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ON STRONGLY PRIME RINGS AND IDEALS

ALGIRDAS KAUČIKAS AND ROBERT WISBAUER

Abstract. Strongly prime rings may be defined as prime rings with sim-
ple central closure. This paper is concerned with further investigation of
such rings. Various characterizations, particularly in terms of symmetric
zero divisors, are given. We prove that the central closure of a strongly
(semi-)prime ring may be obtained by a certain symmetric perfect one sided
localization. Complements of strongly prime ideals are described in terms
of strongly multiplicative sets of rings. Moreover, some relations between a
ring and its multiplication ring are examined.

1. Terminology and basic results

All rings in this paper are associative with identity element which should be

preserved by ring homomorphisms, and R-Mod denotes the category of unital

left modules over the ring R. By an ideal of the ring we shall understand a

two-sided ideal. We denote by {a1, . . . , an} the set consisting of the elements

a1, . . . , an ∈ R, and by (a1, . . . , an) the ideal of the ring generated by these

elements. Particularly, (a) denotes the ideal generated by the element a ∈ R.

A⊂B means that A is proper subset of B.

Let R be an algebra over a commutative ring Λ, and R◦ its opposite ring.

Then the enveloping algebra Re = R ⊗Λ R
◦ acts canonically on R from the

left.

The quotient ring Re/AnnReR is called the multiplication ring of R and will

be denoted by M(R). Easy arguments show that the definition of M(R) does

not depend of the ring Λ. Thus R is a faithful left M(R)-module, its ideals

are exactly the M(R)-submodules and EndM(R)R is isomorphic to the centre

of R, which we denote by Z(R).

M(R) may be equivalently defined as the subring of EndΛR, acting from

the left on R , generated as a ring by all left and right mutiplications la and

rb, where a, b ∈ R, and lax = ax, rbx = xb, for x ∈ R. So each λ ∈M(R) is of

the form λ =
∑

k lakrbk , where ak, bk ∈ R, and can be represented as the sum∑
k ak ⊗ b◦k, where b◦k ∈ R◦ . Then λx =

∑
k akxbk, x ∈ R. It’s clear that the

canonical embedding R ↪→M(R), sending a ∈ R to la is onto if and only if R

is commutative.

The map π : M(R)→ R, λ 7→ λ1, is an M(R)-module homomorphism.
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If R is a central simple algebra over the field F , its multiplication ring is

isomorphic to R ⊗F R◦ which is also central simple over F (see [3], Ch. 3,

Prop. 4.2). If R is an Azumaya algebra then there are canonical isomorphisms

M(R) ∼= R⊗Z(R) R
◦ ∼= EndZ(R)R.

Let M be an R-bimodule, and ZM = ZM(R) = {δ ∈ M | rδ = δr, r ∈ R}
the set of R-centralizing elements of M . If M = RZM then M is called a

centred R-bimodule.

Let φ : R → S be a ring homomorphism. Then S becomes a canonical

R-bimodule. We call φ a centred homomorphism, and S a centred extension of

R (via φ), provided S is a centred R-bimodule under this structure. Of course,

ZS = ZS(R) is a subring of S. It easily follows from the definition that each

centred extension of the ring R can be obtained as a factor ring of a semigroup

ring R[G], where G is a free semigroup with unit. Rings and their centred

homomophisms form a category (called Procesi category).

For a semiprime ring R we denote by Q(R) the central closure and by F (R)

the extended centroid of the ring R. By definition, F (R) is the centre of Q(R)

and is a field when R is a prime ring. See [5], [19] for definitions and basic

properties of these rings.

2. Strongly prime rings

Let M be left R-module. We say that N ∈ R-Mod is subgenerated by M if

N is a submodule of an M -generated module (see the [19]). The category of

M -subgenerated modules is denoted by σ[M ].

A nonzero R-module M is called strongly prime if it is subgenerated by

each of its nonzero submodules. In terms of elements, M ∈ R-Mod is strongly

prime if and only if for any non-zero x, y ∈M , there exits finite set of elements

{a1, ..., an} ⊆ R, n = n(x, y), such that AnnR{a1x, ..., anx} ⊆ AnnR{y} (see

[4]). Other characterizations and properties of strongly prime modules can be

found in [4], [19].

Taking M = R in the definition of strongly prime modules over R, the

notion of left strongly prime ring is obtained (see [9]).

We look at a ring R as an R-bimodule and consider R as the left module

over its multiplication ring M(R). Now R is called strongly prime if R is a

strongly prime module over M(R).

We say an element a ∈ R is a symmetric zero divisor if for any finite subset

of elements {a1, ..., an} ⊆ (a), AnnM(R){a1, ..., an} 6⊆ AnnM(R){1R}. Denote

by zd(R) the set of symmetric zero divisors of R.

Of course, for R commutative, taking n = 1 and a1 = a, we obtain the usual

definition of zero divisors.
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Theorem 2.1. For any ring R the following are equivalent:

(1) R is a strongly prime ring;

(2) zd(R) = 0;

(3) R is a prime ring and the central closure Q(R) of the ring R is a simple

ring;

(4) for any nonzero a, b ∈ R, there exist λ1, ..., λn ∈M(R) such that

AnnM(R){λ1a, ..., λna} ⊆ AnnM(R){b};
(5) for any nonzero a ∈ R, there exist λ1, ..., λn ∈M(R) such that

AnnM(R){λ1a, ..., λna} ⊆ AnnM(R){1R};
(5′) for any nonzero a ∈ R, there exist a1, ..., an ∈ (a), such that∑

i xiakyi = 0, for all 1 ≤ k ≤ n, implies
∑

i xiyi = 0;

(6) there exists a centred monomorphism φ : R → K where K is a simple

ring;

(7) there exists a centred monomorphism φ : R → S , where the ring S has

the following property: for each nonzero ideal I ⊆ R, its extension Iε in

S, Iε = SIS, is equal to S.

Proof. The equivalence of conditions (1), (3), (4), (5) is proved in [19], Theorem

35.6. Obviously, (3)⇒ (6)⇒ (7).

We prove (7) ⇒ (5). Take any nonzero a ∈ R. Then, by assumption,

(a)ε = (a)ZS = S. This gives an expression
∑

k akδk = 1, with ak ∈ (a),

δk ∈ ZS. So we obtain AnnM(R){a1, ..., an} ⊆ AnnM(R){1R}.
The equivalence of (2) and (5) easily follows from the definition of symmetric

zero divisors.

(5′) is exactly (5) written in terms of elements of the ring R.

Particularly by (2) of this theorem, each ring which is not strongly prime

has nonzero symmetric zero divisors. It is also clear that a strongly prime ring

is left and right strongly prime in the sense of Handelman-Lawrence.

We note that for any strongly prime ring R, the central closure Q(R) coin-

cides with the right (and left) Martindale ring of quotients Qr(R), and so with

the symmetric ring of quotients (see [12, Proposition 1.2, 1.4]): Indeed, let any

element of Qr(R) be represented by the homomorphism of right R-modules

f : I → R, where I ⊆ R is a nonzero ideal. Q(R) is a simple ring so we obtain

an expression ∑
k

ikuk = 1, with ik ∈ I, uk ∈ F (R).

Multiplying this equality by f from the left, we obtain f ∈ Q(R), because

fik ∈ R.
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Let M be a centred R-bimodule, δ ∈ ZM - an R-centralizing element. For

an ideal I ⊆ R consider the ideals

I1 = I, Ik+1 = {r ∈ R | rδ ∈ IkM}, k ∈ IN.

Obviously, Ik ⊆ Ik+1 for all k ∈ IN , and, because M is a centred bimodule,

IkM = IkZM , for all k ∈ IN .

This construction yields a further characterization of strongly prime rings.

Theorem 2.2. A ring R is strongly prime if and only if there exits a centred

R-bimodule M and an element δ ∈ ZM , with AnnRδ = 0 and having the

property: for each nonzero ideal I ⊆ R, In+1 = R for some n ∈ IN .

Proof. If R is strongly prime, then we may take M = Q(R) - the central closure

of R - and δ = 1. Then IQ(R) = Q(R) and I2 = R, for each nonzero ideal

I ⊆ R.

Let some centred R-bimodule M and δ ∈ ZM satify the condition of the

theorem. Take any nonzero a ∈ R and let I = (a). So

δ = a
(n)
1 δ

(n)
1 + ...+ a

(n)
m δ

(n)
m , with some a

(n)
i ∈ In, δ

(n)
i ∈ ZM .

By definition of the ideals Ik, we obtain finite linear combinations

a
(n)
i δ =

∑
j a

(n−1)
j δ

(n−1)
j , a

(k+1)
i δ =

∑
j a

(k)
j δ

(k)
j ,

with a
(k)
j ∈ Ik and δ

(k)
j ∈ ZM , 1 ≤ k ≤ n− 1.

Particularly, a
(1)
i ∈ (a). Now, if λa

(1)
i = 0 for some λ ∈ M(R), and all i,

then all λa
(2)
i δ = 0, and step by step we obtain that all λa

(k)
i δ = 0, 1 ≤ k ≤ n,

and λ1δ = 0, so λ1 = 0 because AnnRδ = 0. By (5) of Theorem 2.1, R is

strongly prime.

The central closure Q(R) of any strongly prime ring R has an important

universal property. In [11] the following result was proved. Let the ring R be

centrally embedded into a ring S, such that for each nonzero ideal I ⊆ R, its

extension Iε = SIS in S is equal to S. Then R is strongly prime and there

exists a unique centred homomorphism ρ : Q(R) → S, extending the given

embedding, and sending the extended centroid F = Z(Q(R)) of the ring R into

Z(S) (see [11], Theorems 2 and 5). This generalizes Amitsur’s result proved

for simple rings S (see [1], Theorem 18). Particularly this universal property

shows that the simple ring Q(R) is a minimal centred extension satisfying (7)

of Theorem 2.1.

Let φ : R → S be a centred homomorphism of rings. Then for all a, b ∈
R, the left and right multiplications la, rb ∈ M(R) canonically extend to

lφa, rφb ∈ M(S). If
∑

k lakrbk = 0 in M(R), this means that
∑

k akxbk = 0

for all x ∈ R, we obtain
∑

k φakφxφbk = 0 in S. By assumption, S is a
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centred extension of R, so each element s ∈ S can be expressed in the form

s =
∑

i φxiδi, where xi ∈ R, δi ∈ ZS. So
∑

k lφakrφbk annihilates s, because

the δi commute with elements from φR. Thus, sending λ =
∑

k lakrbk ∈M(R)

to
∑

k lφakrφbk ∈ M(S), we obtain a ring homomorphism φ′ : M(R)→ M(S).

This homomorphism is centred because M(S) as an M(R)-module is generated

by the elements lurv, u, v ∈ ZS, which commute with all larb ∈M(R).

If φ is a monomorphism and λ′ = φ′λ = 0 for some λ ∈ M(R), then for

any x ∈ R, λ′φx = 0, implying λx = 0 so λ = 0 showing that φ′ is also a

monomorphism. Gathering all this we obtain:

Lemma 2.3. Each centred homomorphism of rings φ : R → S induces a

canonical centred homomorphism φ′ : M(R) → M(S). If φ is a monomor-

phism, then φ′ is also a monomorphism.

Now we are in a position to describe the multiplication rings of strongly

prime rings.

Theorem 2.4. A ring R is strongly prime if and only if its multiplication ring

M(R) is strongly prime. In this case their extended centroids are canonically

isomorphic, and the central closure Q(M(R)) ∼= Q ⊗F Q◦, where Q = Q(R)

and F = F (R).

Proof. Let M(R) be a strongly prime ring, so M(R) centrally embeds into

the simple ring Q(M(R)). The map R ↪→ M(R), sending a ∈ R to the left

multiplication la ∈ M(R), is a centred monomorphism, because la commutes

with all right multiplications rb, b ∈ R. By (6) of Theorem 2.1, R is strongly

prime. By Amitsur’s theorem we obtain centred embeddings of the central

closures Q(R) ⊆ Q(M(R)) and extended centroids F (R) ⊆ F (M(R)).

If R is strongly prime, we have a canonical centred monomorphism φ : R→
Q, where Q is a simple ring. Then, by Lemma 2.3, M(R) can be centrally

embedded into M(Q(R)). We have already noticed that for the simple ring Q

with centre F , the multiplication ring M(Q) is a simple ring K = Q ⊗F Q◦.
So M(R) is strongly prime by (6) of Theorem 2.1.

By general properties of central simple algebras, Z(K) = F . Also K is

generated by F and the elements a⊗ b◦, a, b ∈ R. But these elements belong

to M(R). So we have K = M(R)F , because Q(R) = RF .

From Amitsur’s theorem we obtain centred embeddings

M(R) ⊆ Q(M(R)) ⊆ Q⊗F Q◦ = K,

with F (M(R)) = Z(Q(M(R)) ⊆ Z(K) = F (R). We already have proved that

F (R) ⊆ F (M(R)) for the strongly prime ring M(R). Thus F (M(R)) = F (R),

and Q(M(R)) = M(R)F (M(R)) = M(R)F (R) = K.
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Theorem 2.5. Let R be a strongly prime ring. If a ring S is Morita equivalent

to R, then S is strongly prime and the extended centroids of R and S are

isomorphic.

Proof. If R is strongly prime, the matrix ring Mn(R) centrally embeds into a

simple ringMn(Q(R)) and is strongly prime. Also Mn(Q(R)) = Mn(R)F , and

Z(Mn(Q(R))) = F , where F is the extended centroid of the ring R. We have

S ∼= eMn(R)e, for some n ∈ IN , and some idempotent e ∈Mn(R). Thus

eMn(R)e ⊆ eMn(Q(R))e = eMn(R)Fe = eMn(R)eeFe,

because F is the centre of Mn(Q(R)). But eMn(Q(R))e is a simple ring whose

centre eFe is isomorphic to the field F .

Recall that a ring R is semiprime if it does not contain any nonzero nilpotent

ideals. It is well known that in a semiprime ring left and right annihilators of

an ideal coincide, so we can speak about ideals with zero annihilators. It is also

clear that an ideal of a semiprime ring R is essential as an M(R)-submodule

if and only if it has zero annihilator.

A finite set A = {a1, . . . , an} ⊆ R is called an insulator, if

AnnM(R){a1, ..., an} ⊆ AnnM(R){1R},

i.e., if λa1 = ... = λan = 0, implies λ1 = 0.

The set In(R) of insulators of R is evidently closed under multiplication.

In a semiprime ring R, insulators can be characterised in terms of the central

closure Q(R) and extended centroid F (R). Indeed, using Theorem 32.3 in [19],

we obtain:

Proposition 2.6. In any semiprime ring R, a finite subset A = {a1, ..., an}
is an insulator if and only if 1 ∈ AF , i.e. if

a1ϕ1 + · · ·+ anϕn = 1,

for suitable ϕk from the extended centroid F of R.

Denote by F the set of right ideals in R containing an insulator. Analogously

we define the set F ′ as left ideals of R containing an insulator.

If R is commutative, any ideal generated by elements of an insulator is dense.

It will follow from the proof of Proposition 2.7 below that in any commutative

ring F is a Gabriel filter.

We remind that a semiprime ring R is called strongly semiprime if for each

essential ideal I, R ∈ σM(R)[I] (see [19, 34.3]). It easily follows from the

definitions that R is strongly semiprime if and only if each essential ideal

contains an insulator. Clearly each strongly prime ring is strongly semiprime.



ON STRONGLY PRIME RINGS AND IDEALS 7

Proposition 2.7. If R is a strongly semiprime ring, then F and F ′ are sym-

metric Gabriel filters. Corresponding left and right localizations form a biradi-

cal in the sense of Jategaonkar, i.e., corresponding torsion submodules in R/A

coincide for each ideal A ⊆ R.

Proof. First we prove that F is symmetric - this means by definition that each

right ideal U ∈ F contains an ideal which belongs to F .

By Proposition 2.6, UF 3 1 and we have an expression

a1ϕ1 + ...+ anϕn = 1, with ak ∈ U, ϕk ∈ F.

All ϕk can be represented as M(R)-homomorphisms ϕk : Ik → R, where Ik are

ideals with zero annihilators in R. Evidently the ideal I = ∩kIk ∈ F , because

it is essential and so contains an insulator. We show that I ⊆ U . Indeed,

we have x =
∑

k akϕkx, for all x ∈ I. But ϕkx ∈ R, because x ∈ Ik, for all

1 ≤ k ≤ n. Thus I ⊆ U and F is a symmetric set of right ideals.

Now we going to verify the axioms of Gabriel filters for F .
First we show that for each r ∈ R and U ∈ F ,

(U : r) = {x ∈ R | rx ∈ U} ∈ F .

For U ∈ F we have already observed that it contains some ideal I from the

F . Thus (U : r) ⊇ I for all r ∈ R, so (U : r) ∈ F for all r ∈ R.

Now consider a right ideal V and some U ∈ F , such that (V : u) ∈ F , for

all u ∈ U . We must show that V ∈ F , i.e., that V contains an insulator.

Choose any insulator A = {a1, . . . , an} ⊆ U . For each ak we have insulators

Bk = {bk1, . . . , bkm} ⊆ (V : ak), and akbkl ∈ V, 1 ≤ k ≤ n, 1 ≤ l ≤ m. Now

1 ∈ BkF for all 1 ≤ k ≤ n, because R is semiprime. So akBkF 3 ak, and the

set of elements {akbkl} =
⋃
k akBk ⊆ V is an insulator because 1 ∈ AF .

Thus we proved that F is a symmetric Gabriel filter, with a basis consisting

of finitely generated right ideals. Moreover, UQ = Q for each U ∈ F .

The proof for F ′ is analogous.

Let A ⊆ R be an ideal. An element x̄ ∈ R/A, x ∈ R, is torsion for F if

and only if x̄I = 0, or equivalently, xI ⊆ A, for some essential ideal I ⊆ R.

Let the elements {i1, ..., in} form an insulator in I. Then xik = ak ∈ A and

x =
∑

k akϕk, for suitable ϕk ∈ F . All ϕk are defined on some essential ideal

J ⊆ R, so we obtain that Jx ⊆ A. This means that x̄ ∈ R/A is a torsion

element for F ′. So localizations corresponding to the Gabriel filters F and F ′
form a biradical.
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Theorem 2.8. Let R be a strongly semiprime ring. Then the canonical map

φ : Q(R)⊗R Q(R)→ Q(R)

is an isomorphism, and Q(R) is flat as a left and a right R-module.

Proof. Consider an element x =
∑

k rkuk ⊗ vk in the kernel of φ, where rk ∈
R, uk, vk ∈ F , i.e.

∑
k rkukvk = 0.

All vk can be represented as M(R)-homomorphisms vk : Ik → R, where

Ik are essential ideals. Then the ideal I =
⋂
k Ik 6= 0 is also essential, thus

contains an insulator {i1, ...in}. Then
∑

l ilϕl = 1, for some ϕl ∈ F . We have

x =
∑
k

rkuk ⊗ (
∑
l

ilϕl)vk =
∑
l

(
∑
k

rkukvk)il ⊗ ϕl = 0,

because all vkil ∈ R.

To prove that Q(R) is flat as a right R-module consider a left ideal L ⊆ R,

and the canonical homomorphism

φ′ : Q(R)⊗R L→ Q(R).

Let a =
∑

k uk ⊗ rk be in the kernel of φ′, where uk ∈ F and rk ∈ L, i.e.∑
k ukrk = 0 in Q(R). All uk are defined as M(R)-homomorphisms on some

essential ideal J , so we have
∑

l jlψl = 1, with suitable jl ∈ J , ψl ∈ F . Thus

a =
∑
k

uk(
∑
l

jlψl)⊗ rk =
∑
l

ψl ⊗
∑
k

(ukjl)rk = 0,

because all ukjl ∈ R, and
∑

k(ukjl)rk = jl
∑

k ukrk = 0, for all l. This shows

that Q(R) is flat as a right R-module.

Left flatness can be proved analogously.

A ring homomorphism φ : R→ S, for which the canonical map S⊗RS → S

is an isomorphism and which induces the structure of a right (left) flat R-

module is called a right (left) flat epimorphism.

The theorem proved shows that for a strongly semiprime ring the canonical

embedding R→ Q(R) is a right and left flat epimorphism.

By a theorem of Popescu-Spircu (see [16], Ch. XI, Theorem 2.1), for each

right flat epimorphism φ : R→ S, the set of right ideals

F = {UR ⊆ R | φ(U)S = S}

is a Gabriel filter and S is canonically isomorphic to the quotient ring QF(R).

By Proposition 3.4 in [16], Ch. XI, for any right flat epimorphism φ : R→ S,

M ⊗R S ∼= QF(M), for each M ∈Mod-R, i.e. the localization, associated with

a flat epimorphism, is perfect.
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Applying the Popescu-Spircu Theorem to the embedding R → Q(R) for

a strongly semiprime ring R, and the characterisation of Gabriel filters in

Proposition 2.7 and Theorem 2.8, we obtain:

Theorem 2.9. Let R be a strongly semiprime ring. Then

(1) Q(R)⊗R Q(R) ∼= Q(R),

(2) Q(R) is flat as left and right R-module,

(3) the sets F and F ′ are symmetric Gabriel filters, the corresponding local-

izations are perfect,

(4) the central closure Q(R) is canonically isomorphic to the quotient ring

of R with respect to F and F ′.

It is worth noticing that the following lemma (also) implies one of the equiv-

alent conditions of the Popescu-Spircu Theorem and from this the statements

of Theorem 2.9 can be regained.

Lemma 2.10. Let R be a strongly semiprime ring. Then for every q ∈ Q(R),

there exist elements i1, ..., in ∈ R and ψ1, ..., ψn ∈ F , such that qik, ikq ∈ R,

and
∑

k ikψk = 1.

Proof. Let q = r1ϕ1 + ...+ rmϕm, rk ∈ R, ϕk ∈ F .

We have already noticed that all ϕk can be represented as M(R)-homomor-

phisms ϕk : Ik → R, where Ik and I =
⋂
k Ik are in F , so I contains an

insulator. Thus we have 1 =
∑

k ikψk, for some ik ∈ I and ψk ∈ F . But

ϕki ∈ R, for all i ∈ I, so qik, ikq ∈ I, for 1 ≤ k ≤ n.

3. Strongly prime ideals

An ideal p ⊂ R is called strongly prime if the factor ring R/p is a strongly

prime ring.

We can adapt Theorem 2.1 for equivalent characterizations of strongly prime

ideals. From (5) of this theorem we obtain the following:

Proposition 3.1. An ideal p ⊂ R is strongly prime if and only if for each

a /∈ p, there exist elements a1, ..., an ∈ (a), n = n(a), such that for each

λ ∈M(R) with λ1 /∈ p, at least one of elements λak /∈ p.

Clearly, maximal ideals are strongly prime. It is well known that in PI rings

each prime ideal is strongly prime. Of course, any strongly prime ideal is prime

by (3) of Theorem 2.1. Since not each prime ring has a simple central closure,

prime ideals are not necessarily strongly prime. Using standard arguments we

easily obtain from Theorem 2.5 that strongly prime ideals are preserved under

Morita equivalences. If φ : R → S is a centred homomorphism of rings, and
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q ⊂ S is a strongly prime ideal, we easily obtain from(6) of Theorem 2.1 that

p = φ−1q is a strongly prime ideal in R.

The intersection of all strongly prime ideals of the ring R we call the strongly

prime radical and denote it by sr(R). We give a characterization of the strongly

prime radical of the ring. Let R[X1, ...Xn] be a polynomial ring over the ring

R with commuting or noncommuting indeterminates.

Theorem 3.2. a ∈ sr(R) if and only if for any a1, ..., an ∈ (a), the ideal in

R[X1, ..., Xn], generated by the polynomial a1X1 + ...+ anXn − 1 contains 1.

Proof. If some polynomial a1X1 + ... + anXn − 1 generates a proper ideal in

R[X1, ..., Xn], we can take a maximal ideal M ⊂ R[X1, ..., Xn] containing

this polynomial. Evidently a /∈ M. So we have the centred homomorphims

φ : R→ R[X1, ..., Xn]/M with φa 6= 0 and φ−1M is a strongly prime ideal in

R not containing a. This implies a 6∈ sr(R).

Now assume a /∈ sr(R). Then a /∈ p for some strongly prime ideal p ⊂ R,

and therefore (ā)ε = Q(R/p), yielding an expression

ā1u1 + · · ·+ ānun = 1 in Q(R/p),

with ā1, ..., ān ∈ (ā), u1, ..., un ∈ F (R/p).

So the polynomial a1X1+...+anXn−1 is in the kernel of the homomorphism

R[X1, ..., Xn] → Q(R/p), which sends Xk to the uk, for 1 ≤ k ≤ n. Thus the

ideal generated by this polynomial is proper.

This theorem is an analogue of the well-known fact that an element a of

any commutative ring R is nilpotent if and only if the polynomial aX − 1 is

invertible in R[X].

Since each maximal ideal is strongly prime, the strongly prime radical of the

ring is contained in the Brown-McCoy radical.

Theorem 3.3. The strongly prime radical sr(R) of R contains the Levitzki

radical L(R).

Proof. Recall that the Levitzki radical is the largest locally nilpotent ideal of

the ring. If some element a ∈ L(R) is not in the strongly prime radical, we

have an expression

(∗) ā1u1 + ...+ ānun = 1 in Q(R/p),

with a1, . . . , an ∈ (a), u1, . . . , un ∈ F (R/p), for some strongly prime ideal

p ⊂ R. Because A = {a1, ..., an} is in L(R), there exists m ∈ IN such that

all products ak1 ...akm with akl ∈ A are zero. Then the m-th power of the

expression (∗) would give a contradiction.
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Problem. It would be interesting to know if - or under which conditions -

the upper nilradical of the ring is contained in sr(R).

Recall that a subset A ⊆ R of a ring is an m-system if 1 ∈ A and for each

a, b ∈ A, arb ∈ A for some r ∈ R. Two main properties of the m-systems

are well known: a complement of a prime ideal is an m-system, and each ideal

maximal with respect to being disjoint with A is prime.

Now we introduce a variation of this notion and characterize strongly prime

ideals in terms of these sets.

We call a subset S ⊆ R strongly multiplicative, or sm-set, if 1 ∈ S and for

any a ∈ S there exist elements a1, . . . , an ∈ (a), n = n(a), such that for each

λ ∈M(R) with λ1 ∈ S, we have λak ∈ S, for some 1 ≤ k ≤ n.

Proposition 3.4. If p ⊂ R is a strongly prime ideal, its complement in R is

a strongly multiplicative set.

Proof. The assertion is just another form of Proposition 3.1.

Other examples of sm-sets are obtained from any ideal I ⊂ R:

S = {1 + i | i ∈ I} ⊆ R is an sm-set.

Indeed, for each a = 1 + i, i ∈ I take n = 1 and a1 = a. If λ1 = 1 + j, j ∈ I,

then λa = 1 + j + λi ∈ S, showing that S is strongly multiplicative.

Theorem 3.5. Let S ⊂ R be a strongly multiplicative set not containing 0.

Then each ideal p ⊂ R, maximal with respect to p ∩ S = ∅, is strongly prime.

Proof. Let x 6∈ p. Then p+ µ0x = a ∈ S, for some p ∈ p and µ0 ∈M(R). Let

ak = λka = λkp+ λkµ0x ∈ (a), 1 ≤ k ≤ n,

be elements corresponding to a in the definition of sm-sets. Let λ1 6∈ p. Then

q + ν0λ1 = (lq + ν0λ)1 = λ′1 ∈ S, for some q ∈ p, where lq ∈ M(R) is the left

multiplication by q. Then for some k, λ′ak ∈ S thus not in p. So we have

λ′ak = (lq + ν0λ)(λkp+ λkµ0x) = qak + ν0λλkp+ ν0λλkµ0x 6∈ p.

But qak and ν0λλkp are in p, so λλkµ0x 6∈ p. Thus, for each x 6∈ p, there exist

a finite set of elements xk = λkµ0x ∈ (x), such that for each λ ∈ M(R) with

λ1 6∈ p, at least one of the elements λxk 6∈ p. By Proposition 3.1, the ideal p

is strongly prime.

Let S ⊂ R be a strongly multiplicative set. Similar to the commutative

case, we define the set

S ′ = {u ∈ R | (u) ∩ S 6= ∅}

and call it the saturation of S. We call S saturated if S ′ = S.
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Denote by H the union of all strongly prime ideals p ⊂ R disjoint with S.

We have shown that H 6= ∅ when 0 6∈ S.

Proposition 3.6. Let S be a strongly multiplicative set. Then S ′ is also

strongly multiplicative and S ′ = R \H.

Proof. This is shown similarly to the commutative case.

Corollary 3.7. For a commutative ring saturated strongly multiplicative sets

are the usual saturated multiplicative sets.
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