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Any (co)ring R is an endofunctor with (co)multiplication on the category of abelian

groups. These notions were generalised to monads and comonads on arbitrary categories.
Starting around 1970 with papers by Beck, Barr and others a rich theory of the inter-

play between such endofunctors was elaborated based on distributive laws between them

and Applegate’s lifting theorem of functors between categories to related (co)module
categories. Curiously enough some of these results were not noticed by researchers in

module theory and thus notions like entwining structures and smash products between

algebras and coalgebras were introduced (in the nineties) without being aware that these
are special cases of the more general theory.

The purpose of this survey is to explain several of these notions and recent results
from general category theory in the language of elementary module theory focussing on

functors between module categories given by tensoring with a bimodule. This provides a

simple and systematic approach to smash products, wreath products, corings and rings
over corings (C-rings). We also highlight the relevance of the Yang-Baxter equation for

the structures on the threefold tensor product of algebras or coalgebras (see 3.6).
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1. Introduction

The study of the interplay between algebras A and coalgebras C over a commutative
ring R led to the definition of entwining structures by Brzeziński and Majid in [7]
(1998), that is, R-linear maps ϕ : C ⊗R A → A ⊗R C satisfying certain conditions
(making C⊗RA an A-coring). These can be seen as natural transformation ϕ⊗R− :
C⊗RA⊗R− → A⊗RC⊗R− between the endofunctors C⊗R− and A⊗R− of the
category MR of R-modules. If both A and C are R-algebras (or coalgebras), similar
maps (with different conditions) are employed to define a smash product or smash
coproduct on A⊗R C (e.g. Caenepeel, Ion, Militaru and Zhu [10,11]).

The corresponding relations between endofunctors (monads and comonads) of
different categories were observed in Power and Watanabe [24,25] (1997), Turi and
Plotkin [27] (1997), and elsewhere in the context of operational semantics.

These constructions are special cases of distributive laws between endofunctors
on any categories considered in Beck [2], Barr [1], and elsewhere as early as 1969.
They can be interpreted as conditions allowing to lift functors between categories
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A and B to related module categories. More precisely, for monads (F, µ, η) and
(G,µ′, η′) on the categories A and B, respectively, and a functor T : A→ B we say
that T : AF → BG is a lifting of T provided the diagram

AF
T //

UF

��

BG
UG

��
A T // B

is commutative, where the UF and UG denote the forgetful functors.
Now Applegate’s theorem says that the liftings T : AF → BG of T are in bi-

jective correspondence with the natural transformations λ : GT → TF inducing
commutative diagrams

GGT
µ′T //

Gλ

��

GT

λ

��
GTF

λF // TFF
Tµ // TF,

T
η′T //

Tη !!C
CC

CC
CC

C GT

λ

��
TF.

A similar result holds if F and G are comonads and the module categories are
replaced by comodule categories. These theorems turned out to be fundamental for
the related theory.

In the case A = B and F = G we have endofunctors and it is natural to ask if
the lifting T of a (co)monad T is again a (co)monad or, more generally, which other
maps may induce a (co)monad structure on T .

The purpose of this note is to outline the basic role of this theorem and de-
rived consequences for functors between module categories given by tensoring with
a bimodule. The answers to the questions posed above lead to the notions of smash
products, wreath products, and corings. We sketch the essentials of the proofs with-
out relying on results from abstract category theory.

The composition of liftable functors is again liftable. However, the question if
the lifting of the composition of liftable monads is again a monad employs the
Yang-Baxter equations in a general setting.

2. Lifting of functors

Throughout all rings will be associative and with unit unless otherwise stated, and
R will be a ring, not necessarily commutative.

In case R is commutative we will tacitly assume that for (R,R)-bimodules M ,
rm = mr for all r ∈ R, m ∈ M . Moreover, for any R-modules M , N there is a
canonical R-isomorphism (twist map)

tw : M ⊗R N → N ⊗RM, m⊗ n 7→ n⊗m.

By IM , IT , IM or just by I we denote the identity morphism of an object M in
some category M, a functor T , or the identity functor of M, respectively. Following
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the usage in category theory we also write T instead of IT and delete the ⊗ between
linear maps in case it is convenient (to save space).

Most of the theory to be developed holds for non-commutative rings and functors
given by tensoring with a bimodule over them. This reflects the fact that it is largely
true more generally for functors on arbitrary categories. However, to find examples
satisfying the conditions required, commutativity of R can be of great help.

2.1. R-rings. A ring A is said to be an R-ring provided there is a ring morphism
ι : R → A. Equivalently, this means that A is an (R,R)-bimodule with (R,R)-
bilinear multiplication and unit,

mA : A⊗R A→ A, ιA : R→ A,

inducing commutative diagrams for associativity and unitality.
In categorical terminology these conditions describe a monad on the category

of left (or right) R-modules RM, that is, an (R,R)-bimodule A is an R-ring if and
only if A⊗R − : RM→ RM is a monad (e.g. [3, 3.4]).

If R is commutative then R-rings are just R-algebras since - by our convention
for bimodules - the image of the morphism ι : R→ A lies in the centre of A.

A left A-module is a left R-module M with an R-linear map

%M : A⊗RM →M, a⊗m 7→ am,

satisfying the associativity and unitality conditions. A-module morphisms are R-
linear maps f : M → N with f ◦ %M = %N ◦ (IA ⊗R f) and the set of those is
denoted by HomA(M,N). The category of left A-modules is denoted by AM. It is
an abelian category with A as a projective generator.

The (free) functor for the R-ring A,

A⊗R − : RM→ AM, M 7→ (A⊗RM,mA ⊗ IM ),

is left adjoint to the forgetful functor UA : AM→ RM by the bijection, for N ∈ AM,

HomA(A⊗RM,N)→ HomR(M,N), f 7→ f ◦ (ιA ⊗ IM ).

Right A-modules are defined symmetrically. In this case the R-ring A is consid-
ered as functor −⊗R A : MR → MR, that is, the functor symbol is written on the
right hand side of the argument.

2.2. Lifting functors to module categories. Let A be an R-ring, B an S-ring
and T an (S,R)-bimodule. Then a functor T : AM → BM is called a lifting of the
functor T ⊗R − : RM→ SM if the diagram

AM T //

AU

��

BM

BU

��
RM

T⊗R− //
SM

is commutative, where AU and BU denote the forgetful functors.
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It is clear that the functor T must act on objects M ∈ AM like T ⊗R −, that is,
T (M) = T ⊗RM , and this should have a left B-module structure.

This can be achieved by an (S,R)-bilinear map ϕ : B ⊗S T → T ⊗R A which
assigns to any A-module % : A⊗RM →M a B-action

B ⊗S T ⊗RM
ϕ⊗I // T ⊗R A⊗RM

I⊗% // T ⊗RM. (2.1)

To make T ⊗RM a left B-module some conditions on ϕ are required.
Associativity of the B-action implies, for M = A, commutativity of the inner

rectangle in the diagram

B ⊗S B ⊗S T
B⊗ϕ //

mB⊗T

��

B⊗B⊗T⊗ιA

))SSSSSSSSSSSSSS B ⊗S T ⊗R A

B⊗T⊗A⊗ιA
��

=

))SSSSSSSSSSSSSS

B ⊗S B ⊗S T ⊗R A
B⊗ϕ⊗A//

mB⊗T⊗A

��

B ⊗S T ⊗R A⊗R A
B⊗T⊗mA

// B ⊗S T ⊗R A

ϕ⊗A
��

T ⊗R A⊗R A

T⊗mA

��
B ⊗S T

B⊗T⊗ιA //

ϕ

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY B ⊗S T ⊗R A
ϕ⊗A // T ⊗R A⊗R A

T⊗mA // T ⊗R A

T ⊗R A

T⊗A⊗ιA

OO

=

55kkkkkkkkkkkkkk
.

The other inner diagrams are commutative by functoriality of composition and
hence the outer diagram yields the commutative diagram

B ⊗S B ⊗S T
B⊗ϕ //

mB⊗T
��

B ⊗S T ⊗R A
ϕ⊗A // T ⊗R A⊗R A

T⊗mA

��
B ⊗S T

ϕ // T ⊗R A.
For the relation between ϕ and the units of A and B, consider the diagram

T

T⊗ιA
��

ιB⊗T // B ⊗S T
ϕ //

B⊗T⊗ιA
��

T ⊗R A

T⊗A⊗ιA
��

=

''OOOOOOOOOOO

T ⊗R A
ιB⊗T⊗A

// B ⊗S T ⊗R A
ϕ⊗A

// T ⊗R A⊗R A
T⊗mA

// T ⊗R A,

in which the inner rectangles are commutative by naturality. The unitality condition
for the B-module structure on T ⊗R A implies that the composition of the maps in
the bottom line yields the identity and hence we obtain the commutative diagram

T

T⊗ιA ##G
GGGGGGGG

ιB⊗T // B ⊗S T

ϕ

��
T ⊗R A.
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Conversely, given T ⊗R A as B-module with structure map β : B ⊗S T ⊗R A→
T ⊗R A, the map

ϕ′ : B ⊗S T
B⊗T⊗ιA // B ⊗S T ⊗R A

β // T ⊗R A

has the properties observed under the lifting condition. In the commutative diagram

T

T⊗ιA
��

ιB⊗T // B ⊗S T

B⊗T⊗ιA
��

ϕ′

''OOOOOOOOOOO

T ⊗R A
ιB⊗T⊗A

// B ⊗S T ⊗R A
β
// T ⊗R A,

the bottom line yields the identity by unitality and hence IT ⊗ ιA = ϕ′ ◦ (ιB ⊗ IT ).
By the canonical isomorphism M ' A ⊗A M and associativity of the tensor-

product we may assume T (M) = T ⊗RM = T ⊗RA⊗AM , that is, T is represented
by T ⊗R A⊗A − where T ⊗R A is a (B,A)-bimodule.

Summarising we have proved:

2.3. Applegate’s theorem for rings. The liftings T : AM→ BM of the functor
T ⊗R− : RM→ SM are in bijective correspondence with those (S,R)-bilinear maps
ϕ : B ⊗S T → T ⊗R A which induce commutativity of the diagrams

B ⊗S B ⊗S T

B⊗ϕ
��

mB⊗T // B ⊗S T

ϕ

��
B ⊗S T ⊗R A

ϕ⊗A // T ⊗R A⊗R A
T⊗mA // T ⊗R A,

T

B⊗ιA ##G
GGGGGGGG

ιB⊗T // B ⊗S T

ϕ

��
T ⊗R A.

(2.2)

Given such a ϕ, for any M ∈ AM, the lifting is given by

T (M) = T ⊗RM ' (T ⊗R A)⊗AM

where T ⊗RA is a (B,A)-bimodule (by 2.1) and ϕ is a left B-module morphism (by
commutativity of the rectangle).

Next we observe that the composition of two liftable functors is again liftable.

2.4. Composition of liftings to modules. Consider an R-ring A, an S-ring B,
and a Q-ring H. Let T be an (S,R)-bimodule and U a (Q,S)-bimodule and assume
that

(i) T ⊗R − : RM→ SM lifts to T : AM→ BM by ϕ : B ⊗S T → T ⊗R A,
(ii) U ⊗S − : SM→ QM lifts to U : BM→ HM by ψ : H ⊗Q U → U ⊗S B.

Then U ⊗S T ⊗R − lifts to U ⊗S T : AM→ HM by the (Q,R)-bilinear map

H ⊗Q U ⊗S T
ψ⊗T // U ⊗S B ⊗S T

U⊗ϕ // U ⊗S T ⊗R A,

and for any M ∈ AM,

U ⊗S T (M) = (U ⊗S T ⊗R A)⊗AM

where U ⊗S T ⊗R A is an (H,A)-bimodule.
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Proof. The rectangle in (2.2) is now the outer diagram of

H ⊗Q H ⊗Q U ⊗S T

H⊗ψ⊗T
��

mH⊗U⊗T // H ⊗Q U ⊗S T
ψ⊗T // U ⊗S B ⊗S T

U⊗ϕ
��

H ⊗Q U ⊗S B ⊗S T

H⊗U⊗ϕ
��

ψ⊗B⊗T// U ⊗S B ⊗S B ⊗S T

U⊗B⊗ϕ
��

U⊗mB⊗T
44jjjjjjjjjjjjjjjj

U ⊗S T ⊗R A

H ⊗Q U ⊗S T ⊗R A
ψ⊗T⊗A// U ⊗S B ⊗S T ⊗R A

U⊗ϕ⊗A// U ⊗S T ⊗R A⊗R A,

U⊗mA

OO

where the pentagons are commutative by the properties of ϕ and ψ, respectively,
and the square is commutative by naturality.

The unitality conditions on ψ and ϕ yield the commutative triangle in the dia-
grams

U ⊗ T
ιH⊗U⊗T //

U⊗ιH⊗T

))TTTTTTTTTTTTTTTT

U⊗T⊗ιH
��

H ⊗ U ⊗ T

ψ⊗T
��

U ⊗ T ⊗H U ⊗H ⊗ T,
U⊗ϕ

oo

showing commutativity of the triangle in (3.1). tu

3. Lifting of endofunctors to module categories

We now consider the results of the preceding section for the case R = S and A = B.

3.1. Lifting endofunctors to modules. Let A be an R-ring and T an (R,R)-
bimodule. Then a functor T : AM → AM is a lifting of T ⊗R − : RM → RM if the
diagram

AM T //

AU

��

AM

AU

��
RM

T⊗R− //
RM

is commutative where AU denotes the forgetful functor. In this case Applegate’s
theorem says that the liftings T : AM → AM of the functor T ⊗R − : RM → RM
are in bijective correspondence with the (R,R)-bilinear maps ϕ : A⊗R T → T ⊗RA
inducing commutativity of the diagrams

A⊗R A⊗R T

A⊗ϕ
��

mA⊗T // A⊗R T

ϕ

��
A⊗R T ⊗R A

ϕ⊗A // T ⊗R A⊗R A
T⊗mA // T ⊗R A,

T

T⊗ιA ##G
GGGGGGGG

ιA⊗T // A⊗R T

ϕ

��
T ⊗R A.

(3.1)

Such a lifting is given by T ⊗R A⊗A − where T ⊗R A is an (A,A)-bimodule.
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Now both T ⊗R− and T are endofunctors and in this section we will answer the
following questions:

(1) If T is an R-ring - when is T a monad, that is, T ⊗R A is an A-ring?

(2) Under which (other) conditions can T be made a monad?

(3) If T and U are (R,R)-bimodules such that T ⊗R − and U ⊗R − can be lifted
to AM, can U ⊗R T ⊗R − also be lifted to AM?

(4) If T and U are R-rings such that T ⊗R A and U ⊗R A are A-rings, when is
U ⊗R T an A-ring?

We will often write ⊗ or · instead of ⊗R for short (in diagrams).

3.2. Tensor product of R-rings. Given two R-rings (A,mA, ιA) and (T,mT , ιT ),
the tensor product T ⊗R A is again an (R,R)-bimodule. An (R,R)-bilinear map

ϕ : A⊗R T → T ⊗R A

allows for the definition of a product mϕ on T ⊗R A,

T ⊗A⊗A
T⊗mA

&&MMMMMMMMMM

T ⊗A⊗ T ⊗A
T⊗ϕ⊗A // T ⊗ T ⊗A⊗A

mT⊗A⊗A
66mmmmmmmmmmmmm

T⊗T⊗mA ((QQQQQQQQQQQQQ T ⊗A

T ⊗ T ⊗A
mT⊗A

88qqqqqqqqqq
,

that is, mϕ = (mT ⊗mA) ◦ (IT ⊗ ϕ⊗ IA). If mϕ is associative and

ιT ⊗ ιA = (IT ⊗ ιA) ◦ ιT = (ιT ⊗ IA) ◦ ιA

is the unit for this multiplication, then the R-ring (T ⊗R A,mϕ, ιA⊗ ιT ) is called a
smash product of T and A. For this certain properties of ϕ are required.

3.3. Ring entwinings. For R-rings T and A, and a given (R,R)-bilinear map
ϕ : A⊗R T → T ⊗R A, the following are equivalent:

(a) T ⊗ϕ A := (T ⊗R A,mϕ, ιT ⊗ ιA) is an A-ring;

(b) ϕ induces commutativity of the diagrams (3.1) and the diagrams

A⊗ T ⊗ T
A⊗mT //

ϕ⊗T
��

A⊗ T
ϕ

��
T ⊗A⊗ T

T⊗ϕ // T ⊗ T ⊗A
mT⊗A// T ⊗A,

A
A⊗ιT //

ιT⊗A ""F
FF

FF
FF

FF A⊗ T
ϕ

��
T ⊗A;

(3.2)

(c) ϕ induces commutativity of the diagrams (3.1) and

mT ⊗ IA : T ⊗ T ⊗A→ T ⊗A and ιT ⊗ IA : A→ T ⊗A
are (A,A)-bilinear morphisms.

If these conditions ares satisfied, we call (T,A, ϕ) a ring (or algebra) entwining.
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Proof. Notice that by one of the normality conditions the map A → T ⊗ϕ A, a 7→
1T ⊗ a, is a ring morphism. Thus T ⊗ϕ A is a ring if and only if it is an A-ring (or
R-ring).

(a)⇔(b) (e.g. [10]) If (T ⊗R A,mT ⊗ IA, ιT ⊗ ιA) is a unital associative R-ring,
we obtain the normality conditions

1T ⊗ a = (1T ⊗ a) ·ϕ(1T ⊗ 1A) = ϕ(a⊗ 1T ), (3.3)

t⊗ 1A = (t⊗ 1A) ·ϕ(1T ⊗ 1A) = ϕ(1A ⊗ t). (3.4)

Applying these, the associativity conditions

(1T ⊗ a) ·ϕ((t⊗ 1A) ·ϕ(s⊗ 1A)) = ((1T ⊗ a) ·ϕ(t⊗ 1A)) ·ϕ(s⊗ 1A), (3.5)

((1T ⊗ a) ·ϕ(1T ⊗ b)) ·ϕ(t⊗ 1A) = (1T ⊗ a) ·ϕ((1T ⊗ b) ·ϕ(t⊗ 1A)), (3.6)

can be written as

ϕ(a⊗ ts) = (mT ⊗ IA)(IT ⊗ ϕ)(ϕ(a⊗ t)⊗ s), (3.7)

ϕ(ab⊗ t) = (IT ⊗mA)(ϕ⊗ IA)(a⊗ ϕ(b, t)). (3.8)

The conditions (3.3) and (3.5) yield the commutative diagrams in (3.1); similarly,
(3.4) and (3.6) lead to the commutative diagrams in (3.2).

On the other hand, multiplying (3.5) by 1T ⊗ d from the right shows that c⊗ d
associates with the two other elements in (3.5). Continuing with similar arguments
one can show that the normality conditions together with (3.5) and (3.6) imply
associativity of mϕ. The latter also follows (in view of (d)) from the large diagram
in the proof of 3.4.

(b)⇔(c) Right A-linearity of mT ⊗ IA means just commutativity of the quad-
rangle in 3.2 and right A-linearity of ιT ⊗ IA is clear. In the diagram

A⊗ T ⊗ T ⊗A
A⊗mT⊗A //

ϕ⊗T⊗A
��

A⊗ T ⊗A

ϕ⊗A
��

T ⊗A⊗ T ⊗A
T⊗ϕ⊗A// T ⊗ T ⊗A⊗A

mT⊗A⊗A//

T⊗T⊗mA

��

T ⊗A⊗A

T⊗mA

��
T ⊗ T ⊗A

mT⊗A // T ⊗A,

(3.9)

the bottom rectangle is commutative by functoriality of composition. If (c) holds,
then, by (3.2), the upper rectangle is commutative. Commutativity of the outer
diagram is just left A-linearity of mT ⊗ IA. Given this, entering the diagram with
IA ⊗ IT ⊗ IT ⊗ ιA : A ⊗ T ⊗ T −→ A ⊗ T ⊗ T ⊗ A leads to commutativity of the
rectangle in (3.2).
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Now consider the diagram

A⊗ T ⊗A
ϕ

��
A⊗A

mA

��

A⊗ιT⊗A
55kkkkkkkkkkkkkk

ιT⊗A⊗A
// T ⊗A⊗A

T⊗mA

��
A

ιT⊗A // T ⊗A.

The outer diagram is commutative if and only if ιT ⊗ IA is left A-linear and this is
the case if and only if the triangle in (3.2) is commutative. tu

In 3.2 we have derived the product and unit on T ⊗R A from the products and
units of A and T . From the diagram there it is obvious that, given mA and ιA,
product and unit on T ⊗ A can also be described by the morphisms mT ⊗ IA and
ιT ⊗ IA which have to be (A,A)-bilinear by 3.3. Thus a ring structure on T ⊗R A
can be defined by two (A,A)-bilinear maps T ⊗ T ⊗ A → T ⊗ A and A → T ⊗ A
without requiring a ring structure on T .

3.4. Liftings as R-rings I. Let (A,mA, ιA) be an R-ring and T an (R,R)-
bimodule such that T ⊗R − can be lifted to a functor T : AM → AM by the en-
twining ϕ : A⊗R T → T ⊗R A (see 3.1) and assume there are given (A,A)-bilinear
morphisms

ν : T ⊗ T ⊗A→ T ⊗A, ξ : A→ T ⊗A.

Then the lifting T induces an A-ring structure on T ⊗R A with multiplication mν ,

T ⊗A⊗ T ⊗A
T⊗ϕ⊗IA // T ⊗ T ⊗A⊗A

T⊗T⊗mA // T ⊗ T ⊗A ν // T ⊗A,

and unit ξ if and only if the data induce commutativity of the diagrams

T ⊗ T ⊗A ν // T ⊗A

T ⊗A

T⊗ξ

OO

=

88qqqqqqqqqq
,

T ⊗ T ⊗A ν // T ⊗A

T ⊗A⊗ T

T⊗ϕ

OO

A⊗ T,ξ⊗Too

ϕ

OO (3.10)

T ⊗ T ⊗A⊗ T
ν⊗IT //

T⊗T⊗ϕ
��

T ⊗A⊗ T
T⊗ϕ // T ⊗ T ⊗A

ν

��
T ⊗ T ⊗ T ⊗A

T⊗ν // T ⊗ T ⊗A ν // T ⊗A.

(3.11)

Proof. Left A-linearity of ν is equivalent to commutativity of the diagram (compare
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(3.9))

A⊗ T ⊗ T ⊗A

A⊗ν
��

ϕ⊗T⊗A// T ⊗A⊗ T ⊗A
T⊗ϕ⊗A// T ⊗ T ⊗A⊗A

T⊗T⊗mA// T ⊗ T ⊗A

ν

��
A⊗ T ⊗A

ϕ⊗A // T ⊗A⊗A
T⊗mA // T ⊗A,

(3.12)
whereas right A-linearity of ν corresponds to commutativity of the diagram

T ⊗ T ⊗A⊗A
ν⊗A //

T⊗T⊗mA

��

T ⊗A⊗A

T⊗mA

��
T ⊗ T ⊗A ν // T ⊗A.

(3.13)

To prove associativity of the product mν on T ⊗A, consider the diagram (where
⊗ is replaced by · between modules and deleted between morphisms)

T ·A·T ·A·T ·A
TATϕA

��

TϕATA// T ·T ·A·A·T ·A
TTAϕA

��

TTmATA //

(1)

T ·T ·A·T ·A
TTϕA

��

νTA //

(2)

T ·A·T ·A
TϕA

��
T ·A·T ·T ·A·A

TϕTAA
//

TAνA

��

T ·T ·A·T ·A·A
TTϕAA// T ·T ·T ·A·A·A

TTTmAA// T ·T ·T ·A·A

TνA

��

T ·T ·A·A

νA

��
T ·A·T ·A·A

TϕAA //

TATmA

��

(??)

T ·T ·A·A·A
TTmAA //

TTAmA

��

T ·T ·A·A
TTmA

��

νA //

(3)

T ·A·A
TmA

��
T ·A·T ·A

TϕA // T ·T ·A·A
TTmA // T ·T ·A ν // T ·A.

Diagram (1) is commutative by (3.1), diagram (??) is commutative by (3.12) (added
T from the left and A from the right), diagram (2) is commutative by assumption
(3.11) (applied to A), and commutativity of diagram (3) follows from (3.13). The
remaining inner diagrams are commutative by naturality of composition or asso-
ciativity of multiplication in A. Thus the outer diagram is commutative and this
shows associativity of the multiplication mν .

The verification of the unitality conditions is left to the reader. tu

Given the morphisms ν : T ⊗T ⊗A→ T ⊗A and ξ : A→ T ⊗A in 3.4, we may
form

ν̄ : T ⊗ T
T⊗T⊗ιA// T ⊗ T ⊗A ν // T ⊗A, σ : R

ιA // A
ξ // T ⊗A,

from which we can regain the initial maps as

ν = (IT ⊗mA) ◦ (ν̄ ⊗ IA), ξ = (IT ⊗mA) ◦ (σ ⊗ IA).

Thus ν̄ and ξ may be used to define a ring structure on T ⊗R A.
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3.5. Liftings as R-rings II. Let (A,mA, ιA) be an R-ring and T an (R,R)-
bimodule. Assume that T ⊗R − can be lifted to a functor T : AM → AM by the
entwining ϕ : A⊗R T → T ⊗RA and that there are given (R,R)-bilinear morphisms

ν̄ : T ⊗ T → T ⊗A, σ : R→ T ⊗A.

Then T ⊗R A has an R-ring structure with multiplication

T ·A · T ·A
T⊗ϕ⊗A// T · T ·A ·A

T⊗T⊗mA // T · T ·A
ν̄⊗A // T ·A ·A

T⊗mA// T ·A

and unit σ provided the data induce commutativity of the diagrams

T ⊗ T ⊗ T
ν̄⊗T //

T⊗ν̄
��

T ⊗A⊗ T
T⊗ϕ // T ⊗ T ⊗A

ν̄⊗A // T ⊗A⊗A

T⊗mA

��
T ⊗ T ⊗A

ν̄⊗A // T ⊗A⊗A
T⊗mA // T ⊗A,

(3.14)

A⊗ T ⊗ T
ϕ⊗T //

A⊗ν̄
��

T ⊗A⊗ T
T⊗ϕ // T ⊗ T ⊗A

ν̄⊗A // T ⊗A⊗A

T⊗mA

��
A⊗ T ⊗A

ϕ⊗IA // T ⊗A⊗A
T⊗mA // T ⊗A,

(3.15)

A
σ⊗A //

A⊗σ
��

T ⊗A⊗A

T⊗mA

��
A⊗ T ⊗A

ϕ⊗A // T ⊗A⊗A
T⊗mA // T ⊗A,

(3.16)

T
σ⊗T //

T⊗ιA
��

T ⊗A⊗ T
T⊗ϕ // T ⊗ T ⊗A

ν̄⊗A
��

T
T⊗σoo

T⊗ιA
��

T ⊗A T ⊗A⊗A
T⊗mA

oo
T⊗mA

// T ⊗A.

(3.17)

(3.14) is known as cocycle condition, (3.15) is the so called twisted condition,
and (3.16), (3.17) are the unitality conditions.

Proof. This is shown with similar methods as 3.3 and 3.4. tu

We have seen in 2.4 that the composition of two liftable functors can again be
lifted. Another question is if the composition of two ring liftings is again an R-ring.
To ensure this we need an extra condition.

3.6. Yang-Baxter equation. Let A, T , U be (R,R)-bimodules with linear maps

ϕTU : T ⊗R U → U ⊗R T, ϕAT : A⊗R T → T ⊗R A, ϕAU : A⊗R U → U ⊗R A.
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The triple (ϕTU , ϕAT , ϕAU ) is said to satisfy the Yang-Baxter equation if it yields
commutativity of the diagram

A⊗ T ⊗ U

A⊗ϕT U

��

ϕAT⊗U // T ⊗A⊗ U
T⊗ϕAU // T ⊗ U ⊗A

ϕT U⊗A
��

A⊗ U ⊗ T
ϕAU⊗T // U ⊗A⊗ T

U⊗ϕAT // U ⊗ T ⊗A.

It is well-known that over a commutative ring R the twist map tw satisfies the
Yang-Baxter equations for any R-modules A, T , U .

3.7. Tensor product of three R-rings. Let (U,mU , ιU ), (T,mT , ιT ) and
(A,mA, ιA) be R-rings with ring entwinings

ϕTU : T ⊗R U → U ⊗R T, ϕAT : A⊗R T → T ⊗R A, ϕAU : A⊗R U → U ⊗R A.

The following statements are equivalent:

(a) (ϕTU , ϕAT , ϕAU ) satisfies the Yang-Baxter equation;

(b) U ⊗ϕT U
T ⊗− lifts to a monad U ⊗ϕT U

T : AM→ AM by

(IU ⊗ ϕAT ) ◦ (ϕAU ⊗ IT ) : A⊗R U ⊗ϕT U
T → U ⊗ϕT U

T ⊗R A;

(c) U ⊗R T ⊗R A is an R-ring with product

(mU ⊗mT ⊗mA) ◦ (IU ⊗ ϕTU ⊗ ϕAT ⊗ IA) ◦ (IU ⊗ IT ⊗ ϕAU ⊗ IT ⊗ IA)

and unit ιU ⊗ ιT ⊗ ιA.

Proof. The crucial part is the equivalence between (a) and (b). It was shown in 2.4
that the composition U ⊗R T ⊗R− lifts to U ⊗R T : AM→ AM, that is, (3.1) holds
for the R-ring A and the functor U ⊗R T ⊗R −.

To prove commutativity of the rectangle in (3.2), consider the diagram (where
⊗ is replaced by · and obvious identity morphisms are deleted)

A · U · T · U · T
ϕT U //

ϕAU

��

A · U · U · T · T
ϕAU

��

mU //

(1)

A · U · T · T
ϕAU

��

mT // A · U · T
ϕAU

��
U ·A · T · U · T

ϕT U //

ϕAT

��
(2)

U ·A · U · T · T
ϕAU

��

U ·A · T · T
mT //

ϕAT

��
(3)

U ·A · T
ϕAT

��
U · T ·A · U · T

ϕAU

��

U · U ·A · T · T

mU

66lllllllllllll

ϕAT

��

U · T ·A · T
ϕAT

((RRRRRRRRRRRRR U · T ·A

U · T · U ·A · T
ϕT U //

ϕAT
))SSSSSSSSSSSSSS U · U · T ·A · T

mU

66lllllllllllll

ϕAT

,,XXXXXXXXXXXXXXXXXXXXXXXX U · T · T ·A

mT

OO

U · T · U · T ·A ϕT U

// U · U · T · T ·A,

mU

OO
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in which (1) and (3) are commutative since ϕAU and ϕAT are algebra entwinings.
(2) is commutative because of the Yang-Baxter equation, and the other inner di-
agrams are commutative by naturality of the transformations involved. The outer
morphisms yield the rectangle in (3.2) for the entwining between U ⊗ϕT U

T and A.

(c)⇒(a) Assume (d) holds. Then the diagram for (3.2) in the preceding proof
has to be commutative. Entering the diagram with the map

IA ⊗ ιU ⊗ IT ⊗ IU ⊗ ιT : A⊗R T ⊗R U → A⊗R U ⊗R T ⊗R U ⊗R T,

a short argument shows that the Yang-Baxter equation is satisfied.

The remaining assertions are shown by similar arguments. tu

3.8. Examples. For commutative rings R and R-algebras A, T , the twist map
tw : A ⊗R T → T ⊗R A is an algebra entwining. This gives the product usually
considered on T ⊗R A. Furthermore, for any R-algebra U , tw satisfies the evolving
Yang-Baxter equations thus inducing an algebra structure on U ⊗R T ⊗R A.

For a non-commutative ring R it is more difficult to find examples. For any
R-ring A and T = A, the map (e.g. Nuss [22])

ϕ : A⊗R A→ A⊗R A, a⊗ b 7→ ab⊗ 1A + 1A ⊗ ab− a⊗ b, (3.18)

is a ring entwining satisfying the Yang-Baxter equations thus making A ⊗ϕ A and
multiple tensor products A⊗R A⊗R · · · ⊗R A associative rings.

Other examples evolve in the theory of birings (see 5.4).

3.9. Remarks. The ring entwining in 3.3 corresponds to the twisted tensor product
considered by Čap e.a. [12] and is also known as smash product of algebras (e.g.
Caenepeel e.a. [10]). It is a special case of the distributive laws considered in Beck
[2] for functors on arbitrary categories.

The multiplication considered in 3.5 is similar to Brzeziński’s construction in [5,
Proposition 2.1] which is formulated for functors on categories in [28, 4.8]. These are
special cases of the notion of a wreath defined as a monad in a particular 2-category
by Lack and Street [17]. In the category of sets this may be seen as a generalisation
of the wreath product of groups ([17, Example 3.2]). In [17, Example 3.3] it is also
outlined how Sweedler’s crossed product of Hopf algebras can be described in terms
of wreaths.

The product on T ⊗RA chosen in 3.4 is called wreath product in El Kaoutit [15,
Proposition 1.11] (for strict monoidal categories) and a universal property of it is
formulated in [15, Proposition 1.14].

The general form of the Yang-Baxter equation 3.6 and its application in 3.7 is
considered in Bourn [4]. In particular it is used there to insure an algebra structure
on multiple products of a monad, generalising the cases considered in Nuss [22] (see
3.8) and Menini and Stefan [19]. Yang-Baxter operators in context with algebras,
coalgebras and entwinings are also studied by Brzeziński, Dǎscǎlescu and Nichita
in [21], [13], [8].
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Given an R-ring (H,m, e) and a ring entwining τ : H ⊗R H → H ⊗R H, it
is shown in [20, 6.9] that (H,m ◦ τ, e) is again an R-ring with ring entwining τ ,
provided τ satisfies the Yang-Baxter equation (holds in general categories).

4. Lifting of endofunctors to comodule categories

First we recall the dual notion of an R-ring.

4.1. R-corings. Given a ring R, an (R,R)-bimodule C is said to be an R-coring
provided there are (R,R)-bilinear maps, comultiplication and counit,

∆C : C → C ⊗R C, εC : C → R,

subject to coassociativity and counitality conditions.
In categorical terminology these conditions describe a comonad on the category

of left (or right) R-modules RM, that is, an (R,R)-bimodule C is an R-coring if
and only if C ⊗R − : RM→ RM is a comonad (e.g. [3, 4.2]).

4.2. C-comodules. A left C-comodule is a left R-module M with an R-linear map

%M : M → C ⊗RM,

satisfying the coassociativity and counitality conditions

(∆⊗ IM ) ◦ %M = (IC ⊗ %M ) ◦ %M , (εC ⊗ IM ) ◦ %M = IM .

A C-comodule morphism f : M → N between left C-comodules M and N ,
is an R-linear map with (IC ⊗ f) ◦ ρM = ρN ◦ f . The set of all these mor-
phisms is denoted by HomC(M,N); it is an abelian group and hence the cate-
gory of left C-comodules with these morphisms, denoted by CM, is additive. The
C-endomorphisms EndC(M) := HomC(M,M) form a subring of EndR(M).

The (free) functor for the R-coring C,

C ⊗R − : RM→ CM, M 7→ (C ⊗RM,∆C ⊗ IM ),

is right adjoint to the forgetful functor CU : CM → RM by the bijection, for
N ∈ CM,

HomC(N,C ⊗RM)→ HomR(UC(N),M), g 7→ (εC ⊗ IM ) ◦ g.

Right C-comodules are defined symmetrically and given an R-coring C and an
S-coring D, an (S,R)-bimodules M is called a (D,C)-bicomodule if it has a left D-
comodule M% : M → D⊗SM and a right C-comodule structure %M : M →M⊗RC
with a commutative diagram

M
%M

//

M%

��

M ⊗R C
M%⊗C
��

D ⊗RM
D⊗%M

// D ⊗RM ⊗R C.
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4.3. Cotensor product. For a right C-comodule %N : N → N ⊗R C and a left
C-comodule M% : M → C ⊗R M , the cotensor product N ⊗C M is defined as the
equaliser in MZ (e.g. [9, Sections 21]),

N ⊗C M // N ⊗RM
%N⊗M //

N⊗M%

// N ⊗R C ⊗RM .

The cotensor product need not be associative. Nevertheless, one has the comodule
isomorphism

M% : M → C ⊗C M, εC ⊗C IM : C ⊗C M →M.

Moreover, since M ' C⊗CM is an R-direct summand of C⊗RM , for any T ∈MR,
we get an isomorphism

T ⊗R (C ⊗C M) ' (T ⊗R C)⊗C M.

For any f : N → N ′ in MC and g : M → M ′ in CM, the cotensor product of
morphisms f ⊗C g is defined (similar to the module case).

Replacing rings by corings and proceding in a similar way as in 2.3 one obtains

4.4. Applegate’s theorem for corings. For rings R, S, let (C,∆C , εC) be an
R-coring, (D,∆D, εD) an S-coring, and T an (S,R)-bimodule.

The liftings T̂ : CM → DM of the functor T ⊗R − : RM → SM are in bijective
correspondence with those (S,R)-bilinear maps ω : T ⊗R C → D⊗S T which induce
commutativity of the diagrams

T ⊗R C
T⊗∆C//

ω

��

T ⊗R C ⊗R C
ω⊗C // D ⊗S T ⊗R C

D⊗ω
��

D ⊗S T
∆D⊗T // D ⊗S D ⊗S T,

T ⊗R C

ω

��

T⊗εC // T

D ⊗S T
εD⊗T

;;wwwwwwwww
.

For any M ∈ CM, the lifting is given by

T̂ (M) = T ⊗RM ' T ⊗R (C ⊗C M) ' (T ⊗R C)⊗C M

where T ⊗R C is a (D,C)-bicomodule with left D-comodule structure

T ⊗R C
T⊗∆ // T ⊗R C ⊗R C

ω⊗C // D ⊗S T ⊗R C.

4.5. Composition of liftings to comodules. For rings R, S, Q, consider an
R-coring C, an S-coring D, and a Q-coring E. Let T be an (S,R)-bimodule, U a
(Q,S)-bimodule, and assume that

(i) T ⊗R − : RM→ SM lifts to T̂ : CM→ DM by ω : T ⊗R C → D ⊗S T ,

(ii) U ⊗S − : RM→ QM lifts to Û : DM→ EM by ω′ : U ⊗S D → E ⊗Q U .

Then U ⊗S T ⊗R − lifts to Û ⊗S T : CM→ EM by the (Q,R)-bilinear map

U ⊗S T ⊗R C
U⊗ω // U ⊗S D ⊗S T

ω′⊗T // E ⊗Q U ⊗S T.
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For any M ∈ CM, the lifting is given by

Û ⊗S T (M) = U ⊗S T ⊗RM ' (U ⊗S T ⊗R C)⊗C M

where U ⊗S T ⊗R C is an (E,C)-bicomodule with left E-comodule structure

U⊗ST⊗RC
U⊗T⊗∆// U⊗ST⊗RC⊗RC

U⊗ω⊗C// U⊗SD⊗ST⊗RC
ω′⊗T⊗C// E ⊗Q U ⊗S T ⊗R C.

We now specialise to the case R = S and C = D.

4.6. Lifting endofunctors to comodules. Let C be an R-coring and T an (R,R)-
bimodule. Then a functor T̂ : CM → CM is a lifting of T ⊗R − if and only if the
diagram

CM
bT //

CU

��

CM
CU

��
RM

T⊗R− //
RM

is commutative where CU denotes the forgetful functor. In this case Applegate’s
theorem says that the liftings T̂ of the functor T⊗R− are in bijective correspondence
with the (R,R)-bilinear maps ω : T ⊗R C → C ⊗R T which induce commutativity
of the diagrams

T ⊗R C
T⊗∆C//

ω

��

T ⊗R C ⊗R C
ω⊗C // C ⊗R T ⊗R C

C⊗ω
��

C ⊗R T
∆C⊗T // C ⊗R C ⊗R T,

T ⊗R C

ω

��

T⊗εC // T

C ⊗R T
εC⊗T

;;wwwwwwwww
.

(4.1)

For any M ∈ CM the lifting is given by

T̂ (M) = T ⊗RM ' (T ⊗R C)⊗C M,

where T ⊗R C is a (C,C)-bicomodule with left C-comodule structure

T ⊗R C
T⊗∆ // T ⊗R C ⊗R C

ω⊗C // C ⊗S T ⊗R C.

Assume in 4.6, T is also an R-coring. Then the question arises under which
conditions the lifting is again an R-coring.

4.7. Tensor product of R-corings. Given R-corings (T,∆T , εT ) and (C,∆C , εC),
the tensor product T ⊗R C is again an (R,R)-module and an (R,R)-bilinear map

ω : T ⊗R C → C ⊗R T,
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induces a coproduct ∆ω on T ⊗R C,

T ⊗ T ⊗ C
T⊗T⊗∆C

((QQQQQQQQQQQQQ

T ⊗ C

∆T⊗C
88qqqqqqqqqq

T⊗∆C &&MMMMMMMMMM T ⊗ T ⊗ C ⊗ C
T⊗ω⊗C// T ⊗ C ⊗ T ⊗ C

T ⊗ C ⊗ C
∆T⊗C⊗C

66mmmmmmmmmmmmm
.

If ∆ω is coassociative and

εT ⊗ εC = εC ◦ (εT ⊗ IC) = εc ◦ (IT ◦ εC)

is a counit for ∆ω, the R-coring (T ⊗RC,∆ω, εT ⊗εC) is called the smash coproduct
of T and C. For this ω has to satisfy certain conditions.

4.8. Coring entwinings. For R-corings T , C, and an (R,R)-bilinear morphism
ω : T ⊗R C → C ⊗R T , the following are equivalent:

(a) T ⊗ω C := (T ⊗R C,∆ω, εT ⊗ εC) is an R-coring;

(b) ω induces commutativity of (4.1) and the diagrams

T ⊗ C

ω

��

∆T⊗IC// T ⊗ T ⊗ C
IT⊗ω // T ⊗ C ⊗ T

ω⊗IT

��
C ⊗ T

IC⊗∆T // C ⊗ T ⊗ T,

T ⊗ C
εT⊗IC //

ω

��

C

C ⊗ T
IC⊗εT

<<xxxxxxxxx
;

(4.2)

(c) ω induces commutativity of (4.1) and

∆T ⊗ IC : T ⊗ C → T ⊗ T ⊗ C, εT ⊗ IC : T ⊗ C → C,

are (C,C)-bicolinear morphisms.

If these conditions hold, the monad T ⊗R − can be lifted to a comonad T̂ :
CM→ CM, and for M ∈ CM,

T̂ (M) = T ⊗RM ' (T ⊗R C)⊗C M,

where T⊗ωC is an R-coring, and (T,C, ω) is called a coring (or coalgebra) entwining.

Similar to the product on the tensor product for R-rings, we observe that the
coproduct defined in 4.7 does not need an explicit coring structure on T but can be
expressed by the morphisms ∆T⊗C and εT⊗IC which are left and right C-colinear.

4.9. Liftings as R-corings I. Let (C,∆C , εC) be an R-coring and T an (R,R)-
bimodule such that T⊗R− can be lifted to a functor T̂ : CM→ CM by the entwining
ω : T ⊗R C → C ⊗R T (see 4.1) and assume there are given (C,C)-bicolinear
morphisms

τ : T ⊗ C → T ⊗ T ⊗ C, χ : T ⊗ C → C.
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Then the lifting T̂ induces an R-coring structure on T ⊗R C with comultiplication

T ⊗ C τ // T ⊗ T ⊗ C
T⊗T⊗∆ // T ⊗ T ⊗ C ⊗ C

T⊗ω⊗C // T ⊗ C ⊗ T ⊗ C

and counit εC ◦ χ if and only if the data induce commutativity of the diagrams

T ⊗ C τ //

=
&&MMMMMMMMMM T ⊗ T ⊗ C

T⊗χ
��

T ⊗ C,

T ⊗ C τ //

ω

��

T ⊗ T ⊗ C

T⊗ω
��

C ⊗ T T ⊗ C ⊗ T,
χ⊗T
oo

(4.3)

T ⊗ C τ //

τ

��

T ⊗ T ⊗ C
T⊗τ // T ⊗ T ⊗ T ⊗ C

T⊗T⊗ω
��

T ⊗ T ⊗ C
T⊗ω // T ⊗ C ⊗ T

τ⊗T // T ⊗ T ⊗ C ⊗ T.

(4.4)

Proof. The proof is dual to that of 3.4. tu

Given right C-comodule morphisms τ : T ⊗C → T ⊗T ⊗C and χ : T ⊗C → C,
one may form

τ : T ⊗ C τ // T ⊗ T ⊗ C
T⊗T⊗εC // T ⊗ T , χ : T ⊗ C χ // C

εC // R ,

from which we can regain the initial maps

τ = (τ ⊗ IC) ◦ (IT ⊗∆C), χ = (χ⊗ IC) ◦ (IT ⊗∆C).

Thus τ and χ may be used to define an R-coring structure on T ⊗R C.

4.10. Liftings as R-corings II. Let (C,∆C , εC) be an R-coring and T an (R,R)-
bimodule such that T⊗R− can be lifted to a functor T̂ : CM→ CM by the entwining
ω : T ⊗R C → C ⊗R T (see 4.1) and assume there are given (C,C)-bicolinear
morphisms

τ : T ⊗ C → T ⊗ T, χ : T ⊗ C → R.

Then the lifting T̂ induces an R-coring structure on T ⊗R C with comultiplication
∆

T · C
T⊗∆C // T · C · C

τ⊗C // T · T · C
T⊗T⊗∆C // T · T · C · C

T⊗ω⊗C// T · C · T · C

and counit χ if and only if the data induce commutativity of the diagrams

T ⊗ C

T⊗∆C

��

T⊗∆C // T ⊗ C ⊗ C
τ⊗C // T ⊗ T ⊗ C

T⊗τ
��

T ⊗ C ⊗ C
τ⊗C // T ⊗ T ⊗ C

T⊗ω // T ⊗ C ⊗ T
τ⊗T // T ⊗ T ⊗ T,

(4.5)
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T ⊗ C

T⊗∆C

��

T⊗∆C // T ⊗ C ⊗ C
ω⊗C // C ⊗ T ⊗ C

C⊗τ
��

T ⊗ C ⊗ C
τ⊗C // T ⊗ T ⊗ C

T⊗ω // T ⊗ C ⊗ T
ω⊗T // C ⊗ T ⊗ T,

(4.6)

T ⊗ C

T⊗∆C

��

T⊗∆C // T ⊗ C ⊗ C
ω⊗C // C ⊗ T ⊗ C

C⊗χ
��

T ⊗ C ⊗ C
χ⊗C // C,

(4.7)

T ⊗ C

T⊗εC

��

T⊗∆C // T ⊗ C ⊗ C

τ⊗C
��

T ⊗ C
T⊗∆Coo

T⊗εC

��
T T ⊗ T ⊗ C

T⊗χoo T⊗ω // T ⊗ C ⊗ T
χ⊗T // T.

(4.8)

Proof. The assertions are dual to those in 3.5. tu

Recall from 4.5 that the composition of liftable functors is again liftable. Similar
to the case of rings (compare 3.7), to lift the composition of two corings, that is, to
get a coring structure on the tensor product of three R-corings, we need again the
Yang-Baxter equation 3.6.

4.11. Tensor product of three corings. Let (C,∆C , εC), (T,∆T , εT ), and
(U,∆U , εU ) be three R-corings with coring entwinings

ωTC : T ⊗R C → C ⊗R T, ωUC : U ⊗R C → C ⊗R U, ωUT : U ⊗R T → T ⊗R U.

The following statements are equivalent:

(a) (ωTC , ωUC , ωUT ) satisfies the Yang-Baxter equation;
(b) U ⊗R T ⊗R C is an R-coring with coproduct

(IU ⊗ IT ⊗ ωUC ⊗ IT ⊗ IC) ◦ (IU ⊗ ωUT ⊗ ωTC ⊗ IC) ◦ (∆U ⊗∆T ⊗∆C)

and counit εU ⊗ εT ⊗ εC ;
(c) (ωUC⊗IC)◦(IU ⊗ωTC) : U⊗RT ⊗RC → C⊗RU⊗RT is a coring entwining.

4.12. Remarks. For coalgebras C, T , the coring entwining in 4.8 is known as
smash coproduct (e.g. Caenepeel e.a. [10]) and is just the dual of Beck’s distributive
laws. It can also be found in [9, 2.14]. The constructions listed in 4.9 and 4.10
dualise the wreath product defined in Lack and Street [17]. This is called cowreath
in El Kaoutit [14,15] and, for example, the situation considered in 4.9 corresponds
to [14, Proposition 2.2] (for strict monoidal categories). A universal property of
the cowreath product is given in [15, Proposition 1.7]. The use of the Yang-Baxter
equation 3.6 for the tensor product of three R-corings is an obvious dualisation of the
ring case. Given an R-coring (H, δ, ε) and a coring entwining τ : H⊗RH → H⊗RH,
it follows from [20, 6.9] that (H, τ ◦ δ, ε) is also a coring with coring entwining τ ,
provided τ satisfies the Yang-Baxter equation (holds in general categories).
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5. Mixed liftings

Given an R-ring (A,mA, ιA) and an R-coring (C,∆C , εC), we may consider T = C

in the diagram in 3.1, and T = A in the diagram 4.6. This yields the diagrams

AM C //

AU

��

AM

AU

��
RM

C⊗R− //
RM,

CM
bA //

CU

��

CM
CU

��
RM

A⊗R− //
RM.

In both cases the lifting properties are related to an (R,R)-bilinear map

ψ : A⊗R C → C ⊗R A.

The lifting in the left hand case requires commutativity of the diagrams (see 3.1)

A⊗R A⊗R C

A⊗ψ
��

mA⊗C // A⊗R C

ψ

��
A⊗R C ⊗R A

ψ⊗A // C ⊗R A⊗R A
C⊗mA // C ⊗R A,

C

C⊗ιA ##G
GGGGGGGG

ιA⊗C // A⊗R C

ψ

��
C ⊗R A,

(5.1)

whereas the lifting to CM needs commutativity of (see 4.1)

A⊗R C
A⊗∆C//

ψ

��

A⊗R C ⊗R C
ψ⊗C // C ⊗R A⊗R C

C⊗ψ
��

C ⊗R A
∆C⊗A // C ⊗R C ⊗R A,

A⊗R C

ψ

��

A⊗εC // A

C ⊗R A
εC⊗A

;;wwwwwwwww
.

(5.2)

The functor C is just C⊗RA⊗A− where C⊗RA is considered as (A,A)-bimodule
(see 3.1). The conditions to make it an A-coring by the coproduct ∆

C ⊗R A
∆C⊗A// C ⊗R C ⊗R A

' // (C ⊗R A)⊗A (C ⊗R A)

turns out to be commutativity of the diagrams in (5.2). For example, left A-linearity
of ∆ means commutativity of the diagram

A⊗R C ⊗R A
A⊗∆C⊗A//

ψ⊗A
��

A⊗R C ⊗R C ⊗A
ψ⊗C⊗A // C ⊗R A⊗R C

C⊗ψ
��

C ⊗R A⊗R A
∆C⊗A⊗A //

C⊗mA

��

C ⊗R C ⊗R A⊗R A

C⊗C⊗mA

��
C ⊗R A

∆C⊗A // C ⊗R C ⊗R A,

in which the upper part is commutative if the rectangle in 5.2 is so, and the lower
part is commutative by naturality.

On the other hand, to define a product and a unit for the lifting Â, That is, to
make it a monad, the diagrams in (5.1) are to be commutative: for the product we
need that

mA ⊗ IC : A⊗R A⊗R C → A⊗ C
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is left C-colinear and (dual to the argument above) this is equivalent to commuta-
tivity of the rectangle in (5.1).

By 4.6, the functor Â is equal to A⊗RC⊗C− with A⊗RC a (C,C)-bicomodule.
Then A ⊗R C has a structure of the following type introduced in Brzeziński [6,
Section 6] and also addressed as semialgebras in Positselski [23]:

5.1. C-rings. Let C be an R-coring. A (C,C)-bicomodule (H,H%, %H) is called a
C-ring if (H ⊗C H) ⊗C H = H ⊗C (H ⊗C H), and there are (C,C)-bicomodule
morphisms

µH : H ⊗C H → H, ηH : C → H,

inducing commutativity of the diagrams

H ⊗CH ⊗CH
µH⊗CH//

H⊗CµH

��

H ⊗CH
µH

��
H ⊗CH

µH // H,

C ⊗C H
ηH⊗CH// H ⊗CH

µH

��

H ⊗C C
H⊗CηHoo

H

H%

OO

= // H
= // H.

%H

OO (5.3)

Summarising these observations we obtain:

5.2. Mixed entwinings. Let (A,mA, ιA) an R-ring, (C,∆C , εC) an R-coring, and
ψ : A⊗R C → C ⊗R A an (R,R)-bilinear map. Then the following are equivalent:

(a) With the structures induced by ψ, C ⊗R A is an A-coring;

(b) the diagrams in (5.1) and (5.2) are commutative;

(c) with the structures induced by ψ, A⊗R C is a C-ring;

(d) ψ induces a lift of C ⊗R − to a comonad C : AM→ AM;

(e) ψ induces a lift of A⊗R − to a monad Â : CM→ CM.

If these conditions hold we call (C,A, ψ) a mixed entwining.

Proof. We only prove (b)⇒(c), that is, we show that A ⊗R C has the structure of
a C-ring. Its right comodule structure is the obvious one and its left C-comodule
structure is given by

A⊗R C
A⊗∆C// A⊗R C ⊗R C

ψ⊗C // C ⊗R A⊗R C

From the isomorphisms for the cotensor product (see 4.3) we obtain for anyM ∈ CM
the associativity property

((A⊗R C)⊗C (A⊗R C))⊗C M ' (A⊗R C)⊗C ((A⊗R C)⊗C M).

Multiplication on A⊗R C is given by

(A⊗R C)⊗C (A⊗R C)
A⊗εC⊗CA⊗C // A⊗R A⊗R C

mA⊗C // A⊗R C
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and we have a morphism ηA⊗C = ιA ⊗ IC : C → A ⊗R C which obviously is right
C-colinear and is left C-colinear by commutativity of the diagram (apply (5.1))

C

∆

��

ιA⊗C // A⊗ C
A⊗∆ // A⊗ C ⊗ C

ψ⊗C
��

C ⊗ C
C⊗ιA⊗C

//
ιA⊗C⊗C

44iiiiiiiiiiiiiiiiiii
C ⊗A⊗ C.

As outlined above, left C-colinearity of multiplication follows by the commutative
rectangle in (5.2).

For the left hand diagram for ηA⊗C in (5.3) consider the diagram

C ⊗A⊗ C
ιA⊗C⊗A⊗C// A⊗ C ⊗A⊗ C

A⊗εC⊗A⊗C

**UUUUUUUUUUUUUUUU

A⊗ C ⊗ C

ψ⊗C

OO

ιA⊗C⊗C // A⊗A⊗ C ⊗ C

A⊗ψ⊗C

OO

A⊗A⊗εC⊗C
//

mA⊗C
��

A⊗A⊗ C

mA⊗C
��

A⊗ C
A⊗∆C //

A⊗∆C

OO

A⊗ C ⊗ C
A⊗εC⊗C // A⊗ C,

in which commutativity of the triangle follows from (5.2) and the other diagrams
are commutative by naturality. Noticing that the image of (ψ ⊗ IC) ◦ (IA ⊗∆C) is
equal to C ⊗C (A⊗R C) we obtain the conditions required.

Commutativity of the right hand rectangle for ηA⊗C in (5.3) is seen by commu-
tativity of the diagram

A⊗ C ⊗ C
A⊗C⊗ιA⊗C //

A⊗εC⊗C

&&MMMMMMMMMM A⊗ C ⊗A⊗ C

A⊗εC⊗A⊗C
��

A⊗ C

A⊗∆C

OO

= // A⊗ C
A⊗ιA⊗C // A⊗A⊗ C

mA⊗C // A⊗ C,

taking into account that the image of IA ⊗∆ is (A⊗ C)⊗C C.
For the remaining assertions and more details about mixed entwinings the reader

is referred to [9]. tu

5.3. Entwining two R-rings with an R-coring. Let (A,mA, ιA), (B,mB , ιB)
be R-rings with a ring entwining ϕBA : B ⊗R A → A ⊗R B, and (C,∆C , εC) an
R-coring with mixed entwinings

ψAC : A⊗R C → C ⊗R A, ψBC : B ⊗ C → C ⊗R B.

Then the following are equivalent:

(a) (ϕBA, ψBC , ψAC) satisfies the Yang-Baxter equation;

(b) (ψAC ⊗ IB) ◦ (IA ⊗ ψBC) : A ⊗ϕBA
B ⊗R C → C ⊗R A ⊗ϕBA

B is a mixed
entwining;

(c) C ⊗R A⊗R B has an A⊗ϕBA
B-coring structure (induced by the ψ’s);
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(d) A⊗R B ⊗R C has a C-ring structure (induced by the ψ’s).

Proof. Recall from 3.3 that a ring entwining ϕBA yields an R-ring A⊗ϕBA
B.

The crucial step in (a)⇒(b) is to prove commutativity of the rectangle in (5.1).
For this consider the diagram (where ⊗R is replaced by · and obvious identity maps
are deleted)

A·B ·A·B ·C
ϕBA //

ψBC

��

A·A·B ·B ·C
ψBC

��

mB //

(1)

A·A·B ·C
ψBC

��

mA // A·B ·C
ψBC

��
A·B ·A·C ·B

ϕBA //

ψAC

��
(2)

A·A·B ·C ·B
ψBC

��

A·A·C ·B
mA //

ψAC

��
(3)

A·C ·B
ψAC

��
A·B ·C ·A·B
ψBC

��

A·A·C ·B ·B

mB

77nnnnnnnnnnnn

ψAC

��

A·C ·A·B
ψAC

((PPPPPPPPPPPP C ·A·B

A·C ·B ·A·B
ϕBA //

ψAC ((QQQQQQQQQQQQQ A·C ·A·B ·B
mB

77nnnnnnnnnnnn

ψAC

++WWWWWWWWWWWWWWWWWWWWW C ·A·A·B

mA

OO

C ·A·B ·A·B ϕBA

// C ·A·A·B ·B,

mB

OO

in which (1) and (3) are commutative because ψAC and ψBC are mixed entwin-
ings; (2) is commutative because of the Yang-Baxter equation, and the other inner
diagrams are commutative because of naturality of the transformations involved.
The outer morphisms yield the rectangle in (5.1) for the mixed entwining between
A⊗ϕBA

B and C.
The remaining assertions follow by arguments similar to those used for rings and

corings. tu

5.4. R-birings. An R-biring B = (B,B, λ) is an (R,R)-bimodule B which is an
R-ring B = (B,m, e) and an R-coring B = (B,∆, ε) with commutative diagrams

B ⊗R B
B⊗ε //

m

��

B

ε

��
B

ε // R,

R
e //

e

��

B

∆

��
B

e⊗B
// B ⊗R B,

R
e //

=
  @

@@
@@

@@
B

ε

��
R,

(5.4)

and a mixed entwining λ : B ⊗R B → B ⊗R B inducing commutativity of the
diagram

B ⊗R B
m //

B⊗∆

��

B
∆ // B ⊗R B

B ⊗R B ⊗R B
λ⊗B

// B ⊗R B ⊗R B.

B⊗m

OO (5.5)
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The first diagrams in (5.4) just mean that ε : B → R is a ring morphism or
a B-module morphism and e : R → B is a coring morphism or a B-comodule
morphism.

The commutativity of (5.5) can be read as m being left B-colinear with respect
to the left B-comodule structure on B⊗RB induced by λ or else as left B-linearity
of ∆ with respect to the left B-module structure on B ⊗R B induced by λ.

It follows from 5.2 that these conditions imply that B ⊗R B is a B-coring and
B ⊗R B is a B-ring.

The conditions required in 5.4 make the functor B ⊗R − a bimonad on RM in
the sense of [20, Definition 4.1]. In general they do not imply the same property for
the functor − ⊗R B on MR. The definition of a bimonoid in monoidal categories
given in [15, Definition 2.3] corresponds to the τ -bimonad for a double entwining
τ : B⊗RB → B⊗RB defined in [20, 6.2]. To ensure that the tensor product B⊗RB
is again of this type, τ has to satisfy the Yang-Baxter equation (see [20, 6.8]).

Over commutative rings R, the definition 5.4 is close to the notion of bialgebras.
Classically their definition is based on the twist map tw : B ⊗R B → B ⊗R B and
the mixed entwining is given by (e.g. [3, 7.1])

B ⊗B
∆⊗B // B ⊗B ⊗B

B⊗tw // B ⊗B ⊗B
m⊗B // B ⊗B.

In this case the compatibility conditions can be expressed by requiring that m and
e are coalgebra morphisms, equivalently, ∆ and ε are algebra morphisms (with
product and coproduct on B ⊗R B induced by tw).

Among bialgebras, Hopf algebras are characterised by the fact that the functor
B ⊗R − : RM→ B

BM is an equivalence (e.g. [20, Theorem 6.12]).
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to the literature.
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