
On p-injective rings

Gennadi Puninski

Russian Social Institute, Moscow, Russia

Robert Wisbauer

Mathematical Institute, University of Düsseldorf, Germany

and

Mohamed Yousif

Ohio State University, USA

Abstract

A ring R is called right principally injective (p-injective) if every R-homomor-
phism from a principal right ideal to R is left multiplication by an element of
R . In a recent paper Nicholson and Yousif showed that a left uniserial ring R

is right p-injective if and only if J(R) = Z(RR). Here we show that the same is
true for (two-sided) serial rings by using model theory and the structure of finitely
presented modules over serial rings. Another criteria for checking right p-injectivity
for serial rings is provided. Moreover we show that a semiperfect right duo right
p-injective ring is right continuous.

R is said to be a completely right p-injective ring if every factor ring of R is
right p-injective. For such rings the lattice of two-sided ideals is distributive. A
right duo ring with this property is a direct sum of uniserial rings with nil Jacobson
radical provided it has no infinite set of orthogonal idempotents.
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1 Definitions and preliminary results

Throughout this paper R will be an associative ring with unity and all R-modules

are unitary. The right (resp. left) annihilator in R of a subset X of a module is denoted

by r(X) ( resp. l(X)). The Jacobson radical of R is denoted by J(R) , the singular

ideals are denoted by Z(RR) and Z(RR) and the socles by Soc(RR) and Soc(RR) . For

a module M , E(M) and PE(M) denote the injective and pure-injective envelopes of

M , respectively. For a submodule A ⊆ M , the notation A ⊆⊕ M will mean that A is a

direct summand of M .

A module MR is called p-injective if for every a ∈ R , every R-linear map from aR to

M can be extended to an R-linear map from R to M . R is called right p-injective if RR

is p-injective. Recall that a module MR is called uniserial if its submodules are linearly

ordered by inclusion and serial if it is a direct sum of uniserial submodules. A ring R is

right uniserial (serial) if RR is uniserial (serial).

We record some well known results on serial and p-injective rings.

1.1 Lemma [5, 6] Let R be any ring.

(1) R is right p-injective if and only if l(r(a)) = Ra for every a ∈ R .

(2) If R is right p-injective then J(R) = Z(RR) .

(3) If R is left uniserial then R is right p-injective if and only if J(R) = Z(RR) .

(4) If R is right p-injective and A, B1, . . . , Bn are two-sided ideals of R then

A ∩ (B1 ⊕ . . .⊕Bn) = (A ∩B1)⊕ . . .⊕ (A ∩Bn).

1.2 Lemma [11, p.200, Theorem 3.3] Let R be a serial ring, P a finitely generated pro-

jective R-module, and M a finitely generated submodule of P . Then there is a decompo-

sition P = P1⊕. . .⊕Pn with indecomposables Pi such that M = (M∩P1)⊕. . .⊕(M∩Pn) .

The next two statements are proved using model theory for modules.

1.3 Lemma [3] let R be an arbitrary ring and M a finitely presented module over R .

Then PE(M) is indecomposable if and only if M has a local endomorphism ring.
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1.4 Lemma [7] Let R be a serial ring and M a pure-injective indecomposable module

over R . Then either M is injective or, for every primitive idempotent e ∈ R and every

nonzero element m ∈ Me , there exists an element r ∈ R such that m ∈ E(M)re and

m 6∈ Mre .

1.5 Lemma [5, Corollary 2.2, Theorem 2.3] Let R be a semiperfect right p-injective ring

with Soc(RR) essential as a right ideal in R . Then Soc(RR) = Soc(RR) is essential as

a left ideal and Z(RR) = J(R) = Z(RR).

Recall that a right R-module M is called fp-injective if every R-linear map from a

finitely generated submodule of a free R-module F to M can be extended to an R-linear

map from F to M . Evidently every fp-injective module is p-injective and the converse

is true for some classes of rings including serial rings, see [8]. In the serial ring case we

give a short proof to this fact using the above cited Warfield’s result.

1.6 Lemma Every right p-injective module M over a serial ring R is fp-injective.

Proof. Let N be a finitely generated submodule of a free module P of finite rank and

f a homomorphism from N into M . In view of Lemma 1.2 we may assume that N

is a finitely generated submodule of an indecomposable projective module eR for some

primitive idempotent e ∈ R . Since eR is uniserial, it follows that N is cyclic. Now the

existence of the desired extension follows from p-injectivity of M . 2

2 Serial p-injective rings

Now we formulate our criteria for serial rings to be right p-injective.

2.1 Theorem For a serial ring R with a complete set of primitive orthogonal idempotents

{e1. . . . , en} the following conditions are equivalent:

(a) R is right p-injective.

(b) R is right fp-injective.

(c) J(R) = Z(RR) .

(d) For any pair of indices i, j ≤ n and any r ∈ R with 0 6= eirej ∈ J(Rej) there exists

s ∈ R and k ≤ n , such that ejsek 6= 0 and eirejsek = 0 .
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Proof. The equivalence between (a) and (b) follows from Lemma 1.6 and the implication

(b) ⇒ (c) follows from Lemma 1.1.

(c) ⇒ (d). If 0 6= eirej ∈ J(Rej) then eirej ∈ J(R) = Z(RR) , hence r(eirej) is

essential in RR and r(eirej)∩ejR 6= 0 . It follows that eirejs = 0 for some 0 6= ejs ∈ ejR .

Since ejR is uniserial and ejsR = ejse1R + . . . + ejsenR we obtain ejsR = ejsekR for

some k and ejsek is the desired element.

(d) ⇒ (a). Suppose that RR is not p-injective. Then ejR is not p-injective as a right

R-module for some j . Let M be the pure-injective envelope of ejR . Since ejR has

a local (in fact uniserial) endomorphism ring it follows from Lemma 1.3 that M is an

indecomposable pure-injective module. Now if M is injective, it will follow that ejR is

fp-injective since it is a pure submodule of M , a contradiction. By Lemma 1.4, applied

to the element ej ∈ Mej , we can find an element r ∈ R such that ej ∈ E(M)rej and

ej 6∈ Mrej . If rej 6∈ J(Rej) then trej = ej for some t ∈ R . Now, ejt ∈ ejR ⊆ M

implies ej = ejt · rej ∈ Mrej , a contradiction. Hence we may assume rej ∈ J(Rej) .

Since Reirej = Rrej , for some i , it follows eirej ∈ J(Rej) and hence by assumption

eirejsek = 0 for some k and some s ∈ R .

Since ej ∈ E(M)rej we obtain ej = mrej for some m ∈ E(M) . Multiplying this

equality by ejsek from the right side we obtain ejsek = mrej ·ejsek = 0 , a contradiction.

2

2.2 Corollary Let R be a serial right p-injective ring with essential right socle. Then R

is left p-injective with essential left socle.

Proof. From Lemma 1.5 we obtain Z(RR) = J(R) = Z(RR) and the socle of R is

essential in RR . From the Theorem 2.1 it follows that R is left p-injective. 2

2.3 Example Let F be an arbitrary field and consider the ring R F F

0 F


Then R is a (two-sided) serial artinian ring which is neither left nor right p-injective.

Proof. We check this for the right side only. We have e12 ∈ J(Re2)∩e1Re2 and e12s 6= 0

for every nonzero element s ∈ e2R which contradicts (d) of Theorem 2.1. 2

Next we provide an example of a ring R which is right uniserial right artinian right

duo left p-injective ring which is neither right p-injective nor left uniform. Also every
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non-invertible element of R has an essential left and right annihilator. Recall that a ring

R is right duo if every right ideal of R is two-sided.

2.4 Example Let K be a field and K(x) the field of rational functions over K . Let α

be an endomorphism of K(x) which sends x to x2 . Clearly the image of α is K(x2) . Let

R be a matrix ring of the form
 α(a) b

0 a

 : a, b ∈ K(x)

 .

Clearly  0 K(x)

0 0


is the unique non-trivial right ideal of R . If we view K(x) as a vector space over K(x2)

then every proper left ideal of R has the form 0 V

0 0

 ,

where V is a subspace of K(x) . It is easy to check that for every a ∈ J , the Jacobson

radical of R , r(a) = l(a) = J . Clearly R is right artinian right uniserial right duo

and not left uniserial. It follows from Lemma 1.1 that R is left p-injective and not right

p-injective.

3 Semiperfect p-injective rings

In this section we show that semiperfect right p-injective right duo rings are right con-

tinuous. Recall that a module MR is called continuous if it satisfies the following two

conditions: (C1) Every submodule of M is essential in a direct summand, and (C2) If

A and B are submodules of M with A ∼= B and B ⊆⊕ M then A ⊆⊕ M .

In [5, Theorem 1.2], it was shown that if RR is right p-injective then RR satisfies the

C2-condition. In particular, if A and B are right ideals of R with A ⊆⊕ RR, B ⊆⊕ RR

and A∩B = 0 then A⊕B ⊆⊕ RR . If R is right duo we have the following more general

result which is of independent interest.

3.1 Theorem Let R be right p-injective right duo ring. If A and B are right ideals of

R with A ⊆⊕ RR and B ⊆⊕ RR then (A ∩B) ⊆⊕ RR and (A + B) ⊆⊕ RR .
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Proof. Write R = A⊕ A1 = B ⊕B1 for some right ideals A1 and B1 of R .

By Lemma 1.1, B = B ∩ (A⊕ A1) = (B ∩ A)⊕ (B ∩ A1) . Hence

R = (B ∩ A)⊕ (B ∩ A1)⊕B1 and so (A ∩B) ⊆⊕ RR . Also

A + B = A + (B ∩ A)⊕ (B ∩ A1) = (A + (B ∩ A))⊕ (B ∩ A1) = A⊕ (B ∩ A1).

Since both A and (B ∩ A1) are summands of RR , it follows from the remark preceding

the Theorem that A ⊕ (B ∩ A1) is a summand of RR and so A + B is also a summand

of RR . 2

3.2 Lemma Let R be a local right p-injective ring. Then for any non-zero (two-sided)

ideals I and J of R , I ∩ J 6= 0 .

Proof. Suppose that I ∩ J = 0 and let 0 6= u ∈ I, 0 6= v ∈ J . Define the map

ϕ : (u + v)R → R, (u + v)r 7→ ur.

Clearly ϕ is a well defined R-homomorphism. By right p-injectivity, ϕ is given by left

multiplication by an element t ∈ R . Hence t(u + v) = u , and so (1 − t)u = tv = 0 .

Since R is a local ring it follows that u = 0 or v = 0, a contradiction. 2

3.3 Corollary Suppose R is a local right p-injective right duo ring. Then R is right

uniform.

3.4 Remark Note that without the condition right duo the above result is not true.

The ring R given in Example 2.4 is a local left p-injective ring which is not left uniform.

3.5 Theorem Suppose R is a semiperfect right duo right p-injective ring. Then R is

right continuous.

Proof. By Corollary 3.3, clearly R is a direct sum of local right uniform rings Ri . By

[5, Theorem 1.2], any right p-injective ring satisfies the C2-condition. We only need

to show that RR satisfies the C1-condition. Let A be a non-zero right ideal of R and

write R = R1 ⊕ . . . ⊕ Rn . By Lemma 1.1, without loss of generality we may write

A = (A ∩ R1)⊕ . . .⊕ (A ∩ Rk) , for some k ≤ n with A ∩ Ri 6= 0, 1 ≤ i ≤ k . Since each

A ∩ Ri is essential as a right ideal in Ri, 1 ≤ i ≤ k , it follows that AR is essential in

R1 ⊕ . . .⊕Rk ⊆⊕ RR . 2

3.6 Remark Note that the ring R given in Example 2.4 is a left p-injective right artinian

ring which is not left finite dimensional. Hence R can not be left continuous.
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4 Completely p-injective rings

A ring R is called completely right p-injective(right cp-injective) if every ring homomor-

phic image of R is right p-injective. R is called cp-injective if it is both left and right

cp-injective. In this section, for right duo rings, we give a characterization for serial

rings with nil Jacobson radical in terms of cp-injectivity. Recall that a module M is

said to be distributive if its lattice of submodules is distributive: for all A, B, C ⊂ M ,

A ∩ (B + C) = A ∩B + A ∩ C.

4.1 Theorem Let R be a right cp-injective ring. Then the lattice of two-sided ideals of

R is distributive.

Proof. Suppose the lattice of two-sided ideals of R is a non-distributive (modular)

lattice. It follows from [2, Theorem 2] that it contains a minimal non-distributive

modular sublattice consisting of five elements. Hence we can find three noncompa-

rable two-sided ideals I, J and K in R such that I ∩ J = I ∩ K = J ∩ K and

I + J = I + K = J + K . Then factorizing by the common intersection we may suppose

that all these sums are direct and all these intersections are zero. Now by Lemma 1.1 it

follows that 0 6= I = I ∩ (J ⊕K) = (I ∩ J)⊕ (I ∩K) = 0 , a contradiction. 2

4.2 Corollary Every right duo right cp-injective ring is right and left distributive.

Proof. The right distributivity follows from the above Theorem and we can apply the

following result from [9, Corollary 2.10]: every right distributive right p-injective ring is

left distributive. 2

Recall that a ring R is strongly regular if for every a ∈ R there exists b ∈ R such that

a = ba2.

4.3 Lemma For a ring R the following are equivalent:

(a) R is strongly regular;

(b) R is right p-injective with no non-zero nilpotent elements;

(c) R is a semiprime right p-injective right duo ring.

Proof. (a) ⇒ (b), (c) is standard.

(c) ⇒ (a) We adopt the argument given in Example 6 of [5]. Let a ∈ R and set

T = aR ∩ r(a) . Then clearly T is a two-sided ideal of R with T 2 = 0 . Since R is
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semiprime, T = 0 and hence r(a2) = r(a) . By Lemma 1.1 we get Ra = Ra2 and hence

R is (strongly) regular.

(b) ⇒ (a) Note that in rings without non-zero nilpotent elements for every a ∈ R,

r(a) = l(a). Now the same argument as before applies. 2

4.4 Remark More results of the type given in Lemma 4.3 may be found in some of Yue

Chi Ming’s work on p-injectivity (e.g., [14]).

A ring R is π-regular if every descending chain of the form aR ⊇ a2R ⊇ . . . becomes

stationary.

4.5 Lemma Let R be right duo and right cp-injective. Then R is π-regular.

Proof. Let a ∈ R and consider the following ascending chain of right annihilators

r(a) ⊆ r(a2) ⊆ . . . . Let I =
⋃∞

i=1 r(ai) and consider the ring R̄ = R/I . Clearly

rR̄(ā) = 0̄ and hence it follows from Lemma 1.1 that R̄ā = R̄ . So 1 − sa ∈ r(am) for

some s ∈ R and m > 0 . Since R is right duo there exists t ∈ R such that sa = at and

hence am = am+1t from which we infer that R is π-regular. 2

4.6 Theorem For a right duo ring R the following conditions are equivalent:

(a) R is right cp-injective with no infinite set of orthogonal idempotents.

(b) R is cp-injective with no infinite set of orthogonal idempotents.

(c) R is a finite direct sum of (two-sided) uniserial rings with nil Jacobson radical.

Proof. (a) ⇒ (c) By Lemma 4.5, R is π-regular and hence J(R) is a nil ideal and so

idempotents can be lifted modulo J(R) . By assumption and Lemma 4.3, it follows that

R/J(R) is semisimple artinian and hence R is semiperfect. Hence R = R1 ⊕ . . . ⊕ Rn

where each Ri is a local ring which is left and right distributive by Corollary 4.2. Since

local right distributive rings are right uniserial we are done.

(c) ⇒ (b) we may assume that R is uniserial with nil radical J . Let I be any (two-

sided) ideal of R and consider the ring R̄ = R/I . Clearly, every element of J(R̄) has a

nonzero left and right annihilator. Hence by [6, Lemma 1], R̄ is right and left p-injective.

(b) ⇒ (a) is trivial. 2

Notice that any von Neumann regular ring which is not right noetherian is cp-injective

with an infinite set of orthogonal idempotents.
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