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Abstract

In this paper we continue the investigation of the lattice structure

of hereditary pretorsion classes ([4],[5]). We show the existence of pseu-

docomplements and study right supplements for every hereditary pre-

torsion class. Moreover we investigate relations between these concepts

and characterize a class of modules by means of these relations.

1
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1 PRELIMINARIES

Let R be an associative ring with unit and R-Mod the category of unital left

R-modules. In this paper we are going to work in the full subcategory σ[M ]

R-modules whose objects consist of the submodules of M -generated modules.

Notice that this class is closed under direct sums, submodules and factor mod-

ules.

A subclass τ of σ[M ] is called a hereditary pretorsion class if it is closed

under direct sums, submodules and factor modules. Such classes are of type

σ[U ], for some R-module U . We will denote by M -ptors the complete lattice

of hereditary pretorsion classes on σ[M ]. For any τ ∈ M -ptors we write τN

for the corresponding pretorsion submodule of N , for any R-module N , and

we denote by Lτ the corresponding linear filter of left ideals in R.

If C is a subclass of σ[M ], σ[C] will be the unique minimal element of

M -ptors relative to which the elements of C are pretorsion, and Fτ stands for

the torsion free class in σ[M ] that corresponds to any element τ ∈M -ptors,

Fτ = {N ∈ σ[M ] | τN = 0} .

For any couple of elements τ1, τ2∈M -ptors we will denote by (τ1 :τ2) ∈M -ptors

the element such that

(τ1 : τ2)N/τ1N = τ2(N | τ1N) for all N ∈ σ[M ] .

Notice that the corresponding hereditary pretorsion class is given by all ele-

ments N ∈ σ[M ] such that there exists an exact sequence

0→ N ′ → N → N ′′ → 0 ,

where N ′∈τ1 and N ′′∈τ2. This operation is associative and (M -ptors,(−−:−−))

is a semigroup.

We shall denote by M -tors the lattice of all hereditary torsion classes de-

fined in σ[M ]. Notice that an element τ ∈ M -ptors is a hereditary torsion

class if, and only if (τ : τ) = τ . It is easy to see that M -tors is a frame.
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For any subclass C of σ[M ], we will denote by ξ(C) the minimal hereditary

torsion class in σ[M ], relative to which every element in C is a torsion module,

and by χ(C) the maximal hereditary torsion class in σ[M ] relative to which

every element of C is a torsion free module. For any N ∈ σ[M ], the injective

hull of N in σ[M ] will be denoted by N̂ .

For all other concepts, notation and terminology concerning hereditary

pretorsion classes, hereditary torsion classes and lattice theory, the reader is

referred to [1], [2], [3] and [7].

2 PROPERTIES OF M-ptors.

LEMMA 1. Let {τα |α ∈ X} be a family of hereditary pretorsion classes,

then

L∨τα ={RI ≤ R | ∀α ∃ Iα ∈ Lτα with Iα = R for almost all α,∩Iα ⊂ I} .

Proof: Let L={RI ≤ R | ∀α ∃ Iα ∈ Lτα with Iα=R for almost all α,∩Iα ⊂ I}.
It is obvious that L is a linear filter. On the other hand, since Lτα ≤ L for all

α∈X, we have L∨τα ≤ L. The inequality L ≤ L∨τα is immediate. ut

THEOREM 2. (Modular Law). Let ρ, τ, η be elements of M-ptors such

that ρ ≤ τ . Then ρ ∨ (τ ∧ η) = τ ∧ (ρ ∨ η).

Proof: The inequality ρ ∨ (τ ∧ η) ≤ τ ∧ (ρ ∨ η) is immediate.

Now let I ∈ Lτ∧(ρ∨η), by Lemma 1, there exits J ∈ Lρ and K ∈ Lη with

J ∩K ≤ I. Hence J ∩ I∈Lτ , so (I ∩ J) +K∈Lτ∧η. Finally,

J ∩ [(I ∩ J) +K] = (I ∩ J) + (J ∩K) ≤ I .

Therefore I∈Lρ∨(τ∧η). ut

In [2] an infinite product of hereditary pretorsion classes is defined as fol-

lows.
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DEFINITION 3. Let {τβ∈M -ptors | β∈X} where X is a well ordered set

of type ε. Write

(a) s1 = τ1

(b) sα+1 = (sα :τα+1).

(c) sα = ∨{sβ | β < α} if α is a limit ordinal,

and put :{τα |α∈X} = sε.

For our next result we will use the following generalization of Proposition

2.5 of [2].

PROPOSITION 4. For each τ1, τ2∈M-ptors

τ1 (τ2(N)) = (τ1 ∧ τ2) (N) = τ2 (τ1(N)) , for any N ∈σ[M ] .

LEMMA 5. For any τ1, τ2 and τ3∈M-ptors,

τ1 ∧ (τ2 :τ3) ≤ (τ1 ∧ τ2) : (τ1∧τ3) .

Proof: Let N ∈σ[M ]. We have

[τ1 ∧ (τ2 :τ3)] (N)/ (τ1 ∧ τ2) (N) = (τ2 :τ3) (τ1N) / (τ2τ1) (N)

= τ1 [(τ2 :τ3) (τ1N)/(τ2τ1)(N)]

= τ1 [τ3 (τ1N/(τ2τ1)(N))]

= (τ1τ3) [τ1N/(τ1 ∧ τ2)(τ1N)]

= [(τ1 ∧ τ2) : (τ1 ∧ τ3)] (τ1N)/(τ1 ∧ τ2)(τ1N)

≤ [(τ1 ∧ τ2) : (τ1 ∧ τ3)] (N)/(τ1 ∧ τ2)(N) .

Therefore [τ1 ∧ (τ2 :τ3)] (N) ≤ [(τ1 ∧ τ2) : (τ1 ∧ τ3)] (N) for all N ∈σ[M ].

From this the lemma follows. ut

THEOREM 6. Let τ be an element of M-ptors, and {τα |α∈X} a family of

elements of M-ptors, where X is a well ordered set of type ε. Then

τ ∧ ( :{τα |α∈X}) ≤:{τ ∧ τα |α∈X} .
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Proof: We proceed by induction over the ordinal ε.

If ε = 1, then the inequality is obvious.

Now, let us assume that ε > 1 and the result is true for any ordinal ν < ε.

Let us write τα = τ ∧ τα and sα as in Definition 3 corresponding to the

family {τα}.
Now τ ∧ sα+1 = τ ∧ (sα :τα+1) and, by Lemma 5,

τ ∧ (sα :τα+1) ≤ (τ ∧ sα) : (τ ∧ τα+1) ≤ (sα :τα+1) = sα+1 .

Now let α be a limit ordinal. Then

τ ∧ sα = τ ∧
(∨
{sβ | β < α}

)
=
∨
{τ ∧ sβ | β < α} ,

the last equality holds because M -ptors is an upper continuous lattice (see [5,

Proposition 4.7]). To finish the proof notice that∨
{τ ∧ sβ | β < α} ≤

∨
{sβ | β < α} = sα .

ut

Observe that if τα ≤ ηα for all α∈X, then:

: {τα |α∈X} ≤:{ηα |α∈X} .

NOTATION 7. Let {τα |α∈X} be a family of hereditary pretorsion classes,

where X is a well ordered set. We write τX =: {τα |α∈X}, provided τα = τ ,

for all α∈X.

The following theorem characterizes those elements of M -ptors which are

hereditary torsion classes.

THEOREM 8. Let τ be a hereditary pretorsion class. Then the following

conditions are equivalent:

(1) τ ∈M-tors.

(2) τ ∧ (η :η) = (τ ∧ η) : (τ ∧ η) for all η∈M-ptors.
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(3) τ ∧ (η1 :η2) = (τ ∧ η1) : (τ ∧ η2) for all η1, η2∈M-ptors.

(4) τ ∧ ηX = (τ ∧ η)X for all η∈M-ptors and for any well ordered set X.

(5) τ∧ : {ηα |α∈X} =: {τ ∧ ηα |α∈X} for any family {ηα |α∈X} in

M-ptors, where X is a well ordered set.

Proof: 1)⇒ 5) Since for all α∈X we have the inequalities τ ∧ τα ≤ τα and

τ ∧ τα ≤ τ , we get

: {τ ∧ τα |α∈X} ≤: {τα |α∈X}

and also

: {τ ∧ τα |α∈X} ≤ τX = τ

by hipothesis. So we obtain

: {τ ∧ τα |α∈X} ≤ τ∧ : {τα |α∈X} .

By Theorem 6 we have the other inequality.

The implications 5)⇒ 4), 5)⇒ 3), 4)⇒ 2) and 3)⇒ 2) are straightforward.

2) ⇒ 1) Take η = τ , then τ ∧ (τ : τ) = (τ ∧ τ) : (τ ∧ τ). Hence τ = (τ : τ)

which implies that τ is a hereditary torsion class. ut

3 PSEUDOCOMPLEMENTS AND RIGHT

SUPPLEMENTS.

Let ξ be the smallest element of M -ptors, and Ω be the largest element of

M -ptors. Notice that ξ is the class {0}, and Ω is the class of all objects in

σ[M ].

DEFINITION 9. Let τ ∈M -ptors. An element ρ ∈M -ptors is called the

right supplement of τ if (τ : ρ) = Ω and ρ is the smallest element of M -ptors

with respect to this property. For the existence of such an element, notice that

(τ :∧ηα) = ∧(τ : ηα) for all τ, ηα∈M -ptors for all α and [2, Proposition 3.13]).
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We will denote by τ (1) the right supplement of τ .

The following theorem gives us several characerizations of τ (1).

THEOREM 10. Let τ, ρ∈M-ptors. The following conditions are equivalent:

(1) ρ = τ (1).

(2) ρ = σ [{N/τN |N ∈ σ[M ]}].

(3) ρ = {N/N ′|N ∈ σ[M ], τN ⊂ N ′}

(4) ρ = σ[M/τM ].

Proof: 1) ⇒ 2) Since (τ :ρ)=Ω, we have for all N ∈σ[M ], (τ :ρ)N=N , there-

fore ρ (N/τN)=N/τN for all N ∈σ[M ], hence σ [{N/τN |N ∈σ[M ]}] ≤ ρ. To

prove the other inequality, let us denote by ρ′ = σ [{N/τN |N ∈σ[M ]}]. Now

for all N ∈ σ[M ] we have that N/τN ∈ ρ′, so N ∈ (τ : ρ′) which means that

(τ :ρ′) = Ω. Thus ρ ≤ ρ′.

2)⇒ 3) ρ′ = {N/N ′ |N ∈ σ[M ], τN ⊂ N ′}. For each N ∈σ[M ] we have

an an epimorphism N/τN → N/N ′, implying ρ′ ≤ ρ. The other inequality is

immediate from the fact that N/τN ∈ρ′, for each N ∈σ[M ].

3)⇒ 4) Let ρ′ = σ [M/τM ]. From (3) we have that M/τM ∈ρ, so ρ′ ≤ ρ.

Now for each N ∈σ[M ] and N ′ ⊂ N such that τN ⊂ N ′ there exists K ∈R-

Mod with a monomorphism N/N ′ → K and a epimorphism (M/τM)(X) → K.

This implies that ρ ≤ ρ′.

4) ⇒ 1) Let N ∈σ[M ]. By (4) we have N/τN ∈ρ, so (τ :ρ) = Ω which

implies τ (1) ≤ ρ.

Let N ∈ ρ. Then there is a monomorphism N → K and an epimorphism

(M/τM)(X) → K. Now since M/τM ∈ τ (1) we conclude N ∈ τ (1), hence

ρ ≤ τ (1). ut

COROLLARY 11. Let τ, ρ∈M-ptors, then τM ⊆ ρM implies ρ(1) ≤ τ (1).

For the special case M = R we have the following results.
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COROLLARY 12. Let τ, ρ∈R-ptors, then τR ⊆ ρR if, and only if ρ(1) ≤
τ (1).

COROLLARY 13. For each τ ∈R-ptors, τ (1) is Jansian. Moreover,

Lτ (1) = {RJ ≤ R | τR ⊆ J} .

DEFINITION 14. Let ϕ : M -ptors→M -tors be given by ϕ(τ) = ξ(τ).

Notice that ϕ(τ) may be obtained as the hereditary torsion class corre-

sponding to the hereditary torsion free class Fτ . It is well known that ϕ(τ)

can also be obtained by means of the Levitzki-Amitsur transfinite process.

REMARK 1. In [3, VI, Propositions 2.5 and 3.3] the hereditary torsion class

generated by a class which is closed under quotients and submodules is char-

acterized. It is clear that this characterization is valid in σ[M ].

COROLLARY 15. Let τ, ρ∈M-ptors, then ϕ(τ ∧ ρ) = ϕ(τ) ∧ ϕ(ρ).

Proof: Since ϕ is order preserving we have ϕ(τ ∧ ρ) ≤ ϕ(τ) ∧ ϕ(ρ).

Now, consider N ∈ϕ(τ)∧ϕ(ρ) and let N ′′ is a nonzero quotient of N . Since

N ′′ ∈ ϕ(τ) it contains a nonzero submodule K ∈ τ . Moreover N ′′ ∈ ϕ(ρ) and

so it contains a nonzero submodule K ′∈ ρ. So we have K ′∈ τ ∧ ρ and hence

N ∈ϕ(τ ∧ ρ). ut

Recall that a pseudocomplement for an element x in any lattice with min-

imal element 0 is a element y of the lattice, which is maximal with respect to

x ∧ y = 0.

We shall use the standard notation τ⊥ to denote the unique pseudocom-

plement of any τ ∈M -tors.

COROLLARY 16. For any τ ∈M-ptors, ϕ(τ)⊥ is the unique pseudocomple-

ment of τ in M-ptors.

Proof: Since ϕ(τ)∧ϕ(τ)⊥ = ξ we have that τ ∧ϕ(τ)⊥ = ξ. If τ ∧ ρ = ξ, then

ϕ(τ) ∧ ϕ(ρ) = ξ, therefore ϕ(ρ) ≤ ϕ(τ)⊥, which implies that ρ ≤ ϕ(τ)⊥. ut
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From now on we will denote by τ⊥ = ϕ(τ)⊥ for any τ ∈M -ptors.

REMARK 2. In many lattices a pseudocomplement does not exist, and when

exist it is almost never unique. Since M -ptors is not even distributive, the

existence of a unique pseudocomplement for each element is a remarkable fact.

The usual properties of the pseudocomplement in M -tors are also valid in

R-ptors, but we want to point out the following one:

COROLLARY 17. Let τ ∈M-ptors, then

τ⊥ = χ {S∈M-simp |S∈τ}

where M-simp denotes a set of representatives of the simple objects in σ[M ].

LEMMA 18. Let τ ∈M-ptors. Then τ⊥ ≤ τ (1).

Proof: Let N ∈ τ⊥, then τN ∈ τ⊥ and since τN ∈ τ we have that τN = 0, so

N ∈τ (1). ut

LEMMA 19. For any τ ∈M-ptors,

ϕ(τ)(1) = {N ′′∈σ[M ] |N ′′ is an image of some N ∈Fτ} = σ[Fτ ] .

Proof: First note that Fτ = Fϕ(τ). Now, let A be the family of homomorphic

images of elements of Fτ . Hence if N ∈ A, by Theorem 10, we have that

N ∈ϕ(τ)(1), and so A ⊂ ϕ(τ)(1).

Finally take N ∈ ϕ(τ)(1), by Theorem 10, there exists an epimorphism

(M/ϕ(τ)M)(X) → N . Since (M/ϕ(τ)M)∈Fτ we get N ∈A. ut

and so A ⊆ ϕ(τ)(1). Finally take N ∈ϕ(τ)(1), by Theorem 10, there exists

an epimorphism (R/ϕ(τ)R)(X) → N . Since R/ϕ(τ)R∈Fτ we get that N ∈A.

PROPOSITION 20. Let τ ∈M-ptors. Then τ⊥ = χ(τ).
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Proof: By Corollary 17, we know that τ⊥ = ϕ(τ)⊥ = χ(τ ∩M -simp), so we

have τ⊥ ≥ χ(τ).

To show the other inequality, take K∈τ⊥ and 0 6= f : K → N̂ a morphism

with N ∈ τ . Let N ′ 6= 0 be a finitely generated submodule of N ∩ im f , and

take S∈M -simp a factor module of N ′. Then there exists a nonzero morphism

h : K → Ŝ which is a contradiction. ut

The following theorem gives us information about the “distance” between

τ⊥ and τ (1).

THEOREM 21. For any τ ∈M-ptors

τ⊥⊆Fτ⊥⊥⊆Fτ⊆ϕ(τ)(1)⊆τ (1) .

Moreover, we have the following properties:

(1) Fχ(τ⊥) = Fτ⊥⊥.

(2) σ [Fτ ] = ϕ(τ)(1).

(3) Let η∈M-ptors be such that η ⊆ Fη⊥⊥. Then η ≤ τ⊥.

Proof: The first inequality is obvious, and (1) follows from Proposition 20.

Clearly τ ≤ τ⊥⊥ implies Fτ⊥⊥ ⊆ Fτ . Now, by Lemma 21, Fτ ⊆ ϕ(τ)(1), and

it also implies (2).

Since τ ≤ ϕ(τ) we have that ϕ(τ)(1) ≤ τ (1).

To show (3). Let η∈M -ptors be such that η ⊆ Fτ⊥⊥ . Then η ⊆ Fτ and so

η ∧ τ = {0} which implies η ≤ τ⊥. ut

The following theorem characterizes those hereditary pretorsion classes for

which the pseudocomplement and the right supplement coincide.

THEOREM 22. Let τ ∈M-ptors. The following conditions are equivalent:

(1) τ⊥ = τ (1).
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(2) (i) τ⊥ is stable and Jansian,

(ii) ϕ(τ) = τ⊥⊥,

(iii) for every N ∈ σ[M ] we have that ϕ(τ)(1)N = N if and only if

HomR(K, N̂) = 0 for all K∈τ .

(iv) M/τM ∈ϕ(τ)(1).

Proof: Notice that in (2), condition (i) is equivalent to τ⊥ = Fτ⊥⊥ , (ii) is

equivalent to Fτ⊥⊥ = Fτ , (iii) is equivalent to Fτ = ϕ(τ)(1) and (iv) is equivalent

to ϕ(τ)(1) = τ (1).

Now the assertions follow from Theorem 21. ut

For the special case M = R we obtain another characterization for τ being

a cohereditary torsion class in R-Mod (see [8, 4.6], [9, 2.6]):

THEOREM 23. Let τ ∈R-ptors. The following conditions are equivalent:

(1) τ⊥ = τ (1)

(2) τN = (τR)N for all N ∈R-Mod.

Proof: (1) ⇒ (2) Let N ∈R-Mod. By Theorem 10, τN/(τR)N ∈ τ ∧ τ (1).

Now since τ (1) = τ⊥ we have that τN/(τR)N = 0, so τN = (τR)N .

(2) ⇒ (1) By Lemma 20 τ⊥ ≤ τ (1), so it remains to show τ (1) ≤ τ⊥.

Take N ∈ τ (1). Since τ (1) is closed under taking submodules, it is enough

to consider a morphism f : N → S with S∈τ ∩R-Simp. Now

f(N) = τf(N) = (τR)f(N) = f((τR)N) = f(0) = 0 ,

hence N ∈τ⊥. ut

The following theorem classifies semisimple modules (σ[M ] is a spectral

discrete Grothendieck category) in terms of the pseudocomplement, the right

supplement, and lattice structure.

THEOREM 24. Let M ∈R-Mod. The following conditions are equivalent:
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(1) M is a semisimple module.

(2) τ⊥ = τ (1), for all τ ∈M-ptors.

(3) M-ptors is a Boolean lattice.

Proof: (1) ⇒ (3) It is clear.

(3) ⇒ (2) Let τ ∈M -ptors and τ ∗∈M -ptors be a complement for τ , then

τ ∧ τ ∗ = ξ, therefore τ ∗ ≤ τ⊥. On the other hand, Ω = τ ∨ τ ∗ ≤ (τ : τ ∗) which

implies that τ (1) ≤ τ ∗. Now by Lemma 18 we get τ⊥ = τ (1).

(2) ⇒ (1) Let τ ∈M -ptors be the class of semisimple modules in σ[M ].

Then by Corollary 19, τ⊥ = ξ. Hence by (2), τ (1) = ξ. So we have that

N | τN = 0 for all N ∈ σ[M ], hence N is semisimple for all N ∈ σ[M ], in

particular M is a semisimple module. ut

NOTATION. We will denote by Z(p) the localization of Z at the prime p, and

Zp∞ the p-primary component of Q/Z (Prüfer groups).

The following gives us an example where the inclusion relations in Theorem

21 are all strict:

EXAMPLE 25. Let R = Z×Z× (Z(p)nZp∞) where Z(p)nZp∞ is the trivial

extension, with p any prime number.

Take τ = τ1×τ2×τ3∈R-ptors, where τ1 is the class of semisimple p-groups

in Z-Mod, τ2 is the class of singular Z-modules and τ3 = σ[({0}n Zp∞)] in

Z(p) n Zp∞-Mod.

Notice that the first factor implies τ⊥ 6= Fτ⊥⊥ , the second factor implies

Fτ⊥⊥ 6= Fτ and Fτ 6= ϕ(τ)(1), and the last factor implies ϕ(τ)(1) 6= τ (1).

The following is an example where the converse of Corollary 11 is not valid.

EXAMPLE 26. Let M = Zp∞ where p is any prime number and let τ be

the class of semisimple objects in σ[M ] ⊆ Z-Mod. Then τ (1) = (τ : τ)(1) but

(τ :τ)M 6⊂ τM .
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