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Abstract

Let C be a coalgebra over a QF ring R. A left C-comodule is called
strongly rational if its injective hull embeds in the dual of a right C-
comodule. Using this notion a number of characterizations of right
semiperfect coalgebras over QF rings are given, e.g., C is right semiper-
fect if and only if C is strongly rational as left C-comodule. Applying
these results we show that a Hopf algebra H over a QF ring R is right
semiperfect if and only if it is left semiperfect or - equivalently - the
(left) integrals form a free R-module of rank 1.

Introduction

One of the striking differences between categories of modules over algebras

and categories of comodules over a coalgebra is the possible lack of projectives

in the latter categories. A coalgebra is called right (left) semiperfect if the

category of right (left) comodules has a projective generator. Right semiperfect

coalgebras and Hopf algebras over fields have been investigated thoroughly.

While in general right semiperfect coalgebras need not be left semiperfect it

is well known that for Hopf algebras over fields semiperfectness is a left right

symmetric property.

The purpose of the paper is to study properties and characterizations of

right semiperfect coalgebras and Hopf algebras over rings. While the basic
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definitions and elementary properties hold for coalgebras over any ring R,

deeper results quite often depend on the special properties of the ring R.

To make full use of the Finiteness Theorem for comodules we need R to be

noetherian, and to take advantage of left right symmetry we need the functor

HomR, (−, R) to be exact, i.e., R should be injective. Rings with these two

properties are just QF rings and indeed, over such rings we obtain essentially

all the characterizations of semiperfectness known for base fields.

In the first section we recall basic techniques for the study of coalgebras

C over QF rings R by considering C as a module over the dual algebra C∗.

Assuming C to be projective as an R-module we can identify the category of

right C-comodules with the full subcategory σ[C∗C] ⊂ C∗-Mod, whose objects

are subgenerated by C (see [17]).

In section 2 we concentrate on right semiperfect coalgebras C over QF

rings. Strongly rational left comodules L are introduced by the property that

the injective hull E(L) of L in σ[C∗C] can be embedded into the dual M∗

of some right C-comodule M . This notion turns out to be helpful for our

investigations. For example, C is right semiperfect if and only if every simple

left C-comodule is strongly rational.

The last section is devoted to semiperfect Hopf algebras. Applying the

previous results we give complete proofs for the characterization of these Hopf

algebras over QF rings R, including the Uniqueness Theorem for integrals,

which here says that the integrals form a free R-module of rank 1 (see 3.9). Spe-

cializing to base fields we obtain results of Beattie-Dǎscǎlescu-Grünenfelder-

Nǎstǎsescu [4], Donkin [6], Lin [7], D.E. Radford [9], Sullivan [12], and others

as Corollary 3.10.

1 Coalgebras and comodules

In this section we recall some basic definitions for coalgebras and comodules.

By C we always denote a coassociative coalgebra over a commutative ring

R defined by the R-linear map (comultiplication) ∆ : C → C ⊗R C with

counit ε : C → R. The dual module C∗ = HomR(C,R) is an R-algebra with

the convolution product and has ε as identity element.

A right comodule over C is defined by an R-linear map % : M → M ⊗R C
satisfying the coassociativity and the counital condition. Morphisms between

comodules M,N are R-linear maps which respect the comodule structure (no-

tation ComC(M,N)). We denote the category of right C-comodules with these

morphisms by MC . Symetrically the category of left C-comodules is defined
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and denoted by CM. In particular C itself is a right (left) C-comodule and

is a subgenerator in MC (and CM). The category MC (and CM) is closed

under direct sums and factor objects. Moreover it is closed under subobjects

(and hence a Grothendieck category) if and only if C is flat as an R-module

(see [17, 3.15]).

The following relationship (see [17, 3.12]) indicates that there is a strong

interplay between properties of the ring R and the comodule C.

1.1 Hom-Com relations. For M ∈MC and any R-module X, the map

ComC(M,X ⊗R C)→ HomR(M,X), f 7→ (id⊗ ε) ◦ f,

is an isomorphism with inverse map h 7→ (h⊗ id) ◦ %.

In particular, for X = R we have an isomorphism ComC(M,C) ' HomR(M,R).

Putting M = C we have ComC(C,C) ' C∗ which is in fact an algebra

anti-isomorphism.

Any right comodule M over C is a left module over the dual algebra C∗ by

⇀ : C∗ ⊗RM →M, f ⊗m 7→ (id⊗ f) ◦ ρ(m),

and by this MC is a subcategory of C∗-Mod. In particular C is a (C∗, C∗)-

bimodule,

⇀ : C∗ ⊗R C → C, f ⊗ c 7→ f ⇀ c := (id⊗ f) ◦∆(c),

↼ : C ⊗R C∗ → C, c⊗ g 7→ c ↼ g := (g ⊗ id) ◦∆(c) .

Moreover M is a subcomodule of M ⊗R C which is a factor comodule of

some C(Λ), i.e., C is a subgenerator for all right (left) comodules. In case C

is projective as an R-module, MC is a full subcategory and we have MC =

σ[C∗C], the full subcategory of C∗-Mod whose objects are submodules of C-

generated modules (and CM = σ[CC∗ ], see [17, 4.1, 4.3]). To exploit this

identification we henceforth will assume that C is projective as an R-module.

Although this condition is not always necessary it is indispensable when (right)

C-comodule properties are derived from (left) C∗-module properties. It also

implies that sub-coalgebras of C are essentially the (C∗, C∗)-submodules and

we have the most helpful

1.2 Finiteness Theorem. Every finite subset of any right C-comodule M is

contained in a sub-comodule of M which is finitely generated as an R-module.
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σ[C∗C] is a fully reflective subcategory of C∗-Mod and the trace functor is

right adjoint to this inclusion. In comodule theory this is usually called the

1.3 Rational functor. By the rational functor we mean the left exact functor

Rat : C∗-Mod→ σ[C∗C],

assigning to any left C∗-module M the rational submodule

Rat(M) = TrC∗(σ[C∗C],M) =
∑
{Im f | f ∈ HomC∗(U,M), U ∈ σ[C∗C]}.

Clearly Rat(M) is the largest submodule belonging to σ[C∗C] andM = Rat(M)

if and only if M ∈ σ[C∗C] (see [17, 5.2]).

The notation Rat is also used for the corresponding functor Mod-C∗ →
σ[CC∗ ].

As shown in [17, 5.3, 5.4], over noetherian rings the trace ideal can be

characterized by finiteness conditions and the duals of finitely R-generated

C-comodules are again C-comodules:

1.4 Lemma. Let R be noetherian. Then:

(1) The left rational ideal Rat(C∗C
∗) is described by

T1 = {f ∈ C∗ | C∗∗f is a finitely generated R-module},
T2 = {f ∈ C∗ | Ke f contains a left coideal K, such that C/K is

a finitely generated R-module },
T3 = {f ∈ C∗ |(id⊗ f) ◦∆(C) is a finitely generated R-module}.

(2) For every finitely R-generated right (left) C-comodule M , M∗ is a left

(right) C-comodule.

Recall that R is a QF ring if it is artinian, injective and a cogenerator

in R-Mod. Over such rings, the functor (−)∗ = HomR(−, R) is faithful and

exact. Moreover every faithful R-module is a generator and cogenerator in

R-Mod, and hence every faithful flat R-module is faithfully flat. It follows

essentially from 1.1 and 1.2 that coalgebras over such rings have particularly

nice properties:

1.5 Coalgebras over QF rings. Let R be a QF ring. Then:

(1) C is an injective cogenerator in σ[C∗C].
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(2) Q := SocC∗C � C (essential submodule) and

Jac(C∗) = HomC∗(C/Q,C) ' HomR(C/Q,R).

(3) If M is a projective object in MC then M∗ is C-injective as right C∗-

module and Rat(M∗) is injective in CM.

(4) If M ∈MC is finitely generated as an R-module then:

(i) M is injective in MC if and only if M is injective in C∗-Mod.

(ii) M is projective in MC if and only if M is projective in C∗-Mod.

(5) For any simple submodule S ⊂ C∗C and 0 6= a ∈ S, we have that S∗ '
a ↼ C∗ is a simple right C∗-module and

Tr(S, C∗C) = C∗ ⇀ a ↼ C∗ = Tr(S∗, CC∗)

is a minimal subcoalgebra of C (and hence is finitely generated as R-

module).

(6) Let {Sλ}Λ be a representing set of the simple modules in σ[C∗C]. Then

the coradical of C is∑
Λ

Tr(Sλ, C∗C) =
∑
Λ

Tr(S∗λ, CC∗).

Proof. (1) Since R is injective in R-Mod we conclude from the Hom-Com

relations 1.1 that C is injective in σ[C∗C].

For any right C-comodule M , there is an R-module monomorphism M →
R(Λ) (for some Λ) which yields a comodule monomorphism M → R(Λ)⊗RC '
C(Λ). So C is a cogenerator in σ[C∗C].

For (2)-(4) we refer to [17, 6.1, 6.2].

(5) Since C is self-injective it is clear that S∗ ' HomC∗(S, C) is a simple

right C∗-module, and also that Tr(S, C∗C) = C∗ ⇀ a ↼ C∗.

With the inclusion i : S → C, we have S∗ = {f ◦ i | f ∈ C∗}, and it is easy

to verify that

S∗ → a ↼ C∗, f ◦ i 7→ a ↼ f,

is an isomorphism of right C∗-modules. By symmetry we conclude C∗ ⇀

a ↼ C∗ = Tr(S∗, CC∗), and by 1.2, C∗ ⇀ a ↼ C∗ is finitely generated as an

R-module.

(6) The coradical of C is defined to be the sum of minimal sub-coalgebras

(=sub-bimodules) and hence the assertion follows from (5). 2
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1.6 Decomposition of coalgebras over QF rings. Assume R to be a QF

ring, and let {Sλ}Λ be a representing set of the simple modules in σ[C∗C].

Then:

(1) C =
∑

ΛE(Sλ) in σ[C∗C], where E(Sλ) denotes the injective hull of Sλ
in σ[C∗C].

(2) If C is co-commutative then C =
∑

ΛE(Sλ) is a decomposition of C into

irreducible subcoalgebras E(Sλ).

Proof. (1) By the Finiteness Theorem, C is locally of finite length as a C∗-

module. So we obtain the decomposition from [16, 32.5].

(2) Since C is co-commutative C∗C has a commutative endomorphism ring

C∗. Now it follows from [16, 48.16] that all the E(Sλ) are fully invariant

submodules of C and hence they are (irreducible) sub-coalgebras. 2

Recall that for any R-module M , we have the evaluation map

ΦM : M →M∗∗, m 7→ [β 7→ β(m)].

If R is a cogenerator in R-Mod then ΦM(M) is dense in M∗∗ in the finite

topology (e.g., [16, 47.6]). Notice that ΦM is a C∗-module morphism provided

M is a C∗-module.

For every subset X of an R-module M and Y of M∗, we denote

X⊥ = {f ∈M∗ | f(X) = 0} , and

Y ⊥ = {m ∈M | f(m) = 0, for every f ∈ Y } .

1.7 Proposition. Let R be QF, M ∈ C∗-Mod and let K ⊂ L ∈ Mod-C∗.

Assume there exists a monomorphism i : L ↪→ M∗ in Mod-C∗ and K is

finitely generated as R-module. Then:

(1) L∗ = K⊥ + i∗ (ΦM(M)) .

(2) If M ∈MC , L∗ = K⊥ + Rat (C∗L
∗) .

Proof. (1) Let α ∈ L∗. Since i∗ : M∗∗ → L∗ is surjective, there exists α̂ ∈M∗∗

such that α = i∗ (α̂) = α̂ ◦ i. Let B = {ξ1, . . . , ξn} be a generating set of K

as an R-module. As ΦM(M) is dense in M∗∗ (with the finite topology), there

exists an x ∈ M such that ΦM (x) − α̂ ∈ B⊥, i.e. (ΦM (x)) (ξi) = α̂ (ξi). It

follows that

ξi (x) = (ΦM (x)) (ξi) = α̂ (ξi) = α (ξi) ,
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for every i ≤ n, as ξi ∈ K ⊂ L. Hence α−i∗ (ΦM (x)) = α−(ΦM (x) ◦ i) ∈ K⊥.

(2) If M ∈ MC , i∗ (ΦM (M)) = (i∗ ◦ ΦM) (M) ∈ MC , and therefore we

have i∗ (ΦM (M)) ⊂ Rat (C∗L
∗) . 2

1.8 Lemma. Let R be a QF ring, S a simple object with injective envelope

E(S) in CM, and S⊥ = HomR(E(S)/S,R). Then E(S)∗ is a cyclic projective

left C∗-module and S⊥ = Jac(C∗)E(S)∗. In particular S⊥ is superfluous in

E(S)∗.

Proof. Since E(S) is a direct summand of C as a right C∗-module, E(S)∗ is a

direct summand of C∗C
∗. Moreover we have S ⊂ Q ⊂ C, where Q is the socle

of CC∗ . From this we obtain the commutative exact diagram

0 → (C/Q)∗ → C∗ → Q∗ → 0

↓ ↓ ↓
0 → (E(S)/S)∗ → E(S)∗ → S∗ → 0

↓ ↓ ↓
0 0 0 .

Since (C/Q)∗ = Jac(C∗) (by 1.5) is superfluous in C∗, we have that (E(S)/S)∗

is superfluous in E(S)∗. 2

1.9 Lemma. Let R be a QF ring, S a simple object with injective envelope

E(S) in CM, and assume there exists a monomorphism i : E(S) ↪→ M∗ in

Mod-C∗, for some M ∈ MC. Then E(S)∗ = i∗ (ΦM (M)) and E(S) is finitely

generated as an R-module.

Proof. By Proposition 1.7, E(S)∗ = S⊥ + i∗ (ΦM (M)), and hence it follows

by Lemma 1.8 that E(S)∗ = i∗(ΦM(M)) is a cyclic rational left C∗-module. In

particular E(S)∗ is finitely R-generated and so is E(S). 2

2 Strongly rational comodules

As before C will denote a coassociative R-coalgebra with CR projective. We

introduce the notion of a strongly rational comodule and use it to prove old

and new characterizations of semiperfect coalgebras.

2.1 Definition. A comodule L ∈ CM is called strongly rational, or s-rational

for short, if the injective envelope E(L) of L in CM embeds in M∗ as a right

C∗-module, for some M ∈MC .
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Of particular interest are (simple) s-rational modules when R is a QF ring

as will be seen by the following observations.

2.2 Proposition. Let R be a QF ring. Then a simple object S ∈ CM is

s-rational if and only if the injective envelope E(S) of S in CM is finitely

generated as an R-module.

In this case E(S) is injective in Mod-C∗ and E(S)∗ is a cyclic projective

and rational left C∗-module.

Proof. By Lemma 1.9, if S ∈ CM is a simple s-rational object, then E(S) is

finitely generated as an R-module.

Conversely, if E(S) is a finitely generated R-module, then E(S) ∼= (E(S)∗)∗

is s-rational (by 1.4(2)). Moreover, by Lemma 1.8, E(S)∗ is a cyclic projective

left C∗-module, and so E(S) is injective in Mod-C∗. 2

2.3 Proposition. Let R be a QF ring and assume that P is a projective object

in MC. If S is a simple quotient of P in MC, then S∗ is a simple s-rational

object in CM and E(S∗)∗ is a cyclic projective left C∗-module and it is a direct

summand of P .

Proof. By Proposition 1.5, we know that S∗ ∈ CM is simple, and also that

Rat(P ∗) is an injective object in CM. Therefore Rat(P ∗) contains a copy of

the injective envelope of S∗ in CM. In particular, S∗ is s-rational so that by

Lemma 1.9, the comodule E(S∗)∗ = i∗ ◦ ΦP (P ) is a quotient of P and by

Lemma 1.8 it is a cyclic projective left C∗-module. 2

2.4 Proposition. Let R be a QF ring. For a simple object S ∈ MC, the

following are equivalent:

(a) S is a quotient of a projective object of MC;

(b) S is a quotient of an object of MC which is a cyclic projective left C∗-

module (and is finitely R-generated);

(c) S∗ is s-rational;

(d) the injective envelope of S∗ in CM is finitely generated as R-module.

Proof. Notice that by Proposition 1.5, S∗ is a simple object in CM.

(a)⇒ (c)⇔ (d) By Propositions 2.3 and 2.2.

(d)⇒ (b) As E(S∗) is a finitely generated R-module we know from Propo-

sition 1.4(2) that E(S∗)∗ ∈ MC . By Lemma 1.8, E(S∗)∗ is a cyclic projective

left C∗-module. Moreover S ∼= S∗∗ is a quotient of E(S∗)∗.

(b)⇒ (a) is trivial. 2
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2.5 Corollary. If R is a QF ring the following are equivalent.

(a) MC contains a non zero projective object;

(b) MC contains a non zero object which is a projective cyclic left C∗-module

(of finite length);

(c) CM contains a simple s-rational object;

(d) CM contains a simple object such that its injective envelope in CM is

finitely R-generated.

Proof. Since, by Proposition 1.5, the dual of a simple object in MC is a

simple object in CM, the conclusion follows by Proposition 2.4 and the fact

that, for any projective object P ∈MC , Rad(P ) 6= P (see [16, 22.3]). 2

2.6 Right semiperfect coalgebras. Let R be a QF ring and put T :=

Rat(C∗C
∗). The following assertions are equivalent and characterize C as a

right semiperfect coalgebra (in the sense of [7]):

(a) Every simple object of MC is a quotient of a projective object of MC;

(b) every simple object ofMC is a quotient of a projective object ofMC that

is a cyclic projective left C∗-module (finitely R-generated);

(c) every simple object of CM is s-rational;

(d) the injective hull of any simple object in CM is finitely R-generated;

(e) C is an s-rational object of CM;

(f) every simple module in MC has a projective cover;

(g) the functor Rat : C∗-Mod→MC is exact;

(h) for every N ∈ σ[C∗C], TN = N ;

(i) for every N ∈ σ[C∗C], the canonical map T ⊗C∗ N → N is an isomor-

phism;

(j) TC = C and C∗/T is flat as a right C∗-module;

(k) T 2 = T and T is a generator in MC;

(l) MC has a generating set of finitely generated modules which are projec-

tive in C∗-Mod.

In this case the injective envelope in CM of every simple object of CM is

an injective right C∗-module and the right trace Rat(C∗C∗) ⊂ T .
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Proof. Since by Proposition 1.5 the dual of a simple object inMC is a simple

object in CM and conversely, the equivalences (a) ⇔ (b) ⇔ (c) ⇔ (d) follow

by Proposition 2.4.

(c) ⇒ (e) Let Soc(CC∗) =
⊕

Λ Sλ, for suitable simple objects Sλ in CM.

For every λ ∈ Λ, let iλ : E (Sλ) ↪→ (Mλ)∗ be an embedding, where Mλ ∈MC .

Then

C =
⊕
Λ

E(Sλ)↪→
⊕
Λ

(Mλ)
∗ ↪→

∏
Λ

(Mλ)
∗ '

(⊕
Λ

Mλ

)∗
,

where
⊕

ΛMλ ∈MC. This shows that C is s-rational in CM.

(e)⇒ (c) is trivial as C is an injective cogenerator of CM.

(f)⇒ (l) Clearly the projective covers of simple modules inMC are finitely

generated as R-modules. By 1.5(4) they are in fact projective in C∗-Mod.

(l)⇒ (a) is trivial and for the remaining equivalences we refer to [17, 4.11,

5.3 and 6.3].

The final assertions follow by Proposition 1.5 and [17, 5.3]. 2

For coalgebras over fields the equivalence (a)⇔ (d) appears in [7, Theorem

10].

From [17, 6.4] we have the following characterization of coalgebras which

are semiperfect on both sides.

2.7 Left and right semiperfect coalgebras. Let R be a QF ring and put

T := Rat(C∗C
∗) and T ′ := Rat(C∗C∗). The following are equivalent.

(a) C is a left and right semiperfect coalgebra;

(b) all left C-comodules and all right C-comodules have projective covers;

(c) the injective hulls of simple objects in CM and MC are finitely R-

generated;

(d) T = T ′ and is dense in C∗;

(e) C∗C and CC∗ are direct sums of finitely generated C∗-modules.

Under these conditions T is a ring with enough idempotents.

The next result extends [4, Lemma 3.2] from base fields to QF rings.

2.8 Lemma. Let C be a left and right semiperfect coalgebra over a QF ring R.

Put T := Rat(C∗C
∗) and consider the inclusion i : T → C∗ and, for M ∈MC,

the map

Hom(i,M) : HomC∗(C
∗,M)→ HomC∗(T,M).
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(1) For any M ∈MC, Hom(i,M) is injective.

(2) If M is finitely generated as R-module, then Hom(i,M) is bijective.

Proof. (1) Let f ∈ HomC∗(C
∗,M) such that f ◦ i = 0. Then by 2.6(h),

0 = f(T ) = Tf(ε) = C∗f(ε),

implying f(ε) = 0 and f = 0.

(2) Let M ∈MC be finitely R-generated with injective hull M̂ inMC . By

[17, 6.2], M̂ is in fact C∗-injective so that we get a commutative diagram

0 → T
i→ C∗

π→ C∗/T → 0
f ↓ f̃ ↓ f̄ ↓

0 → M → M̂
p→ M̂/M → 0.

Since M̂/M ∈MC and f̄ ◦π ◦ i = 0, we conclude from (1) that f̄ ◦π = 0. This

implies p ◦ f̃ = 0, i.e., Im f̃ ⊂M . Therefore f̃ ∈ HomC∗(C
∗,M) and f̃ ◦ i = f .

2

Recall that a coalgebra C is said to be left (right) co-Frobenius if there

exists some left (right) C∗-monomorphism C ↪→ C∗. More generally C is said

to be left (right) QcF (Quasi-co-Frobenius) if C is cogenerated by C∗ as a left

(right) C∗-module (i.e., C is a torsionless C∗-module, see [15]). Over QF rings

this class of coalgebras can be characterized in the following way (see [17, 6.5]).

2.9 Left QcF coalgebras. If R is a QF ring the following are equivalent:

(a) C is left QcF;

(b) C is a submodule of a free left C∗-module;

(c) in MC every (indecomposable) injective object is projective;

(d) C is a projective object in MC;

(e) C is projective in C∗-Mod.

If these conditions are satisfied, then C is a left semiperfect coalgebra and C

is a generator in σ[CC∗ ].

In view of the decomposition of co-commutative coalgebras (see 1.6) we

obtain:

2.10 Corollary. Let R be a QF ring and assume C to be a co-commutative

coalgebra. Then C is left QcF if and only if it is left co-Frobenius.
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We finally recall the case when C is a projective generator inMC (see [17,

6.6]).

2.11 C as a projective generator in σ[C∗C]. Let R be a QF ring and put

T := Rat(C∗C
∗). The following are equivalent:

(a) C is a left and right QcF coalgebra;

(b) C is a projective generator in MC;

(c) C is a projective generator in CM;

(d) C = TC, T is a ring with enough idempotents and an injective cogener-

ator in MC.

3 Semiperfect Hopf algebras

Let H be a Hopf algebra over a ring R with comultiplication ∆ and antipode

S. We will always assume that H is projective and faithful as an R-module.

An R-module M is called a right H-Hopf module if it is a

(i) right H-module by ψ : M ⊗R H →M ,

(ii) right H-comodule by % : M →M ⊗R H, satisfying %(mb) = %(m)∆b.

Morphisms between Hopf modules M and N are maps which are both H-

module and H-comodule morphisms and we denote these by BimH(M,N).

The category of right H-Hopf modules is denoted by MH
H .

Let M be a right H-Hopf module. The coinvariants of H in M are defined

as

M coH := {m ∈M | %(m) = m⊗ 1H} .

The importance of this notion follows from the R-module isomorphism

νM : BimH(H,M)→M coH , f 7→ f(1H),

with inverse map ωM : m 7→ [b 7→ (b⊗ ε) ◦ %(m)]. In particular from this we

have BimH(H,H) ' R 1H which means that we can identify R with the ring

of right Hopf module endomorphisms of H.

3.1 Fundamental Theorem. Let H be a Hopf algebra over R.

(1) H is a generator in MH
H , in particular for any right H-Hopf module M ,

M coH ⊗R H →M, m⊗ h 7→ mh ,

is a Hopf module isomorphism.
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(2) If HR is faithfully flat then H is a projective generator inMH
H , and hence

BimH(H,−) :MH
H → R-Mod

is an equivalence of categories.

Proof. (1) The corresponding proof in Sweedler [14, Theorem 4.1.1] does not

depend on the base field (see also Schneider [10, Theorem 2.1]).

(2) Since MH
H is a Grothendieck category the proof of [16, 18.5] applies

and shows that H is projective in MH
H . 2

3.2 Corollary. Let H be a Hopf algebra over R.

(i) Assume R to be a QF ring. Then H is a projective generator and an

injective cogenerator in MH
H and

H = H1 ⊕ . . .⊕Hn,

where the Hi are non-isomorphic H-Hopf modules which are injective

hulls of simple Hopf modules in MH
H .

(ii) If R is semisimple then H is a direct sum of simple Hopf modules.

(iii) If R is a field then H is a simple Hopf module.

Proof. (i) Since R is a QF ring, HR is faithfully flat. By 3.1(2), H is a

projective generator in the categoryMH
H which is equivalent to R-Mod. Since

R is an injective cogenerator in R-Mod, H has the corresponding property in

MH
H .

Since BimH(H,H) ' R 1H , H is a cogenerator in MH
H with commutative

endomorphism and hence the decomposition follows from [16, 48.16] (compare

1.6).

(ii) and (iii) follow as in the proof of (i). 2

By the ring structure of H a left module structure on H∗ is defined by

⇁ : H ⊗R H∗ → H∗, b⊗ f 7→ [c 7→ f(cb)],

and for a ∈ H, f, g ∈ H∗, and ∆(a) =
∑
i ai ⊗ ãi,

a ⇁ (f∗g) =
∑
i(ai ⇁ f)∗(ãi ⇁ g) .

13



Applying the antipode S, a right H-module structure on H∗ is defined by

↽s : H∗ ⊗R H → H∗, f ⊗ a 7→ S(a) ⇁ f

i.e., for each c ∈ H,

[f ↽s a](c) = [(S(a) ⇁ f ](c) = f(cS(a)).

For a ∈ H and g, f ∈ H∗, we have the identity

(∗) g∗(f ↽s a) =
∑
i

[(ãi ⇁ g)∗f ] ↽s ai

By the right comodule structure of H we have the left trace ideal T in H∗

which plays a central part for our further investigations. It is a Hopf module

with respect to the right H-module structure defined by ↽s .

3.3 Lemma. Let H be a Hopf algebra with R noetherian. Then the left trace

ideal T := Rat(H∗H
∗) is a right Hopf module and hence T coH ⊗R H ' T .

In particular T is generated by H as a right H-comodule.

Proof. By definition T is a right H-comodule and we denote by % : T →
T ⊗R H the structure map. It remains to show that T has a right H-module

structure which makes it a Hopf module.

Let f ∈ T and %(f) =
∑
j fj ⊗ f̃j. For any g ∈ H∗, g∗f =

∑
j fjg(f̃j), and

for a ∈ H we obtain by (∗),

g∗(f ↽s a) =
∑
i,j(ãi ⇁ g)(f̃j)(fj ↽s ai)

=
∑
i,j g(f̃j ãi)(fj ↽s ai) .

This shows that the left ideal in H∗ generated by f↽s a is finitely generated

as an R-module by the fj↽s ai, and hence f ↽s a ∈ T by 1.4, proving that T

is a right H-submodule in H∗.

Moreover since the identity holds for all g ∈ H∗ it implies

%(f ↽s a) =
∑
i,j

(fj ↽s ai)⊗ f̃j ãi = %(f)∆a ,

which is the condition for T to be a Hopf module. 2

Let H be a Hopf algebra. An element t ∈ H∗ is called a left integral if it is

a left H-comodule morphism.

3.4 Left integrals. Let R be a noetherian ring, H a Hopf algebra, and T :=

Rat(H∗H
∗). For t ∈ H∗ the following are equivalent:

14



(a) t is a left integral;

(b) (id⊗ t) ◦∆ = ι ◦ t;

(c) for every f ∈ H∗, f∗t = f(1H)t;

(d) t ∈ T and %(t) = t⊗ 1H ;

(e) α : H → H∗, b 7→ t ↽s b, is a left H∗-morphism.

Proof. (a) ⇔ (b) The map t is a left comodule morphism if and only if the

following diagram is commutative:

H
t→ R b 7→ t(b)

↓∆ ↓ι ↓ ↓
H ⊗R H

id⊗t−→ H ∆(b) 7→ (id⊗ t) ◦∆(b) = t(b)1H .

The commutativity of this diagram is just expressed by condition (b).

(b)⇔ (c) For any f ∈ H∗ and b ∈ H,

f∗t(b) = (f ⊗ t) ◦∆(b) = f((id⊗ t) ◦∆(b)),

f(1H)t(b) = f(t(b)1H) = f(ι ◦ t(b)).

Now the assertion follows by a dual basis argument.

(c) ⇒ (d) Clearly H∗∗t = Rt and hence t ∈ T by 1.4. Denote by % : T →
T ⊗R H the structure map of T and put %(t) =

∑
i ti ⊗ t̃i. Then for every

f ∈ H∗,
f∗t = (id⊗ f) ◦ %(t) =

∑
i
ti f(t̃i).

Now f∗t = f(1H)t implies

(id⊗ f)(
∑
i

ti ⊗ t̃i) = (id⊗ f)(t⊗ 1H),

and hence %(t) = t⊗ 1H .

(d)⇒ (c) Under the given conditions we have for every f ∈ H∗,

f∗t = (id⊗ f) ◦ %(t) = (id⊗ f)(t⊗ 1H) = f(1H) t.

(d)⇒ (e) We have α(H) ⊂ T and the commutative diagram

H
α→ T b 7→ t ↽s b

↓∆ ↓% ↓ ↓
H ⊗R H → T ⊗R H ∆(b) 7→ (α⊗ 1H)∆(b) = %(t ↽s b) .
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This shows that α is a right H-comodule - and hence a left H∗-module mor-

phism.

(e)⇒ (d) Since α is a left H∗-module morphism its image lies in T and α

can be regarded as a right comodule morphism. So we have again the above

diagram. 2

3.5 Proposition. Let H be a Hopf algebra over R and T := Rat(H∗H
∗).

Assume there exists a generator P in σ[H∗H] which is projective in H∗-Mod.

Then:

(1) H is a generator in MH .

(2) If R is artinian then T is projective as an R-module.

(3) If R is QF then T and T coH are faithfully flat R-modules.

Proof. (1) Clearly T = Tr(P,H∗) and T = T 2 and TP = P (by [16, 18.7]).

By [17, 2.6 and Corollary 2.7], T is a generator inMH (as right H-comodule)

and by the Fundamental Theorem, H generates T (as right Hopf module). So

H is a generator in MH .

(2) Since R is artinian and H is projective as an R-module, H∗ is also a

projective R-module. By [17, 5.3], H∗/T is flat as right H∗-module, and hence

is a direct limit of projective H∗-modules which are also projective R-modules.

Therefore H∗/T is projective as an R-module and so is T .

(3) Now assume R to be QF. As a faithful R-module H is a generator

in R-Mod. Since T generates H it also generates R and both H and T are

faithfully flat. From T coH ⊗RH ' T we conclude that T coH is also a faithfully

flat R-module. 2

Although in general left semiperfect coalgebras need not be right semiper-

fect, the above proposition implies that for Hopf algebras over QF rings these

two notions are equivalent.

3.6 Corollary. Let H be a right semiperfect Hopf algebra over a QF ring R.

Then:

(1) H is cogenerated by H∗ as left H∗-module.

(2) H is left semiperfect as coalgebra and Rat(H∗H
∗) = Rat(H∗H∗).

Proof. (1) Let T := Rat(H∗H
∗). For any t ∈ T coH , the map H 7→ H∗, b 7→

t ↽s b, is a left H∗-morphism. Since T coH⊗b 6= 0, we know by the isomorphism

T coH ⊗R H ' T, t⊗ b 7→ t ↽s b,
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that for any b ∈ H there exists some t ∈ T coH such that t ↽s b 6= 0. Hence H

is cogenerated by H∗.

(2) As shown in 2.9, (1) implies that H is left semiperfect. Now it follows

by 2.7 that the left and right trace ideals coincide. 2

Before listing characterizations of semiperfect Hopf algebras we prove a

technical lemma which generalizes the uniqueness theorem of Sullivan [12] to

Hopf algebras over QF rings. For this we adapt the proof given in [4, Theorem

3.3] (see also [11]).

3.7 Lemma. Let H be a right semiperfect Hopf algebra over a QF ring R and

T := Rat(H∗H
∗).

(1) For every M ∈MH which is finitely generated as R-module,

lengthR(HomH∗(H,M)) ≤ lengthR(M).

(2) In particular, T coH = Rχ ' R ' R, for some χ ∈ T coH .

(3) There exists t ∈ T for which t(1H) = 1R.

(4) For every χ ∈ T coH such that T coH = Rχ, there exists some h̄ ∈ H such

that χ ↽s h̄(1H) = 1R.

Proof. (1) By 3.5(3), R is a direct summand of T coH . This implies by

the Fundamental Theorem 3.1 that H ' R ⊗R H is a direct summand of

T coH ⊗R H ' T in MH
H and hence also in MH . So we have an epimorphism

HomH∗(T,M)→ HomH∗(H,M).

Under the given conditions we know from 2.8 that

M ' HomH∗(H
∗,M) ' HomH∗(T,M).

From this the assertion follows.

(2) Considering R as a right H-comodule by R → R ⊗R H, r 7→ r ⊗ 1, we

conclude from (1) that lengthR(HomH∗(H,R)) ≤ lengthR(R). Since by 3.6,

T = Rat(H∗H∗), we know from 3.4 that HomH∗(H,R) = T coH and hence we

have lengthR(T coH) ≤ lengthR(R).

Since R is a direct summand of T coH this implies R ' T coH .

(3) By 2.6, for any N ∈ MH , the canonical map T ⊗C∗ N → N is an

isomorphism. In particular

T ⊗R R→ R, t⊗ r 7→ t ⇀ r = rt(1),
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is an isomorphism. Therefore there exists t1, . . . , tn ∈ T and r1, . . . , rn ∈ R,

such that

1R =
n∑
i=1

ti ⇀ ri =
n∑
i=1

riti(1H) = [
n∑
i=1

riti](1H).

Hence t :=
∑n
i=1 riti ∈ T and t(1H) = 1R.

(4) By (2), there exists χ ∈ T coH such that T coH = Rχ ' R. By the

Fundamental Theorem 3.1, the map

T coH ⊗R H → T, χ⊗ h 7→ χ ↽s h,

is an isomorphism in MH
H . Thus there exists h̄ ∈ H such that χ ↽s h̄ = t. 2

It was shown in Radford [9, Proposition 2] that for semiperfect Hopf al-

gebras over fields the antipode is bijective and his proof was simplified in

Calinescu [5]. Applying our previous results we can essentially follow these

ideas to prove the corresponding result for Hopf algebras over QF rings.

3.8 Proposition. Let H be a (right) semiperfect Hopf algebra over a QF ring

R. Then the antipode S of H is bijective.

Proof. Put T := Rat(H∗H
∗) and let T coH = Rχ (by 3.7).

To prove that S is injective assume S(a) = 0 for some a ∈ H. Then

R⊗ a ' T coH ⊗ a ' T coH ↽s a = S(a) ⇁ T coH = 0,

this implies a = 0 and hence S is injective.

Now assume S(H) 6= H. Since S(H) is a subcoalgebra we may consider

it as left subcomodule of H. Then 0 6= H/S(H) ∈ HM and hence there is a

non-zero morphism

ω : H/S(H)→ E(U) in HM,

for some simple object U with injective hull E(U) in HM.

R being a cogenerator in R-Mod, we have an R-morphism α : E(U) → R

with α ◦ ω 6= 0. Composing this with the canonical projection π : H →
H/S(H), we have a non-zero R-morphism

λ := α ◦ ω ◦ π : H → R,

and Keλ ⊃ N ⊃ S(H), where Keω = N/S(H). By definition N ⊂ H is a

left subcomodule and H/N is finitely R-generated (since E(U) is). So by 1.4,

λ ∈ T and there exists some h̃ ∈ H such that λ = χ ↽s h̃.
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By construction, λ(S(H)) = χ ↽s h̃(S(H)) = 0. So for any h ∈ H,

0 = χ ↽s h̃(S(h)) = χ(S(h)S(h̃)) = χ(S(h̃h)) = χ ◦ S(h̃h),

and so χ ◦ S(h̃H) = 0.

It is straightforward to prove that for the left integral χ, the composition

χ ◦ S is a right integral and hence χ ◦ S(H∗ ⇀ h̃H) = 0.

Since H is a progenerator in MH
H (see 3.1(2)), the subbimodule H∗ ⇀

h̃H ⊂ H is of the form IH, for some ideal I ⊂ R, and we have

0 = χ ◦ S(H∗ ⇀ h̃H) = χ ◦ S(IH) = Iχ ◦ S(H).

As we have seen in 3.7, there exists h̄ ∈ H with χ ◦ S(h̄) = 1R. This implies

I = 0 and h̃H ⊂ IH = 0, i.e., h̃ = 0. This contradicts the fact that by

construction 0 6= λ = χ ↽s h̃. 2

We are now in a position to characterize semiperfect Hopf algebras in var-

ious ways.

3.9 Theorem. Let H be a Hopf algebra over a QF ring R and T := Rat(H∗H
∗).

Then the following are equivalent:

(a) H is a right semiperfect coalgebra;

(b) H is an s-rational object in HM;

(c) T is a faithful and flat R-module;

(d) T coH is a faithful and flat R-module;

(e) T coH = Rχ ' R, for some χ ∈ T coH ;

(f) T is a projective generator in MH ;

(g) T is a flat R-module and the injective hull of R in HM is finitely gener-

ated as R-module;

(h) H is cogenerated by H∗ as left H∗-module (left QcF);

(i) H is left co-Frobenius;

(j) H is projective in MH ;

(k) H is a projective generator in MH ;

(l) H is a left semiperfect coalgebra.

Of course the left side versions of (a)-(i) are also equivalent.
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Proof. (a)⇔ (b) is shown in 2.6.

(a)⇒ (c) We know from 2.6(l) thatMH has a generator which is projective

in H∗-Mod. So the assertion follows from 3.5.

(a)⇒ (g) As mentioned above, 3.5 applies and so TR is projective, and by

2.6, the injective hull of any simple comodule in HM is finitely generated.

(c)⇔ (d) Recall that HR is faithful and projective, and R is QF. So HR is a

generator in R-Mod and hence is faithfully flat. By the Fundamental Theorem

we have T ' T coH ⊗H. Hence TR is faithfully flat if and only if T coH is so.

(d) ⇒ (h) For any t ∈ T coH , the map H → H∗, b 7→ t ↽s b, is a left

H∗-morphism. Since T coH ⊗ b 6= 0, we know by the isomorphism

T coH ⊗R H → T, t⊗ b 7→ t ↽s b,

that for any b ∈ H there exists some t ∈ T coH such that t ↽s b 6= 0. Hence H

is cogenerated by H∗.

(a)⇒ (e) is shown in 3.7(2).

(e) ⇒ (i) This follows from the fact that H → H∗, b 7→ χ ↽s b, is a

monomorphism.

(i)⇒ (h) is trivial and (h)⇒ (j)⇒ (l) are clear by 3.6 and 2.9.

(g) ⇒ (c) Let E(R) denote the injective hull of R in HM. Assume it is

finitely generated as R-module. Then E(R)∗ is projective and cogenerated by

T ; since R ⊂ E(R)∗ we have that R is cogenerated by T . Hence T is a faithful

R-module.

(f)⇒ (a) and (k)⇒ (a) are clear in view of 2.6.

(a)⇒ (f) Since (a)⇒ (l) we obtain from 2.7 that T is a ring with enough

idempotents. From 2.6 and [16, 49.1] we know that T is a projective generator

in MH = T -Mod.

(a) ⇒ (k) The implications (a) ⇒ (j) and (a) ⇒ (l) imply that H is

projective as left and right comodule. So by 2.9 and 2.11, H is a projective

generator in MH (and HM).

(l)⇒ (a) is clear by symmetry. 2

Over a field every nonzero vector space is faithfully flat and so we obtain

from 3.9:

3.10 Corollary. For a Hopf algebra H over a field R and T := Rat(H∗H
∗),

the following are equivalent:
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(a) H is a right semiperfect coalgebra;

(b) T 6= 0;

(c) T coH 6= 0;

(d) T coH is one-dimensional over R;

(e) R is an s-rational object in MH ;

(f) there exists a (simple) s-rational object in MH ;

(g) the injective hull of R in HM is finite dimensional;

(h) H is cogenerated by H∗ as left H∗-module;

(i) H is projective in MH (left QcF);

(j) H is left co-Frobenius;

(k) H is a projective generator in MH ;

(l) H is a left semiperfect coalgebra.

The left side versions of (a)-(k) are also equivalent.

If these conditions are satisfied the antipode of H is bijective.

Some of these equivalences appear in Lin [7, Theorem 3]. The character-

ization of these algebras by (g) is given in Sullivan [12, Theorem 1] and for

affine group schemes it is shown in Donkin [6]. The one-dimensionality of T coH

(property (d)) was first proved in [12, Theorem 2] and another proof is given

in [4].

Prof. Masuoka drew our attention to the following consequences of the

preceding corollary (see also [4, Corollary 2.2]).

3.11 Corollary. The coradical of an infinite dimensional co-Frobenius Hopf

algebra H over a field is infinite dimensional. In particular, for a non-zero Lie

algebra G, the enveloping algebra U(G) is not co-Frobenius.

3.12 Corollary. Let H be a co-commutative Hopf algebra over a field R.

(i) H is co-Frobenius if and only if the irreducible component H1 of H (con-

taining 1H) is finite dimensional over R.

(ii) If char(R) = 0 then H is co-Frobenius if and only if H is co-semisimple.
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Proof. (i) By 1.6, the injective envelope of R1H in MH coincides with H1.

(ii) Clearly any cosemisimple Hopf algebra is semiperfect and hence co-

Frobenius.

Now assume char(R) = 0 and H to be co-Frobenius. Let π ∈ T ⊂ H∗

denote the idempotent which corresponds to the canonical projection H → H1.

Let λ ∈ T coH and h ∈ H such that λ ↽s h = π. Then for every γ ∈ H∗ we

have (by 3.4 (e))

λ ↽s (γ ⇀ h) = γ∗(λ ↽s h) = γ∗π.

In particular we get λ ↽s (π ⇀ h) = π∗π = π so that h = π ⇀ h ∈ H1. Hence

we can write

∆(h) =
n∑
i=1

hi ⊗ h̃i ∈ H1 ⊗R H1,

where the h̃1, . . . , h̃n ∈ H1 are linearly independent over R. By definition, for

any x ∈ H,

π ⇀ x = (λ ↽s h) ⇀ x =
n∑
i=1

λ(xS(hi))h̃i,

and for a ∈ H1 the equality a = π ⇀ a implies

a =
n∑
i=1

λ(aS(hi))h̃i.

From this we see that the h̃1, . . . , h̃n form a basis in H1, and for any j ≤ n,

h̃j =
n∑
i=1

λ(h̃jS(hi))h̃i.

So we have λ(h̃jS(hi)) = δij and finally

0 6= n1R =
n∑
i=1

λ(h̃iS(hi)) = λ(
n∑
i=1

h̃iS(hi)) = λ(ε(h)) = λ(1H)ε(h).

Therefore λ(1H) 6= 0 and hence H is cosemisimple (e.g., [14, Lemma 14.0.2]).

2

Let us mention that assertion (ii) also holds in case H is commutative

(instead of co-commutative, see Abe [1, Theorem 3.3.11]).
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