that

λM ⊆ Rad ILM . But Rad ILM = Rad ILM is idempotent, whence (Rad ILM)(M) = 0

and so Rad ILM ⊆ λM . We conclude that Rad ILM = λM . By Theorem 4.6((a)⇐(d)),

M is strongly semiprime.

(e)⇒(f) is obvious.

(f)⇒(a) Let N be a strongly semiprime subgenerator for σ[M ]. By Theorem

4.6((a)⇒(d)), N is dusemiprime and Rad ILN = λN . By Lemma 2.1, Rad ILN is

small in ILN , whence ILN is coatomic. We conclude that M is dusemiprime and ILM
is coatomic. 2
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Observe that the equivalent assertions listed in Theorem 4.9 below are stronger

than those of Theorem 4.8.

4.9 Theorem. The following assertions are equivalent for a nonzero left R-module

M :

(a) M is dusemiprime and ILM is compact;

(b) ILM is coatomic and ILM has finitely many coatoms and each coatom of ILM is

idempotent;

(c) σ[M ] has a finitely generated strongly semiprime subgenerator.

Proof. (a)⇒(b) Since ILM is compact, ILM is coatomic. The remainder of assertion

(b) follows from [11, Theorem 24((i)⇒(iii))] taking the lattice ordered monoid to be

ILM .

(b)⇒(c) A routine exercise shows that every coatomic lattice with only finitely

many coatoms is compact. It follows that σ[M ] has a finitely generated subgener-

ator N , say. Since ILN is compact, ILN is coatomic. Clearly, N/(Rad ILN)(N) is

finitely generated and also a strongly semiprime subgenerator for σ[N ] by Theorem

4.8((a)⇒(e)).

(c)⇒(a) Inasmuch as σ[M ] has a finitely generated subgenerator, ILM is compact.

The dusemiprimeness of M follows from Theorem 4.8((a)⇐(f)). 2

We noted earlier that if {Ni | i ∈ Γ} is a family of strongly prime modules then

N =
⊕

i∈ΓNi need not be strongly semiprime. In fact, as the following example

shows, even the weaker coatomicity of ILN is not guaranteed.

4.10 Example. Let R be a left chain domain all of whose ideals are idempotent and

with the property that R contains no smallest nonzero ideal. Such a ring R exists by

[14, Theorem 9, p104]. As noted in Example 3.5, ILR is a chain with unique coatom

β = {N ∈ R-Mod | (0 : x) 6= 0 for all x ∈ N}. Since R contains no smallest nonzero

ideal it is easily seen that β has no predecessor in ILR.

We show now that β is subgenerated by a direct sum of strongly prime modules.

Let I be the set of all proper nonzero ideals of R. By [13, Proposition 27, p5539]

every element of I is completely prime. It follows that R/I is a domain for all I ∈ I.

This means that the ring R/I is left (and right) strongly prime, whence R(R/I) is

a strongly prime module for all I ∈ I. Put N =
⊕

I∈I R(R/I). Since N is not

cofaithful, N ∈ β. Since I contains no smallest element, N subgenerates β.

Observe that ILN is not coatomic because σ[N ] has no predecessor in ILR.

4.11 Lemma. Suppose δM , the M-singular hereditary pretorsion class, is small in

ILM . Then the following assertions are equivalent:
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(a) M is dusemiprime;

(b) for all essential submodules K of M , σ[K] = σ[M ].

Proof. (a)⇒(b) Let K �M . Then M/K ∈ δM . Clearly

M ∈ σ[K] :M σ[M/K] ⊆ σ[K] :M δM .

By Theorem 4.1(d), σ[M ] = σ[K]∨δM . By hypothesis, δM is small, so σ[K] = σ[M ].

(b)⇒(a) Let K ≤M . Choose L ≤M maximal such that K ∩ L = 0. Then

σ[K ⊕M/K] = σ[K] ∨ σ[M/K] ≥ σ[K] ∨ σ[L] = σ[K ⊕ L] = σ[M ]

(by (b)). It follows from Theorem 4.1(e) that M is dusemiprime. 2

4.12 Lemma. If M is dusemiprime and projective in σ[M ] then M is polyform.

Proof. By Theorem 4.1, σ[M ] = σ[δM(M) ⊕ M/δM(M)] ⊆ δM ∨ σ[M/δM(M)].

But δM is small in ILM by Lemma 2.2, so σ[M ] = σ[M/δM(M)]. Inasmuch as M is

projective in σ[M ], this implies δM(M) = 0, i.e., M is polyform [17, Lemma 2.8, p.

3623]. 2

4.13 Theorem. Assume M is projective in σ[M ] or M is polyform. Then the

following assertions are equivalent:

(a) M is strongly semiprime;

(b) M is dusemiprime;

(c) for all essential submodules K of M , σ[K] = σ[M ].

Proof. (a)⇒(b) is obvious.

(b)⇔(c) follows from Lemma 4.11 since δM is small in ILM by Lemma 2.2.

(c)⇒(a) It is clear from the proof of Lemma 4.11((b)⇒(a)), that (c) is at least as

strong as (b) in the absence of any assumption about M . Consequently, by Lemma

4.12, M projective in σ[M ] implies M is polyform. It suffices therefore to establish

(a) in the case where M is assumed to be polyform.

Let α be a small element of ILM . Choose K ≤ M maximal such that α(M) ∩
K = 0. By (c), σ[M ] = σ[α(M) ⊕ K] ⊆ α ∨ σ[K]. But α is small in ILM so

we must have σ[M ] = σ[K]. Let α denote the smallest hereditary torsion class

containing α. Inasmuch as α and α have the same associated torsion-free class, it

follows that α(M) ∩ K = 0. Hence σ[M ] = σ[K] ⊆ σ[M/α(M)]. By Lemma 2.4,

α(M) ⊆ α(M) = 0. We conclude that α ⊆ λM .

Since λM contains every small element of ILM it follows from Proposition 4.5 that

Rad ILM = λM . By Theorem 4.6((a)⇐(d)), M is strongly semiprime. 2
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Taking M = RR in Theorem 4.13, we see that RR is dusemiprime precisely if

R is a left strongly semiprime ring. This fact was observed in [11, Theorem 32 and

Remark 33].

4.14 Example. Let A be any (nonassociative) algebra and consider it as a left

module over its multiplication algebra M(A) [19, p. 6]. Consider the subcategory

σ[M(A)A] of M(A)-Mod.

(a) If A is semiprime then M(A)A is polyform [19, 32.1, p. 262] and so, by Theorem

4.13, M(A)A is dusemiprime if and only if M(A)A is strongly semiprime.

(b) If A is a direct sum of (possibly nilpotent) simple algebras then M(A)A, be-

ing semisimple, is necessarily dusemiprime. Observe that A, regarded as an

algebra, is not necessarily semiprime.

References

[1] J.A. Beachy, W.D. Blair, Rings whose faithful left ideals are cofaithful, Pacific.

J. Math. 58(1), 1-13 (1975).

[2] K.I. Beidar, R. Wisbauer, Strongly and properly semiprime rings and modules,

Ring Theory, ed. by Jain-Rizvi, World Scientific, Singapore, 58-95 (1993).

[3] G.F. Birkenmeier, R. Wiegandt, Pseudocomplements in the lattice of torsion

classes, Comm. Algebra, to appear.

[4] J.S. Golan, Torsion Theories, Longman Scientific & Technical, Harlow (1986).

[5] J.S. Golan, Linear topologies on a ring: an overview, Longman Scientific &

Technical, Harlow (1987).

[6] D.E. Handelman, Strongly semiprime rings, Pacific. J. Math. 60(1), 115-122

(1975).

[7] D.E. Handelman, J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc.

211, 209-233 (1975).
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