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Abstract

Entwined structures (A,C, ψ) were introduced by Brzeziński and Majid to
study the interdependence of an R-algebra A and an R-coalgebra C, R a com-
mutative ring. It turned out that this relationship can also be expressed by
the fact that A⊗R C has a canonical A-coring structure. More generally weak
entwined structures and their modules were studied by Caenepeel and Groot
and it was suggested by Caenepeel to relate these to pre-corings. Slightly mod-
ifying this notion we introduce weak corings and develop a general theory of
comodules over such corings. In particular we obtain that (A,C, ψ) is a weak
entwined structure if and only if A ⊗R C is a weak A-coring (with canonical
structure maps). Weak bialgebras in the sense of Böhm-Nill-Szlachányi are char-
acterized as R-modules with an algebra and coalgebra structure (B,µ,∆) such
that B ⊗R B is a weak coring for the various coring structures induced by µ,
µ ◦ τ , ∆ and τ ◦∆. Moreover we will characterize weak Hopf algebras as those
weak bialgebras B, which are generators for the comodules over (B ⊗R B) · 1.

Introduction

Throughout the paper R will be an associative commutative ring with unit.

An R-algebra (A, µ, ι) and an R-coalgebra (C,∆, ε) are said to be entwined, and

(A,C, ψ) is said to be an entwining structure if there exists an R-linear map

ψ : C ⊗R A→ A⊗R C,

such that
ψ ◦ (I⊗µ) = (µ⊗I) ◦ (I⊗ψ) ◦ (ψ⊗I), ψ ◦ (I⊗ι) = ι⊗I,

(I⊗∆) ◦ ψ = (ψ⊗I) ◦ (I⊗ψ) ◦ (∆⊗I), (I⊗ε) ◦ ψ = ε⊗I,
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where I denotes the appropriate identity maps. In [4] these conditions are displayed

in a nice bow-tie diagram. A similar ”entwining” of two algebras is considered in

Tambara [12].

Entwining structures are introduced in Brzeziński-Majid [2] to develop a theory

of ”coalgebra principal bundles” and the associated modules are defined in Brzeziński

[3] as right A-modules with a coaction % : M →M ⊗R C such that

%(m · a) =
∑
m0ψ(m1⊗a), for m ∈M , a ∈ A.

Although these structures are very useful and managable there is no immediate

evidence from the algebraic point of view why they are of such interest. This evidence

is provided in [5] by the observation that (A,C, ψ) is an entwining structure if and

only if A⊗R C has an A-coring structure given by the comultiplication

∆ := I⊗∆ : A⊗R C → A⊗R C ⊗R C ' (A⊗R C)⊗A (A⊗R C),

and the counit ε := I⊗ε : A ⊗R C → A, where A ⊗R C has the canonical A-module

structure on the left, and the right A-action

(1⊗c) · a = ψ(c⊗a), for a ∈ A, c ∈ C.

In particular, an R-module B with an algebra and a coalgebra structure is a

bialgebra if and only if the construction just described makes B ⊗R B a B-coring

(resp. (B,B, ψ) an entwining structure), where the right B-action is

(1⊗c) · b = (1⊗c)∆(b) (= ψ(b⊗c)), for b ∈ B, c ∈ C.

Motivated by problems in quantum field theory and operator algebras the notion

of bialgebras was extended to weak bialgebras by Böhm, Nill and Szlachányi [10, 1].

To relate these with the notions mentioned before, weak entwining structures (A,C, ψ)

and their (co-)modules were introduced and investigated in Caenepeel-Groot [6]. It is

pointed out in Brzeziński [5] that the category of (co-)modules over weak entwining

structures can be identified with the category of comodules over a suitable coring.

By ideas of Caenepeel (see [5, Section 6]) the interpretation of entwining structures

as corings can be extended to weak entwining structures and pre-corings: These are

(A,A)-bimodules C, unital as left A-module, with an (A,A)-bimodule map ∆ : C →
C ⊗A C satisfying the coassociativity condition, and a left A-module map ε : C → A

with the property ε(c · a) = ε(c · 1)a, for a ∈ A, c ∈ C.
Because of the obvious importance of pre-corings it is suggested in [5] to study the

general properties of these structures. This is the motivation for the present paper.
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Slightly modifying the definition of pre-corings we introduce, in Section 1, weak

A-corings C where ”weak” indicates the fact that C need not be unital as A-module -

neither on the left nor on the right side. The corresponding notion of weak comodules

is defined and their category is considered.

A weak A-coring C which happens to be unital as left A-module is (essentially) a

pre-coring (as defined above), and C is a coring provided it is unital both as left and

right A-module. In the definition of (right) weak C-comodules M , we allow M to be

non-unital as A-module and hence we will have AC as a right weak C-comodule. This

differs from the approach in [6] and [5].

In Section 2 we ask when A itself is a comodule over the A-coring C. This is the

case if and only if there exists a group-like element in ACA, and the coinvariants of any

weak C-comodule M are introduced as the images of 1 under the comodule morphisms

A → M . The notion of a Galois weak A-coring is defined and it is shown how these

are related to equivalences between the comodules over ACA and the modules over

the coinvariants (see 2.5).

As for coalgebras and for corings, the dual algebra ∗C = HomA−(C, A) plays a

prominent role for weak corings. This is investigated in Section 3. Every right C-
comodule may be considered as right ∗C-module and in case AC is projective as a

left A-module, for any right C-comodule the C-comodule structure and the ∗C-module

structure coincide. Some results shown for coalgebras in [14] are extended and a

finiteness theorem for weak comodules is proved (see 3.8). Notice that here ∗C need

not have a unit.

Given an R-algebra A and an R-coalgebra C, a comultiplication is defined on

A ⊗R C in a canonical way (see Section 4) and it is shown that this yields a weak

A-coring if and only if there exists a weak entwining map ψ : C ⊗R A → A ⊗R C
(as considered in Caenepeel-Groot [6]). In this case the dual algebra ∗(A ⊗R C) '
HomR(C,A) yields the (Doi-Koppinen) smash product (see 4.2).

In Section 5 we finally consider an R-module B which is an algebra and a coalgebra

∆ : B → B ⊗R B, with ∆(ab) = ∆(a)∆(b), for a, b ∈ B. We show that B is a weak

bialgebra (in the sense of Böhm, Nill, Szlachányi [1]) if and only if B ⊗R B is a weak

B-coring both with respect to ∆ and τ ◦ ∆ (where τ is the twist map). Moreover

weak Hopf algebras are characterized as those bialgebras B, which are generators in

the category of right comodules over (B ⊗R B) · 1 (see 5.12).

The papers on weak Hopf algebras mostly consider finite dimensional algebras over

fields. Here we are working with algebras and coalgebras over any commutative ring

R without finiteness conditions. For explicit examples and applications we refer to

[5], [1], [6], and the references given there.
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1 Weak corings

Throughout A will be an associative ring with unit 1 (or 1A). In module theory

usually the category of unital A-modules is considered. It has turned out that for some

applications non-unital modules are of interest and hence we recall some elementary

properties of non-unital modules over unital rings.

1.1. Non-unital modules. By M̃A (resp. AM̃) we denote the category of all (not

necessarily unital) right (left) A-modules whileMA and AM denote the corresponding

subcategories of unital A-modules. For any module M the identity map is denoted

by IM or just by I if no confusion arises.

We write AM̃B for the category of (A,B)-bimodules, B an associative ring, which

need not be unital neither on the left nor on the right, i.e., for any M ∈ AM̃B and

m ∈ M , a ∈ A, b ∈ B, we have (am)b = a(mb) but possibly m1B 6= m or 1Am 6= m.

The subcategory of those bimodules which are left and right unital is denoted by

AMB.

For M,N ∈ AM̃B, the set of bimodule morphisms M → N will be denoted by

HomAB(M,N) and we will write HomA−(M,N) or Hom−B(M,N) for the left A-

module or right B-module morphisms, respectively.

For any M ∈ M̃A there is a splitting A-epimorphism

−⊗1 : M →M ⊗A A, m 7→ m⊗1,

which is injective (bijective) if and only if M is a unital A-module. We have canonical

isomorphisms
M ⊗A A → MA, m⊗a 7→ ma, and

HomA(A,M) → MA, f 7→ f(1),

and we will identify these modules if appropriate. In particular, MA = M1.

For any A-module morphism f : M → N , the map f⊗I : M ⊗A A→ N ⊗A A can

be identified with the restriction f |MA: MA→ NA which we will usually also denote

by the symbol f . We have a functor

−⊗A A : M̃A →MA ⊂ M̃A, M 7→M ⊗A A, f 7→ f⊗I,

which is left (right) adjoint to itself, i.e., for any M,N ∈ M̃A,

HomA(M ⊗ A,N) ' HomA(M ⊗ A,N ⊗ A) ' HomA(M,N ⊗ A).

Since A is a unital A-module this implies HomA(M,A) ' HomA(MA,A).
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Of course we have - and will use - the corresponding properties for A ⊗A − and

left A-modules. For any M ∈ AM̃A, this induces a splitting (A,A)-morphism

1⊗− ⊗1 : M → A⊗AM ⊗A A ' AMA, m 7→ 1⊗m⊗1 (= 1m1),

and the isomorphisms

HomAA(M,A) ' HomAA(MA,A) ' HomAA(AMA,A).

1.2. Weak A-corings. Let C be an (A,A)-bimodule. An (A,A)-bilinear map

∆ : C → C ⊗A A⊗A C

is called a weak comultiplication. For c ∈ C we write ∆(c) =
∑
c1⊗1⊗c2.

An (A,A)-bilinear map ε : C → A is called weak counit (for ∆) provided we have

a commutative diagram

C
∆

wwooooooooooo
∆

''OOOOOOOOOOO

1⊗−⊗1

��

C ⊗A A⊗A C

ε⊗I
''OOOOOOOOOOOOO C ⊗A A⊗A C

I⊗ε
wwooooooooooooo

C .

In our notation this means

1c1 =
∑

ε(c1)c2 =
∑

c1ε(c2).

We call C a weak coring provided it has a weak comultiplication ∆ and a weak

counit ε.

An (A,A)-submodule D ⊂ C which is pure as a left and right A-submodule is

called a weak subcoring provided ∆(D) ⊂ D ⊗A A⊗A D.

The weak comultiplication ∆ is coassociative if we have a commutative diagram

C ∆−→ C ⊗A A⊗A C
∆ ↓ ↓ I ⊗ I ⊗∆

C ⊗A A⊗A C
∆⊗I⊗I−→ C ⊗A A⊗A C ⊗A A⊗A C,

which is expressed by the equality∑
c1 1⊗1⊗c1 2⊗1⊗c2 =

∑
c1⊗1⊗c2 1⊗1⊗c2 2.
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A weak A-coring C is said to be right (left) unital provided C is unital as a right

(left) A-module, and C is called A-coring provided C is unital both as a left and right

A-module. In this case C ⊗A A ⊗A C ' C ⊗A C as bimodules, we have the (more

familiar) notation ∆ : C → C ⊗A C for the comultiplication, and the diagram for the

counit simplifies to

C
∆

yyssssssssss
∆

%%KKKKKKKKKK

IC

��

C ⊗A C

ε⊗I
%%KKKKKKKKKKK C ⊗A C

I⊗ε
yysssssssssss

C .

This shows that for any A-coring C, ∆ splits as an (A,A)-bimodule morphism.

An A-coring is said to be an A-coalgebra if A is commutative and the left and right

action of A on C coincide (i.e., ca = ac for all c ∈ C, a ∈ A).

Notice that left unital A-corings are essentially the A-pre-corings introduced by S.

Caenepeel (see [5, Section 6]).

The following observations are immediate consequences of the definitions.

1.3. Proposition. Let (C,∆, ε) be a weak A-coring. Then

(1) (CA,∆, ε) is a (right unital) weak A-coring;

(2) (AC,∆, ε) is a (left unital) weak A-coring;

(3) (ACA,∆, ε) is an A-coring.

For any weak A-coring C, the A-linear maps C → A have ring structures which we

are going to describe now. Notice the canonical isomorphisms

C∗ := Hom−A(C, A) ' Hom−A(CA,A),

(AC)∗ := Hom−A(AC, A) ' Hom−A(ACA,A),
∗C := HomA−(C, A) ' HomA−(AC, A),

∗(CA) := HomA−(CA,A) ' HomA−(ACA,A),
∗C∗ := HomAA(C, A) ' HomAA(ACA,A) = ∗C ∩ C∗.

1.4. Multiplication on HomA(C, A). Let C be a weak A-coring.

(1) C∗ has a ring structure given by the (convolution) product, for f, g ∈ C∗,

f ∗r g : C ∆−→ CA⊗A C
g⊗I−→ A⊗A C ' AC f−→ A,

i.e., f ∗r g(c) =
∑
f(g(c1)c2).

ε is a central idempotent in C∗ and (AC)∗ = ε ∗r C∗.
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(2) ∗C has a ring structure given by the product, for f, g ∈ C∗,

f ∗l g : C ∆−→ C ⊗A AC
I⊗f−→ C ⊗A A ' CA

g−→ A,

i.e., f ∗l g(c) =
∑
g(c1f(c2)).

ε is a central idempotent in ∗C and ∗(CA) ' ε ∗l ∗C.

(3) ∗C∗ is a ring with multiplication, for f, g ∈ ∗C∗,

f ∗ g : C ∆−→ C ⊗A A⊗A C
g⊗I⊗f−→ A,

i.e., f ∗ g(c) =
∑
g(c1)f(c2), with unit ε.

(4) If C is a coassociative weak A-coring, then all these rings are associative.

Proof. (1) For any f ∈ C∗ and c ∈ C,

f ∗r ε(c) =
∑
f(ε(c1)c2) = f(1c1), and

ε ∗r f(c) =
∑
ε(f(c1)c2) =

∑
f(c1)ε(c2) =

∑
f(c1ε(c2)) = f(1c1).

(2) is symmetric to (1), and (3) follows from (1) and (2).

(4) This can be verified by direct computation.

So for any A-coring C, the rings C∗, ∗C and ∗C∗ have unit ε. This was already

observed in [11, Proposition 3.2]. In case C is an A-coalgebra (A commutative) we

have ∗C = C∗ and the above results are well known facts about the dual algebra of a

coalgebra.

1.5. Weak comodules. Let C be a weak A-coring and M ∈ M̃A. An A-linear map

%M : M → M ⊗A A⊗A C is called a weak coaction on M , and it is said to be weakly

counital, provided the following diagram commutes:

M
%M //

−⊗1 &&NNNNNNNNNNN M ⊗A AC
I⊗ε

��
M ⊗A A.

%M is said to be coassociative if the diagram

M

%M
��

%M // M ⊗A AC
I⊗∆

��
M ⊗A AC

%M⊗I // M ⊗A AC ⊗A AC



8

is commutative. For m ∈M we write %M(m) =
∑
m0⊗1⊗m1.

With this notation coassociativity of %M corresponds to the equality∑
m0⊗1⊗∆(m1) =

∑
%M(m0)⊗1⊗m1,

and weak counitality of %M is expressed by

m1 =
∑

m0 ε(m1) .

Clearly, in case M is a unital A-module we have (IM⊗ε) ◦ %M = IM .

For a coassociative weak A-coring C, an (non-unital) A-module M with a counital

coassociative coaction is called a right (weak) C-comodule.

An A-submodule K ⊂M is a weak subcomodule if

%M(K) ⊂ K ⊗A A⊗A C ⊂M ⊗A A⊗A C.

Left weak coactions and left weak C-comodules etc. are defined in a symmetric way.

Notice that any weak A-coring C has a left and a right coaction (by ∆) which,

however, need not be weakly counital. On the other side, it is easy to see that the

obvious right (left) C-coaction on AC (on CA) is weakly counital. In particular, for

any coassociative weak A-coring, AC and CA are right and left weak C-comodules,

respectively.

Let C be an A-coring. Then a right weak C-comodule M is called a right C-

comodule provided MA = M , i.e., M is a unital right A-module. As mentioned

above, this implies (IM⊗ε) ◦ %M = IM .

1.6. Proposition. Let M be a right weak comodule over the coassociative weak A-

coring C. Then:

(1) MA is a weak comodule over C;

(2) MA is a weak comodule over the (left unital) weak A-coring AC;

(3) MA is a weak comodule over the (right unital) weak A-coring CA;

(4) MA is a comodule over the A-coring ACA.

Notice that - in contrast to comodules - the structure map %M : M →M⊗AA⊗AC
of weak comodules need not be injective even if C is a coring. For example, considering

A as an A-coring (by ∆ : A ' A ⊗A A, ε = IA), every right A-module M is a weak

A-comodule by the map −⊗1 : M → M ⊗A A, which is not injective unless M is

unital.
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1.7. Morphisms. A morphism of modules with weak coaction f : M → N is an

A-linear map such that the diagram

M
f−→ N

↓ ρM ↓ ρN
M ⊗A AC

f⊗I−→ N ⊗A AC

commutes, which means %N ◦ f = (f⊗I) ◦ %M .

The set HomC(M,N) of morphisms of modules with weak coaction is an abelian

group, and by definition it is determined by the exact sequence

0→ HomC(M,N)→ HomA(M,N)
γ−→ HomA(M,N ⊗A AC),

where γ(f) := ρN ◦ f − (f⊗I) ◦ ρM .

For weak comodules, morphisms respecting the coactions are called comodule mor-

phisms. The following observations are easy to verify.

1.8. Weak coaction and tensor products. Let X be any unital right A-module.

Let M ∈ AM̃A with a right weak C-coaction %M : M →M ⊗A AC.

(1) X ⊗AM has a right weak C-coaction

I⊗%M : X ⊗AM −→ X ⊗AM ⊗A AC ,

and for any A-module morphism f : X → Y ,

f⊗I : X ⊗AM → Y ⊗AM

is a morphism of modules with weak C-coaction.

(2) In particular, X ⊗A C is a right C-comodule by

I⊗∆ : X ⊗A C ' X ⊗A AC −→ X ⊗A AC ⊗A AC ,

and f⊗I : X ⊗A C → Y ⊗A C is a morphism of modules with weak C-coaction.

(3) For any index set Λ, the module with right weak C-coaction A(Λ) ⊗A AC is iso-

morphic to AC(Λ).

(4) Assume C and %M to be coassociative. Then X⊗AC and X⊗AM are right weak

C-comodules and %M is a comodule morphism.
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1.9. Kernels and cokernels. Let f : K →M a be a morphism of right A-modules

with weak coaction. So we have an exact commutative diagram in M̃A,

K
f−→ M

g−→ N −→ 0

↓ ρK ↓ ρM

K ⊗A AC
f⊗I−→ M ⊗A AC

g⊗I−→ N ⊗A AC −→ 0.

By the cokernel property of N in M̃A, this can be completed commutatively by some

A-linear map %N : N → N ⊗A AC, i.e., we have a weak C-coaction on N , and - by

construction - g is a morphisms for modules with weak C-coaction. This shows that

f has a kokernel which is a morphism of modules with weak coaction.

The existence of a kernel of f can be shown in a similar way provided the functor

−⊗A AC respects monomorphisms, i.e., AC is flat as a left A-module.

For a coassociative weak A-coring C, the class of weak C-comodules together with

the C-comodule morphisms form an additive category which we denote by M̃C.

For a coassociative A-coring C we only consider (weak) comodules which are unital

as A-modules and the category of these is denoted by MC.

We summarize the above observations.

1.10. The category M̃C. Let C be a coassociative weak A-coring.

(1) The category M̃C has direct sums and cokernels.

It has kernels provided AC is flat as a left A-module.

(2) For the functor −⊗A C :MA → M̃C we have the natural isomorphism

HomC(MA,X ⊗A C)→ HomA(MA,X), f 7→ (I⊗ε) ◦ f,

for M ∈ M̃C, X ∈MA, with inverse map h 7→ (h⊗I) ◦ %M .

(3) The functor −⊗A CA :MA → M̃C is right adjoint to −⊗A A : M̃C →MA.

(4) If C is a coring, then − ⊗A C : MA → MC is right adjoint to the forgetful

functor MC →MA.

Proof. (1) It is easy to check that coproducts in M̃A yield coproducts in M̃C in an

obvious way. The rest is clear by the preceding remarks.

(2) For h ∈ HomA(MA,X), the composition

MA
%M−→MA⊗A C

h⊗I−→ X ⊗A C
I⊗ε−→ X

yields the map h.
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Let f ∈ HomC(MA,X ⊗A C) and put h = (I⊗ε) ◦ f . Then the composition

MA
%M−→MA⊗A C

h⊗I−→ X ⊗A C

yields the map f . Thus the given assignments are inverse to each other.

Any A-morphism M → N of right A-modules induces a morphism MA → NA

and so it is easy to see that the isomorphism is natural in both arguments.

(3) This follows from (2) by the isomorphism

HomC(MA,X ⊗A C) ' HomC(M,X ⊗A CA).

(4) is a consequence of (3). It is also shown in [5, Lemma 3.1].

Putting X = A and M = AC we obtain the

1.11. Corollary. For any weak A-coring C, there are ring isomorphisms

End−C(ACA) ' (AC)∗, EndC−(ACA) ' ∗(CA),

which are both given by f 7→ ε ◦ f .

Proof. By 1.10, the map

End−C(ACA) ' Hom−A(ACA,A) = (AC)∗, f 7→ ε ◦ f,

is an isomorphism of abelian groups. Moreover, for f, g ∈ End−C(ACA) and c ∈ ACA,

(ε ◦ f) ∗r (ε ◦ g)(c) = ε ◦ f(ε ◦ g(c1)c2)

= ε ◦ f((ε⊗I) ◦ (g⊗I) ◦∆(c))

= ε ◦ f((ε⊗I) ◦∆ ◦ g(c))

= ε ◦ f(g(c)) = ε ◦ (f ◦ g)(c).

To end this section we notice some elementary properties of the HomC-functors.

1.12. Exactness of the HomC-functor. Let AC be flat and M,N ∈ M̃C. Then:

(1) HomC(−, N) : M̃C → ZZ-Mod is left exact.

(2) HomC(M,−) : M̃C → ZZ-Mod is left exact.

(3) If A is right A-injective then HomC(−, ACA) : M̃C → ZZ-Mod is exact.
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Proof. (1) Any exact sequence X → Y → Z → 0 in M̃C yields a commutative

diagram with exact columns,

0 0 0

↓ ↓ ↓
0→ HomC(Z,N) → HomC(Y,N) → HomC(X,N)

↓ ↓ ↓
0→ HomA(Z,N) → HomA(Y,N) → HomA(X,N)

↓ ↓ ↓
0→ HomA(Z,N ⊗A AC) → HomA(Y,N ⊗A AC) → HomA(X,N ⊗A AC).

The second and third row are exact because of the exactness properties of HomA.

Now diagram lemmata imply exactness of the first row.

(2) is shown with a similar diagram.

(3) This is a consequence of the functorial isomorphism in 1.10.

2 A as weak C-comodule, coinvariants

For a given A-coring C, in general A need not be a weak comodule over C. If this is

the case it will be of special interest when A is a generator in M̃C. First we describe

the general situation.

2.1. A as weak comodule. For any weak A-coring C, the following are equivalent:

(a) A is a right C-comodule;

(b) A is a right ACA-comodule;

(c) there exists a group-like element g ∈ ACA (i.e., ∆(g) = g ⊗A g and ε(g) = 1).

Proof. (a) ⇔ (b) Let %A : A → A ⊗A C be a coaction which makes A a right C-
comodule. Then Im %A ⊂ ACA and so A is a right ACA-comodule.

The converse implication is trivial.

(b)⇔ (c) Since ACA is an A-coring the assertion follows by [5, Lemma 5.1]. Notice

that for a group-like g ∈ C, the coaction on A is given by

%A : A→ A⊗A C, a 7→ 1⊗g · a (= g · a).

If A,M ∈ M̃C, any comodule morphism f : A → M is uniquely determined by

the image of 1A ∈ A and this explains the importance of the
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2.2. Coinvariants. Let C be a weak A-coring with group-like element g ∈ ACA.

(1) The coinvariants of any M ∈ M̃C are defined by

M coC = {f(1) | f ∈ HomC(A,M)} = {m ∈MA | %M(m) = m⊗ 1⊗ g}.

(2) In particular, for M = A we have a subring

AcoC = {f(1) | f ∈ EndC(A)} = {a ∈ A | g · a = a · g} ⊂ A.

(3) The map EndC(A)→ AcoC, f 7→ f(1), is a ring isomorphism, and

HomC(A,M)→M coC, f 7→ f(1),

is a right AcoC-module isomorphism, for M ∈ M̃C.

(4) (N ⊗A AC)coC ' HomC(A,N ⊗A ACA) ' HomA(A,NA) ' NA,

for any N ∈ M̃A, with the maps

ϕN : HomC(A,N ⊗A ACA)→ HomA(A,NA)→ NA,

f 7→ (I⊗ε) ◦ f 7→ (I⊗ε) ◦ f(1).

(5) (AC)coC ' HomC(A,ACA) ' HomA(A,A) ' A, with the maps

ϕA : HomC(A,A⊗A ACA)→ HomA(A,A)→ A, f 7→ ε ◦ f 7→ ε ◦ f(1).

Proof. Most of these assertions are obvious. To prove (4) we refer to 1.10.

The standard Hom-tensor relation yields (compare [5, Proposition 5.2]):

2.3. The coinvariant functor. Let C be a weak A-coring and A a right C-comodule.

Putting B = AcoC, for any N ∈MB and M ∈ M̃C, there is a natural isomorphism

HomC(N ⊗B A,M) ' HomB(N,HomC(A,M)),

showing that the functor

(−)coC = HomC(A,−) : M̃C →MB, M 7→M coC,

is right adjoint to the induction functor −⊗B A :MB → M̃C, where the C-comodule

structure of N ⊗B A is given by I⊗%A.

Clearly, if AC is flat, then (−)coC is an exact functor if and only if A is a projective

object in M̃C.
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2.4. Galois A-corings. Let C be a weak A-coring with group-like element g ∈ ACA,

and put B = AcoC. Then C is said to be right Galois if the canonical map

HomC(A,AC)⊗B A→ ACA, f⊗a 7→ f(a),

is an isomorphism.

By the isomorphisms considered in 2.2(5), the diagram

HomC(A,A⊗A ACA)⊗B A → ACA f⊗b 7→ f(b)

↓ ϕA⊗I ‖ ↓ ‖
A⊗B A → ACA, ε ◦ f(1)⊗b 7→ ε ◦ f(1) · g · b,

is commutative since (recall that g = %A(1))

ε ◦ f(1) · g · b = ε ◦ f(1) · %A(b) = ε ◦ f(b0)b1

= (ε⊗I) ◦ (f⊗I)%A(b)

property of f = (ε⊗I) ◦∆(f(b)) = f(b).

Hence C is right Galois if and only if the canonical map

γ : A⊗B A→ ACA, a⊗b 7→ a · %A(1) · b,

is an isomorphism. It is obvious from this definition that the weak A-coring C is right

Galois if and only if the A-coring ACA is right Galois and this condition coincides

with Definition 5.3 in [5].

Notice that A ⊗B A may be considered as an A-coring in a canonical way and it

is straightforward to verify that the canonical map γ is in fact an A-coring morphism

(see [11, Example 1.2, Definition 1.3]).

The interest in Galois objects lies in the following observation.

2.5. A as a (projective) generator in MACA. Let C be a weak A-coring with

group-like element g ∈ ACA and put B = AcoC.

(1) The following are equivalent:

(a) C is right Galois, and A is flat as left B-module;

(b) AC is flat as left A-module, and A is a generator in MACA;

(c) MACA is a Grothendieck category, and HomC(A,−) :MACA → Mod-B is

a faithful functor;

(d) AC is flat as left A-module, and for any M ∈MACA, the map

M coC ⊗B A→M, m⊗a 7→ ma,

is an isomorphism.
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(2) The following are equivalent:

(a) C is right Galois, and A is faithfully flat as left B-module;

(b) AC is flat as left A-module, and A is a projective generator in MACA;

(c) MACA is a Grothendieck category, and HomC(A,−) :MACA → Mod-B is

an equivalence.

Proof. (1) (a) ⇒ (b) If BA is flat then the functor − ⊗A (A ⊗B A) ' − ⊗A ACA is

exact, i.e., AC is flat as left A-module. The first part of the proof of [5, Theorem 5.6]

(also [8, 2.5]) shows that A is a generator in MACA.

(b)⇔ (c) This is a well-known characterization of generators in any catgeory. AC
flat as A-module implies that MACA is a Grothendieck category (see 1.10).

(d) ⇒ (a) In a Grothendieck category any generator is flat as module over its

endomorphism ring (e.g., [13, 15.9]). In particular A is a flat B-module.

(b)⇔ (d) This is easily shown by standard arguments.

(2) By (1), MACA is a Grothendieck category. Therefore a finitely generated

generator P in MACA is projective in MACA if and only if P is faithfully flat as

module over its endomorphism ring (e.g., [13, 18.5]). Moreover, for such modules P ,

HomACA(P,−) induces an equivalence (e.g., [13, 46.2]).

3 C-comodules and ∗C-modules

For any coalgebra C, C-comodules are closely related to modules over the dual algebra

of C. To a certain extent this transfers to weak corings and comodules. Before studying

this we recall some basic facts.

3.1. Canonical maps. For any left A-module K and right A-module N , consider

the canonical map

α′N,K : N ⊗A K → HomZZ(K∗, N), n⊗k 7→ [f 7→ nf(k)].

It is easy to see that this map factors through N ⊗A AK yielding a map

αN,K : N ⊗A AK → HomZZ(K∗, NA).

(1) The following are equivalent:

(a) αN,K is injective;

(b) for u ∈ N ⊗A AK, (I⊗f)(u) = 0 for all f ∈ K∗, implies u = 0.
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(2) If αN,K is injective for each right A-module N , then AK is flat and cogenerated

by A.

(3) If AK is a projective A-module, then αN,K is injective, for each N ∈ M̃A.

Proof. (1) Let u =
∑
ni⊗ki ∈ N ⊗A AK. Then (I⊗f)(u) =

∑
nif(ki) = 0, for all

f ∈ K∗, if and only if u ∈ KeαN,K .

(2) For any exact sequence 0 → N → M of unital right A-modules, we have the

commutative diagram

0 → N ⊗A AK → M ⊗A AK
↓ αN,K ↓ αM,K

0 → HomZZ(K∗, N) → HomZZ(K∗,M).

The exactness of the second line implies exactness of the first line thus showing that

AK is flat.

Notice that A⊗A AK
αA,K−→ HomZZ(K∗, A) ⊂ AK

∗
.

(3) For a dual basis {(pi, ki) | pi ∈ (AK)∗, ki ∈ AK}I , let
∑

i ni⊗ki ∈ Ke αN,K .

Then ∑
i
ni⊗ki =

∑
i
ni ⊗

∑
l
pl(ki)kl =

∑
l
(
∑

i
ni pl(ki))⊗kl = 0,

since
∑

i ni pl(ki) = 0, for each l, showing that αN,K is injective.

To transfer properties of ∗C-modules to weak C-comodules the following conditions

on the A-module structure of C is necessary.

3.2. α-condition for weak corings. We say that a weak A-coring C satifies the left

(right) α-condition if the map

αN,C : N ⊗A AC → HomZZ(∗C, NA), n⊗c 7→ [f 7→ nf(c)],

(αC,L : CA⊗A L→ HomZZ(C∗, AL), c⊗l 7→ [g 7→ g(c)l], )

is injective for every right A-module N (left A-module L).

By 3.1(3), C satifies the left (right) α-condition provided AC (resp. CA) is projec-

tive as a left (right) A-module.

3.3. C-coaction and ∗C-action.

(1) Let %M : M →M ⊗A A⊗A C be a weak coaction. Then

↼ : M ⊗A ∗C →M, m⊗f 7→ (I⊗f) ◦ %(m),

defines a right ∗C-action on M .
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(2) Every A-submodule K ⊂M with coaction is a submodule with ∗C-action.

(3) If C satisfies the left α-condition, then every submodule closed under ∗C-action

has C-coaction.

(4) Let h : M → N be an A-linear map of modules with right C-coaction.

(i) If h is a morphism for right C-coaction, then h is a morphism for right
∗C-action.

(ii) If C satifies the left α-condition and h is a morphism for left ∗C-action,

then h is a morphism for right C-coaction.

Proof. The assertions in (1) and (2) are straightforward to verify.

(3) Let K ⊂M be a submodule with ∗C-action and consider the map

βK : K → HomZZ(∗C, K), k 7→ [f 7→ kf ].

Notice that βM = αM,C ◦ %M . We have the commutative diagram with exact lines

0→ K
i−→ M

p−→ M/K → 0
... ↓ %M

0→ K ⊗A AC
i⊗I−→ M ⊗A AC

p⊗I−→ M/K ⊗A AC → 0

↓ αK,C ↓ αM,C ↓ αM/K,C
0→ HomZZ(∗C, K)

Hom(∗C,i)−→ HomZZ(∗C,M) → HomZZ(∗C,M/K) → 0,

where all the α’s are injective and Hom(∗C, i) ◦ βK = αM,C ◦ % ◦ i. This implies that

(p⊗I)◦%M ◦i = 0, and by the kernel property (in M̃A), %M ◦i factors through K⊗AAC,
i.e., we have a coaction K → K ⊗A AC.

Obviously the diagram yields a coaction on M/K, too.

(4) Consider the diagram

M
h−→ N

↓ %M ↓ %N
M ⊗A AC

h⊗I−→ N ⊗A AC
↓ αM,C ↓ αN,C

HomZZ(∗C,M)
Hom(∗C,h)−→ HomZZ(∗C, N),

in which the lower square is always commutative.

If h is a comodule map, then the upper square is also commutative and so is the

outer rectangle. It is straightforward to see that this is equivalent to h respecting
∗C-action thus showing (i).
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Now assume the outer rectangle to be commutative. By assumtion αN,C is injective

and this implies that the upper square is also commutative proving (ii).

3.4. C-comodules and ∗C-modules. Let C be a coassociative weak A-coring,

%M : M → M ⊗A A ⊗A C a right weak coaction and ↼ : M ⊗A ∗C −→ MA ⊂ M

the corresponding action.

(1) If %M is coassocciative then ↼ makes M a right ∗C-module and ε acts as identity

on MA.

(2) If C satisfies the left α-condition and M is a right ∗C-module by ↼, then %M is

coassociative and every ∗C-submodule of M is a weak C-sub-comodule.

Proof. (1) If %M is coassociative we have the commutative diagram, for f, g ∈ ∗C,

M ⊗A AC
%M ↗ ↘I⊗∆

M M ⊗A AC ⊗A AC
I⊗I⊗f−→ M ⊗A ACA

I⊗g−→ MA.

%M ↘ ↗%M⊗I

M ⊗A AC .

For any m ∈M the upper path yields m↼(f∗lg) while the lower path yields (m↼f)↼g.

This implies our first assertion.

Since M is weakly counital, for any m ∈M , m1↼ε =
∑
m0ε(m1) = m1.

(2) If M is a ∗C-module by ↼, then m↼(f ∗l g) = (m↼f)↼g for all f, g ∈ ∗C and

the left α-condition implies commutativity of the rectangle in the above diagram.

The second assertion follows from 3.3.

By 3.3 we have the following relationship between

3.5. C-comodule and ∗C-module morphisms. Let M and N be right weak C-

comodules and h : M → N an A-linear map.

(1) If h is a C-comodule morphism then h is a ∗C-module morphism.

(2) If C satisfies the left α-condition and h is a ∗C-module morphism, then h is a

C-comodule morphism, i.e.,

HomC(M,N) = Hom∗C(M,N), for any M,N ∈ M̃C.

In a similar way left weak coactions on a left A-module M yield left actions of C∗
on M . In particular we have for C itself:
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3.6. ∗C- and C∗-actions on C. For any coassociative weak A-coring C there are

actions
↼ : C ⊗A ∗C → CA, c⊗f 7→ (I⊗I⊗f) ◦∆(c),

⇀ : C∗ ⊗A C → AC, g⊗c 7→ (g⊗I⊗I) ◦∆(c) .

(1) For any f ∈ ∗C, g ∈ C∗, and c ∈ C, (g⇀c)↼f = g⇀(c↼f).

(2) For any f ∈ ∗C, h ∈ ∗C∗, and c ∈ C, f∗lh(c) = f(h⇀c) = h(c↼f).

(3) For any c ∈ C, c↼ε = 1c1 = ε⇀c.
∗(ACA) and (ACA)∗ act faithfully on ACA.

(4) If C satisfies the left α-condition, then any right A-submodule D ⊂ CA which is

closed under right ∗C-action has right weak coaction.

(5) Let C satisfy the left and right α-condition, and consider any (A,A)-submodule

D ⊂ ACA which is pure as left and right A-submodule. Then D is a weak

sub-coring if and only if D is closed under left C∗-action and right ∗C-action.

Proof. (1) By definition,

(g⇀c)↼f =
∑

g(c1)c2 1f(c2 2) =
∑

g(c1 1)c1 2f(c2) = g⇀(c↼f).

(2) By definition,

f∗lh(c) =
∑
h(c1f(c2)) = h(c↼f)

=
∑
h(c1)f(c2) = f(h⇀c) .

(3) is clear by weak counitality of ε and 1.11; (4) follows from 3.3.

(5) Clearly every weak sub-coring D is closed under left C∗-action and right ∗C-
action.

Let D ⊂ C be an (A,A)-submodule with the purity condition which is closed under

left C∗-action and right ∗C-action. Then the restriction of ∆ yields a left and right

C-coaction on D and

∆(D) ⊂ D ⊗A A⊗A C ∩ C ⊗A A⊗A D = D ⊗A A⊗A D .

The first inclusion follows from 3.3. For the equality consider the commutative and

exact diagram

0 0 0

↓ ↓ ↓
0 → D ⊗A A⊗A D → D ⊗A A⊗A C → D ⊗A A⊗A C/D → 0

↓ ↓ ↓
0 → C ⊗A A⊗A D → C ⊗A A⊗A C → C ⊗A A⊗A C/D → 0 .
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Since the left square is a pullback (e.g., [13, 10.3]), we can make the identification

stated. This shows that D is a weak subcoring.

Writing morphisms of left (co-) modules on the right side of the argument and

vice versa, the following is now obvious:

3.7. Coassociative A-corings. Let C be a coassociative A-coring.

(1) ∗C and C∗ are associative rings with unit.

(2) The actions ↼ and ⇀ make C a (C∗, ∗C)-bimodule which is faithful on the left

and on the right.

(3) End−C(C) ' C∗ and EndC−(C) ' ∗C.

(4) If C satisfies the left (right) α-condition then

End−∗C(C) = End−C(C) ' C∗, ( resp., EndC∗−(C) = EndC−(C) ' ∗C).

The preceding observations yield a close relationship between weak C-comodules

and ∗C-modules and we obtain a general form of the finiteness theorem for coalgebras.

3.8. The category of weak comodules. Let C be a coassociative weak A-coring

satisfying the left α-condition.

(1) M̃C is a full subcategory of M̃∗C.

(2) For every M ∈ M̃C, M ⊗A AC is generated (and MA is subgenerated) by the

right C-comodule AC.

(3) For every M ∈ M̃C, finitely generated ∗C-submodules of MA are finitely gener-

ated as (right) A-modules.

(4) If ACA is finitely generated as left C∗-module (left A-module), then ∗(ACA) ∈
M̃C.

Proof. (1) This is clear by 3.4 and 3.5.

(2) We have an epimorphism A(Λ) → M ⊗A A of right A-modules. By 1.8 this

yields an epimorphism (A⊗A C)(Λ) ' A(Λ) ⊗A C →M ⊗A AC in M̃C.

Notice that %M is a comodule morphism but need not be injective. However the

restriction to MA ⊂M is injective and hence MA is a subcomodule of M ⊗A AC.
(3) For k ∈ MA consider the cyclic submodule K := k ∗C ⊂ MA. By 3.4, there

exists a weak coaction %K : K → K ⊗A AC and we have %K(k) =
∑r

i=1 ki⊗ci, where

ki ∈ K, ci ∈ C. So for any f ∈ ∗C, k↼f =
∑r

i=1 kif(ci) which shows that K is finitely

generated by k1, . . . , kr as right A-module.
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(4) Let ACA be finitely generated as left C∗-module (or A-module) by a1, . . . , ar ∈
ACA and consider the map

∗(ACA)→ (a1, . . . , ar)
∗(ACA) ⊂ (ACA)r ⊂ (AC)r, f 7→ (a1, . . . , ar)↼f.

Since ∗(ACA) acts faithfully on ACA this is a monomorphism of right ∗(ACA)-modules.

So ∗(ACA) is a submodule of the weak comodule (AC)r and hence is a right weak C-
subcomodule (by 3.4).

The proof shows that under the given conditions ∗(ACA) is in fact a comodule

over the coring ACA. For corings the situation simplifies to the following. Notice that

assertion (3) was already observed in [5, Lemma 4.3].

3.9. The category of comodules. Let C be a coassociative A-coring satisfying the

left α-condition.

(1) C is a subgenerator in MC and MC = σ[C∗C] is a full subcategory of M∗C.

(2) For every M ∈MC, any finitely many elements of M are contained in a subco-

module (∗C-submodule) which is finitely generated as A-module.

(3) If C is finitely generated as left C∗-module or left A-module, then MC =M∗C.

(4) For a left noetherian ring A, the following are equivalent:

(a) C is finitely generated as left A-module;

(b) C is finitely generated as left C∗-module;

(c) MC =M∗C.

Proof. (1), (2) and (3) follow immediately from 3.8.

(4) (a)⇒ (b)⇒ (c) are clear by 3.8.

(c) ⇒ (a) By (2) and (3), ∗C is finitely generated as right A-module and hence

C∗∗ is a finitely generated (noetherian) left A-module. By the left α-condition, AC is

cogenerated by A and so AC is a submodule of C∗∗ and hence finitely generated.

4 Entwining structures

For the history and importance of (weak) entwining structures and their (co)modules

we refer to Caenepeel-Groot [6] and Brzeziński [5]. Here we show how this theory can

be derived and interpreted by using weak corings studied in the preceding sections

thus providing alternative proofs of related results in [6].
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Let R be a commutative associative ring with unit, µ : A⊗R A→ A an R-algebra

with unit ι : R→ A, and ∆ : C → C ⊗R C an R-coalgebra with counit ε : C → R.

We are interested in the interaction between the algebra A and the coalgebra C.

For this we ask for possible structures of A⊗RC. The following result was essentially

announced in [6] and [5].

4.1. A⊗R C as an A-coring. Consider A⊗R C as a left A-module canonically.

(1) Assume there exists a right A-action · on A⊗R C and define the R-linear map

ψ : C ⊗R A→ A⊗R C, c⊗ a 7→ (1⊗ c) · a,

writing ψ(c⊗ a) =
∑
aψ⊗c

ψ, for suitable aψ ∈ A, cψ ∈ C.

Moreover, consider the maps

∆ : A⊗R C → (A⊗R C)⊗A (A⊗R C) ' (A⊗R C) · 1⊗R C,
a⊗c 7→

∑
(a⊗c1)⊗A(1⊗c2) 7→

∑
(a⊗c1) · 1⊗c2,

ε : A⊗R C → (A⊗R C) · 1 → A ,

a⊗c 7→ (a⊗c) · 1 7→ (I⊗ε)((a⊗c) · 1),

where ∆(c) =
∑
c1⊗c2, for c ∈ C. Then:

(i) If (A⊗R C,∆, ε) is an A-coring, then

(1.1)
∑

(ab)ψ⊗c
ψ =

∑
aψbϕ⊗c

ψϕ.

(1.2)
∑
aψ⊗c

ψ
1⊗c

ψ
2 =

∑
aψϕ⊗c

ϕ
1 ⊗c

ψ
2 .

(1.3)
∑
aψε(c

ψ) = ε(c)a.

(1.4)
∑

1ψ⊗c
ψ = 1⊗c.

(ii) If (A⊗R C,∆, ε)) is a weak A-coring, then (1.1) holds and

(1.2)′
∑
aψψ(cψ1⊗1)⊗cψ2 =

∑
aψϕ⊗c

ϕ
1 ⊗c

ψ
2 .

(1.3)′
∑
aψε(c

ψ) =
∑
ε(cψ)1ψa.

(1.4)′
∑

1ψ⊗c
ψ =

∑
ε(cψ1 )1ψ⊗c2.

(2) Assume there exists an R-linear map ψ : C ⊗R A→ A⊗R C and define a right

A-action on A⊗R C by

(A⊗R C)⊗R A→ A⊗R C, (a⊗c)⊗b 7→ aψ(c⊗b).

If ψ satisfies (1.1)− (1.4), then A⊗R C is an A-coring.

If ψ satisfies (1.1), (1.2)′, (1.3)′, (1.4)′, then A ⊗R C is a (left unital) weak A-

coring.



23

In the first case (A,C, ψ) is called an entwining structure, in the second case

(A,C, ψ) is called a weak entwinig structure. Notice that (1.2)′ differs slightly

from the corresponding condition in [6].

Proof. (1) (i) (1.1) Associativity of right multiplication yields∑
(ab)ψ⊗c

ψ = (1⊗ c) · ab = (1⊗ c) · a · b =
∑

aψbϕ⊗c
ψϕ.

(1.2) By definition we have

∆((1⊗ c) · a) = ∆(
∑
aψ⊗c

ψ)

=
∑
aψ⊗c

ψ
1⊗c

ψ
2, and

∆(1⊗ c) · a =
∑

(1⊗c1)⊗A(1⊗c2) · a
=
∑

(1⊗c1)⊗A(
∑
aψ⊗c

ψ
2 )

=
∑
aψϕ⊗c

ϕ
1 ⊗c

ψ
2 .

If ∆ is a right A-module morphism the two expressions are the same.

(1.3) ε is a right A-module morphism, so I⊗ε((1⊗ c) · a) = ε(c)a.

(1.4) A⊗R C is a unital right module, so 1⊗c = (1⊗c) · 1 =
∑

1ψ⊗c
ψ.

(ii) (1.2)′ One expression from (1.2) remains unchanged, for the other we get

∆((1⊗ c) · a) = ∆(
∑
aψ⊗c

ψ)

=
∑

(aψ⊗c
ψ
1) · 1⊗cψ2

=
∑
aψψ(cψ1⊗1)⊗cψ2 .

(1.3)′ ε is a right A-module morphism, so∑
aψε(c

ψ) = I⊗ε((1⊗ c) · a)

= (I⊗ε((1⊗ c) · 1)) · a
= (I⊗ε(

∑
1ψ⊗c

ψ)) · a
=

∑
ε(cψ)1ψa.

(1.4)′ ε is weakly counitary, so∑
1ψ⊗c

ψ = (1⊗c) · 1
counital = (ε⊗I) ◦∆(1⊗c)

= I⊗ε⊗I(
∑

1ψ⊗c
ψ
1 ⊗c2)

=
∑
ε(cψ1 )1ψ⊗c2.

(2) Given the map ψ with the corresponding properties the assertions can be

verified along the same lines.
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4.2. Dual algebra and smash product. Let A ⊗R C be a weak A-coring (as in

4.1). Then the canonical R-module isomorphism

HomA−(A⊗R C,A)→ HomR(C,A), h 7→ h ◦ (1⊗−),

induces an associative algebra structure on HomR(C,A) with multiplication

f ∗l g(c) =
∑

f(c2)ψg(cψ1 ), for f, g ∈ HomR(C,A), c ∈ C.

We call this algebra the smash product of A and C and denote it by #(C,A).

#(C,A) contains a central idempotent e defined by

e(c) := ε(1⊗c) = I⊗ε((1⊗c) · 1), for c ∈ C.

Assume C to be projective as an R-module. Then:

(1) The category M̃A⊗RC of right weak A ⊗R C-comodules is a full subcategory of

Mod-#(C,A).

(2) A ⊗R C subgenerates all weak right A ⊗R C-comodules which are unital right

A-modules.

(3) If C is finitely generated as R-module, then #(C,A) ∗l e ∈ M̃A⊗RC.

Proof. For f̃ , g̃ ∈ HomA−(A⊗R C,A) we have (see 1.4)

f̃ ∗l g̃ =
∑

g̃((1⊗c1) · f̃(1⊗c2)) =
∑

g̃(f̃(1⊗c2)ψ⊗c
ψ

1 ) =
∑

f̃(1⊗c2)ψ g̃(1⊗c ψ1 ),

and this induces the multiplication suggested for HomR(C,A).

ε is a central idempotent in HomA−(A⊗RC,A) = ∗(A⊗R C) (see 1.4) and - under

the isomorphism under consideration - e is the image of ε.

If C is projective as an R-module then A⊗RC is a projective A-module and hence

satisfies the α-condition. So (1) and (2) are special cases of 3.8.

Moreover, if C is finitely generated as an R-module then A ⊗R C is finitely gen-

erated as an A-module, and so is its homomorphic image (A ⊗R C) · A. Now 3.8(4)

implies that ∗((A⊗RC) ·A) ' ∗(A⊗R C)∗l ε is in M̃A⊗RC and this ring is isomorphic

to #(C,A) ∗l e.

The above observations are variations and refinements of what is called the weak

Koppinen smash product in [6, Section 3.2]. Of course the situation simplifies for

corings (compare [5, Lemma 4.3]):

4.3. Smash product of corings. Let A⊗RC be an A-coring (as in 4.1) and assume

C to be projective as an R-module. Then:

(1) #(C,A) has a unit and A⊗RC is a subgenerator inMA⊗RC = σ[(A⊗RC)#(C,A)].

(2) If C is finitely generated as R-module, then MA⊗RC = Mod-#(C,A).
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5 Weak bialgebras

Weak bialgebras are studied in Böhm-Nill-Szlachányi [1] and their relations to weak

entwining structures are displayed in Caenepeel-Groot [6]. Here we give a character-

ization of weak bialgebras in terms of related weak corings thus showing that (part

of) the theory is covered by our techniques.

Throughout this section (B, µ,∆) will denote an R-module B which is an associa-

tive R-algebra with multiplication µ and unit 1 as well as a coassociative coalgebra

with comultiplication ∆ and counit ε, such that

∆(ab) = ∆(a)∆(b), for all a, b ∈ B.

With the twist map τ we can form another mutliplication µτ := µ ◦ τ and another

comultiplication ∆τ := τ ◦∆ for B, and the resulting structures

(B, µτ ,∆τ ), (B, µτ ,∆), (B, µ,∆τ )

are again algebras and coalgebras with multiplicative comultiplication.

Based on any of these data we have canonical multiplications with unit 1⊗1 on

B ⊗R B and we will define comultiplications with counits on B ⊗R B. For a (weak)

bialgebra we expect that B⊗RB becomes a (weak) B-coring in each of the four cases.

As we shall see, for bialgebras it will be enough to check one of the cases whereas for

weak bialgebras we have to check two (suitable) cases.

5.1. Comultiplications on B ⊗R B. Given (B, µ,∆), we consider B ⊗R B as a

(B,B)-bimodule with right and (unital) left B-actions

(a⊗b) · c = (a⊗b)∆(c) =
∑
ac1⊗bc2,

a(b⊗c) = ab⊗c , for all a, b, c ∈ B .

(1) For (B, µ,∆) define the maps

∆ : B ⊗R B → (B ⊗R B)⊗B (B ⊗R B) ' (B ⊗R B) · 1⊗R B,
a⊗b 7→

∑
(a⊗b1)⊗B(1⊗b2) 7→

∑
a11⊗b112⊗b2,

ε : B ⊗R B → (B ⊗R B) · 1 I⊗ε−→ B ,

a⊗b 7→ (a⊗b) · 1 7→
∑
a11ε(b12).

(2) For (B, µτ ,∆τ ) we consider the maps

∆τ : a⊗b 7→
∑

(a⊗b2)⊗B(1⊗b1), τετ : a⊗b 7→
∑

12aε(11b).

The module B ⊗R B with these maps we denote by B ⊗oR B.
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(3) For (B, µτ ,∆) we consider the maps

∆ : a⊗b 7→
∑

(a⊗b1)⊗B(1⊗b2), ετ : a⊗b 7→
∑

11aε(12b).

(4) For (B, µ,∆τ ) we consider the maps

∆τ : a⊗b 7→
∑

(a⊗b2)⊗B(1⊗b1), τε : a⊗b 7→
∑

a12ε(b11).

Then all the ∆’s are coassociative weak comultiplications on B ⊗R B and the ε’s

are left B-module morphism with

(a⊗b) · 1 = (I⊗ε) ◦∆(a⊗b), for all a, b ∈ B.

Proof. (1) Clearly ∆ is a left B-module morphism. For a, b, c ∈ B we have

∆((1⊗b) · c) =
∑

(c1⊗(bc2)1)⊗B(1⊗(bc2)2

=
∑

c111⊗b1c2 112⊗b2c2 2

=
∑

c1 1⊗b1c1 2⊗b2c2 ;

∆(1⊗b) · c =
∑

(1⊗b1)⊗B(1⊗b2) · c
=

∑
(1⊗b1)⊗B(c1⊗b2c2)

=
∑

c1 1⊗b1c1 2⊗b2c2.

This shows that ∆ is right B-linear. Coassociativity of ∆ follows easily from the

coassociativity of ∆.

Clearly ε is left B-linear. Moreover, for a, b ∈ B,

(I⊗ε)∆(a⊗b) =
∑

(a⊗b1)⊗B11ε(b212)

=
∑

a11 1⊗b111 2ε(b212)

=
∑

a11⊗b112 1ε(b212 2)

=
∑

a11⊗b12 = (a⊗b) · 1.

The proofs for (2), (3) and (4) follow by the same pattern.

In general the properties of ∆ and ε are not sufficient to make B ⊗R B a coring.

ε need neither be right B-linear nor (ε⊗I) ◦ ∆(a⊗b) = (a⊗b) · 1. To ensure these

properties we have to pose additional conditions on ε and ∆.

We say that (B, µ,∆) induces a (weak) coring structure on B⊗R B if the latter is

a (weak) B-coring with the maps defined in 5.1.

Recall that (B, µ,∆) is said to be a bialgebra provided ∆ and ε are unital algebra

morphisms.
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5.2. B ⊗R B as coring. The followig are equivalent:

(a) (B, µ,∆) induces a coring structure on B ⊗R B;

(b) (B, µτ ,∆τ ) induces a coring structure on B ⊗R B;

(c) (B, µτ ,∆) induces a coring structure on B ⊗R B;

(d) (B, µ,∆τ ) induces a coring structure on B ⊗R B;

(e) B is a bialgebra, i.e.,

(B.1) ε(ab) = ε(a)ε(b), for a, b ∈ B.

(B.2) ∆(1) = 1⊗1.

Proof. (a) ⇒ (e) Assume B ⊗R B to be a B-coring. Then B ⊗R B is a unital right

B-module, e.g.,

1⊗1 = (1⊗1) · 1 = (1⊗1)∆(1) = ∆(1),

and ε is right B-linear, i.e.,

ε((1⊗a) · b) =
∑

b1ε(ab2) = ε(a)b.

Applying ε we get∑
ε(b1ε(ab2)) =

∑
ε(aε(b1)b2) = ε(ab)

= ε(ε(a)b) = ε(a)ε(b) .

(e)⇒ (a) If (B.1) and (B.2) are satisfied, then B⊗RB is a unital right B-module

and

ε((a⊗b) · c) =
∑

ab1ε(bc2) =
∑

ac1ε(b)ε(c2) = aε(b)c = ε(a⊗b)c,

showing that ε is right B-linear and so B ⊗R B is a B-coring.

The other implications are shown similarly.

Part of the symmetry is lost in the case of weak corings.

5.3. B ⊗R B as weak coring.

(1) The following are equivalent:

(a) (B, µ,∆) induces a weak coring structure on B ⊗R B;

(b) (B, µτ ,∆τ ) induces a weak coring structure on B ⊗R B;

(c) (W.1) ε(abc) =
∑
ε(ab2)ε(b1c), for a, b, c ∈ B;

(W.2) (I⊗∆) ◦∆(1) = (1⊗∆(1))(∆(1)⊗1) (=
∑

11⊗11′12⊗12′).
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(2) The following are equivalent:

(a) (B, µ,∆τ ) induces a weak coring structure on B ⊗R B;

(b) (B, µτ ,∆) induces a weak coring structure on B ⊗R B;

(c) (W τ .1) ε(abc) =
∑
ε(ab1)ε(b2c), for a, b, c ∈ B;

(W τ .2) (I⊗∆) ◦∆(1) = (∆(1)⊗1)(1⊗∆(1)) (=
∑

11⊗1211′⊗12′).

Proof. (1) (a)⇒ (c) Assume B⊗RB to be a weak B-coring. Then ε is right B-linear,

ε((1⊗a) · b · c) = ε((1⊗a) · b)c =
∑

b1ε(ab2)c

= ε((1⊗a) · (bc)) =
∑

(bc)1ε(a(bc)2),

and applying ε yields∑
ε(ab2)ε(b1c) =

∑
ε((bc)1)ε(a(bc)2) =

∑
ε(aε((bc)1)(bc)2)) = ε(abc).

ε being weakly counital implies

(1⊗a) · 1 =
∑

ε(1⊗a1)⊗a2 =
∑

11ε(a112)⊗a2,

and replacing a by 11′ or 1, respectively, we have

(1⊗11′)∆(1) =
∑

11ε(11′112)⊗11′2, and

∆(1) =
∑

11ε(11′11′2)⊗12′ .

Applying I⊗∆ to the second equality yields

(I⊗∆) ◦∆(1) =
∑

11ε(11′12)⊗12′1⊗12′2

=
∑

11ε(11′112)⊗11′2⊗12′

=
∑

11⊗11′12⊗12′ .

(c)⇒ (a) Suppose (W.1) and (W.2) are satisfied.

(W.1) implies that ε is right B-linear by the following computation, for a, b ∈ B,

ε((1⊗a) · 1 · b) =
∑

(I⊗ε)(11b1⊗a12b2)

=
∑

11b1 ε(a12b2)

(W.1) =
∑

11b1 ε(a12 2) ε(12 1b2)

(W.1) =
∑

11b1 ε(a1222) ε(1221) ε(12 1b2)

coass. =
∑

11 1b1 ε(a12 2) ε(12 1) ε(11 2b2)

=
∑

11 1b1 ε(11 2b2) ε(a ε(12 1)12 2)

=
∑

11b ε(a12)

= ε(1⊗a)b .
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By (W.2) we have, for a ∈ B,∑
ε(1⊗a1)⊗a2 =

∑
ε(1⊗(a1)1)⊗(a1)2

=
∑

(I⊗ε)(11⊗a111′12)⊗a212′

(W.2) =
∑

(I⊗ε)(11⊗a112 1)⊗a212 2

=
∑

11ε(a112 1)⊗a212 2

=
∑

11⊗(ε⊗I)∆(a12)

=
∑

11⊗a12 = (1⊗a)∆(1) = (1⊗a) · 1 ,

which shows that ε is weakly counital.

(b)⇔ (c) is shown with a similar computation.

(2) The proof is similar to the proof of (1).

5.4. Group-like elements. Assume that (B, µ,∆) induces a weak coring structure

on B ⊗R B. Then ∆(1) and ∆τ (1) are group-like elements for B ⊗R B and B ⊗oR B,

respectively.

(1) B is a right B⊗R B-comodule and for any M ∈ M̃(B⊗RB), the coinvariants are

M co(B⊗RB) = {m ∈MB | %M(m) =
∑

m11⊗12)}, and

Bco(B⊗RB) = {a ∈ B | ∆(a) =
∑

a11⊗12}.

(2) B is a right B⊗oR B-comodule and for any M ∈ M̃(B⊗oRB), the coinvariants are

M co(B⊗oRB) = {m ∈MB | %′M(m) =
∑

m12⊗11}, and

Bco(B⊗oRB) = {a ∈ B | ∆(a) =
∑

12a⊗11}.

Proof. ∆(1) is a group-like element for B ⊗R B since

∆(∆(1)) =
∑

(11⊗12 1)⊗B(1⊗12 2) =
∑

(11 1⊗11 2)⊗B(1⊗12)

=
∑

(∆(1))⊗B(11⊗12) = ∆(1)⊗B∆(1) , and

ε(∆(1)) = (I⊗ε)(∆(1) · 1) =
∑

11 ε(12) = 1.

Similarly we get that ∆τ (1) is a group-like element for B ⊗oR B.

(1) By 2.1, B is a right B ⊗R B-comodule and 2.2(1) yields the given characteri-

zation of the coinvariants.

(2) This follows with the same proof as (1).

Following Böhm-Nill-Szlachányi [1, Definition 2.1], we call B a weak R-bialgebra

provided (B, µ,∆), (B, µτ ,∆τ ), (B, µτ ,∆) and (B, µ,∆τ ) all induce coring structures

on B ⊗R B. From 5.3 we immediately obtain:
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5.5. Weak bialgebras. The following are equivalent:

(a) B is a weak R-bialgebra;

(b) (B, µ,∆) and (B, µ,∆τ ) induce coring structures on B ⊗R B;

(c) (B, µτ ,∆τ ) and (B, µτ ,∆) induce coring structures on B ⊗R B;

(d) the conditions (W.1), (W.2), (W τ .1) and (W τ .2) are satisfied (see 5.3).

Notice that 5.5 corresponds to the characterization of weak bialgebras by proper-

ties of entwining structures in [6, Section 4.1].

In case (B ⊗R B,∆, ε) is a B-coring the condition b⊗1 = ∆(b) implies b = ε(b)1,

which means Bco(B⊗RB) = R1B and R is an R-direct summand in B. This is no longer

true in the weak case but some results in this direction still hold.

5.6. Coinvariants in weak bialgebras. Let B be a weak bialgebra.

(1) For a ∈ B the following are equivalent:

(a) ∆(a) =
∑

a11⊗12 (i.e., a ∈ Bco(B⊗RB));

(b) ∆(a) =
∑

11a⊗12;

(c) a =
∑

ε(a11)12;

(d) a =
∑

ε(11a)12.

(2) For a ∈ B the following are equivalent:

(a) ∆(a) =
∑

11⊗12a (i.e., a ∈ Bco(B⊗oRB));

(b) ∆(a) =
∑

11⊗a12;

(c) a =
∑

11ε(12a);

(d) a =
∑

11ε(a12).

Proof. (1) (a)⇒ (c), (b)⇒ (d) Apply ε⊗I to the equality in (a) and (b), respectively.

(c)⇒ (a), (b) Assume a =
∑

ε(a11)12. Then

∆(a) =
∑

ε(a11)12 1⊗12 2
(W τ .2)

=
∑

ε(a11)1211′⊗12′ =
∑

a11⊗12 ,

and similarly

∆(a) =
∑

ε(a11)12 1⊗12 2
(W.2)
=
∑

ε(a11)11′12⊗12′ =
∑

11a⊗12 .

(d)⇒ (a) is shown similarly.

(2) The proof goes along the lines of the proof of (1).
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5.7. The ring (EndR(B), ∗). Given (B, µ,∆) the (usual) convolution product is

defined on EndR(B) by

f ∗ g = µ ◦ (f⊗g) ◦∆, for f, g ∈ EndR(B),

and (EndR(B), ∗) is an associative R-algebra with unit εB := ι◦ε, i.e., εB(b) = ε(b)1B,

for any b ∈ B.

Besides εB there are other maps which are of particular interest for weak bialgebras

and which coincide with εB for bialgebras.

5.8. The maps πL and πR. Assume that (B, µ,∆) induces a weak coring structure

on B ⊗R B. Define the maps

πR : B
1⊗−−→ B ⊗R B

ε−→ B, b 7→
∑

11ε(b12),

πL : B
1⊗−−→ B ⊗R B

εo−→ B, b 7→
∑

ε(11b)12,

which obviously satisfy πL ∗ I = I = I ∗ πR.

(1) For πL we have (where a, b ∈ B):

(i)
∑

b1⊗π
L(b2) =

∑
11b⊗12;

(ii) aπL(b) =
∑
πL(a1b)a2 (=

∑
ε(a1b)a2);

(iii) f ∗ πL(b) =
∑
f(11b)12, for any f ∈ EndR(B);

(iv) πL ◦ πL = πL;

(v) ε(ab) = ε(aπL(b)) and πL(ab) = πL(aπL(b));

(vi) πL(a)πL(b) = πL(πL(a)b).

So BL := πL(B) is a subring of B and πL is a left BL-module morphism.

(2) For πR we have (where a, b ∈ B):

(i)
∑

πR(b1)⊗b2 =
∑

11⊗b12;

(ii) πR(b)a =
∑
a1π

R(ba2) (=
∑
a1ε(ba2));

(iii) πR ∗ g(b) =
∑

11g(b12), for any g ∈ EndR(B);

(iv) πR ◦ πR = πR;

(v) ε(ab) = ε(πR(a)b) and πR(ab) = πR(πR(a)b);

(vi) πR(a)πR(b) = πR(aπR(b)).

So BR := πR(B) is a subring of B and πR is a right BR-module morphism.

(3) Assume that B is a weak bialgebra. Then
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(i) Bco(B⊗RB) = BL and BL is a direct summand of B as left BL-module.

(ii) Bco(B⊗oRB) = BR and BR is a direct summand of B as right BR-module.

Proof. (1) (i), (ii) follow directly from (W.1) and (W.2); (iii) is a consequence of (i).

(iv) and (v) follow from the equalities

πL(πL(a)) =
∑

ε(ε(11a)11′12)12′ =
∑

ε(11a) ε(11′12)12′

(W.1) =
∑

ε(11′a)12′ = πL(a) , and

ε(aπL(b)) =
∑

ε(aε(11b)12)

(W.1) =
∑

ε(a12)ε(11b) = ε(ab).

(vi) We have ∆(πL(a)) =
∑

11 π
L(a)⊗12, and hence by (ii),

πL(πL(a)πL(b)) =
∑

ε(11π
L(a)b)12 = πL(πL(a)b).

(2) If (B, µ,∆) induces a weak coring structure on B ⊗R B then this is also true

for (B, µτ ,∆τ ) (see 5.3) and the proof is similar to the proof of (1).

(3) This follows by 5.4, 5.6 and (1), resp. (2).

Notice that most of the identities considered in 5.8 and later on are already familiar

from [10] and [1, Section 2.2]. Since we do not consider (finite dimensional) algebras

over fields the (duality) arguments used there are not always available here and hence

we prefer to indicate proofs if appropriate.

5.9. Antipodes. An element S ∈ EndR(B) is called

a left antipode if S ∗ I = πR and S ∗ πL = S, i.e., for b ∈ B,∑
(Sb1) b2 =

∑
11ε(b12) and

∑
S(11b)12 = S(b),

a right antipode provided I ∗ S = πL and πR ∗ S = S, i.e.,∑
b1(Sb2) =

∑
ε(11b)12 and

∑
11S(b12) = S(b),

an antipode if S is both a left and a right antipode.

In view of the properties of πL and πR we have the following result which shows

that our notion of an antipode coincides with the antipodes in [1, 2.1].

The following are equivalent for S ∈ EndR(B):

(a) S is an antipode;

(b) S satifies S ∗ I = πR, I ∗ S = πL and S ∗ I ∗ S = S.
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A weak bialgebra B with an antipode is called weak Hopf algebra (see [1]).

It is straightforward to see that the antipode of a weak bialgebra has the usual

properties of the antipode in case B is a bialgebra (then πL and πR coincide with εB).

Notice that our antipodes satify S ∗ I ∗ S = S and I ∗ S ∗ I = I, the conditions

used in Fang Li [7] to define his ”weak Hopf algebras”.

5.10. Galois corings. Let B be a weak bialgebra. Then the B-coring B ⊗R B is

right Galois (Definition 2.4) if the canonical map

γB : B ⊗BL B → (B ⊗R B) · 1, a⊗b 7→ (a⊗1)∆(b),

is an isomorphism. Obviously γB is a left B-module morphism.

The following observation generalizes [9, Theorem 1.1].

5.11. Existence of antipodes. Let B be a weak bialgebra. Then:

(1) B has a right antipode if and only if γB has a left inverse in B-Mod.

(2) γB is an isomorphism if and only if B has an antipode.

Proof. (1) (⇐) Let β be a left inverse of γB. Then 1⊗BL b = β ◦ γ(1⊗BLb) = β(∆b),

and applying I⊗πL we get

πL(b) = (I⊗πL) ◦ β(∆b).

Then the composition

S : B
1⊗−−→ B ⊗R B

−·1−→ (B ⊗R B) · 1 β−→ B ⊗BL B
I⊗πL−→ B,

is a right antipode since

µ ◦ (id⊗S) ◦∆(b) =
∑

b1((I⊗πL)β(11 ⊗ b212)) = (I⊗πL) ◦ β(∆b) = πL(b), and

πR ∗ S(b) =
∑

11S(b12) =
∑

(I⊗πL) ◦ β(11⊗b12) = S(b).

(⇒) Now assume S : B → B to be a right antipode and consider the map

β : B ⊗R B → B ⊗BL B, a⊗ b 7→
∑

aS(b1)⊗BLb2.

By the property

β((a⊗b)∆(1)) =
∑
a11S(b112 1)⊗BLb212 2

(W.2) =
∑
a11S(b111′12)⊗BLb212′

=
∑
aS(b111′)⊗BLb212′ = β(a⊗b),
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it induces a map β : (B ⊗R B) · 1→ B ⊗BL B, which is a left inverse of γB since, for

any b ∈ B,

β ◦ γ(1⊗BLb) = β(∆b) =
∑

b1S(b2 1)⊗BLb2 2 =
∑

b1 1S(b1 2)⊗BLb2

=
∑

πL(b1)⊗BLb2 = 1⊗BLb .

(2) (⇒) Assume γB to be bijective. By (1), there exists a right antipode S and so

we have I ∗ S ∗ I = πL ∗ I = I.

Any element in (B ⊗B) · 1 can be written as
∑

i ai∆ci, for some ai, ci ∈ B, and∑
i

µ ◦ (id⊗(S ∗ I − εB))(ai∆ci) =
∑
i

ai(I ∗ S ∗ I − I ∗ εB)(ci) = 0.

This implies for (1⊗b)∆(1) ∈ (B ⊗B) · 1, where b ∈ B,

πR(b) =
∑

11ε(b12) =
∑

11 S ∗ I(b12) =
∑

11 S(b112 1) b212 2

(W.2) =
∑

11 S(b111′12) b212′ =
∑

S(b111′) b212′ = S ∗ I(b).

Moreover, πR ∗ S = S ∗ I ∗ S = S ∗ πL = S showing that S is a right antipode.

(⇐) For the β defined in (1) we already know that β ◦ γB = I.

For any a, b ∈ B we have

γB ◦ β((a⊗b) · 1) =
∑

(aS(b1)⊗1)∆(b2) =
∑

aS(b1)b2 1⊗b2 2

=
∑

aS(b1 1)b1 2⊗b2 = a
∑

πR(b1)⊗b2

5.8(1)(i) = a(1⊗b) · 1 = (a⊗b) · 1 ,

which shows γB ◦ β = I and hence γ is an isomorphism.

Recall that the category of comodules over a coring B ⊗R B is Grothendieck

provided B ⊗R B is flat as left B-module (see 1.10).

It follows from 5.8(3) that any weak bialgebra B has BL as a direct summand which

means that B is flat as a left BL-module if and only if it is faithfully flat. Hence the

characterization of a ring as a generator for related comodules in 2.5 immediately

implies:

5.12. Fundamental theorem for weak Hopf algebras. For a weak R-bialgebra

B the following are equivalent:

(a) B is a weak Hopf algebra, and B is flat as left BL-module;

(b) B⊗RB is flat as left B-module, and B is a (projective) generator inM(B⊗RB)·1;
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(c) M(B⊗RB)·1 is a Grothendieck category and

HomB⊗RB(B,−) :M(B⊗RB)·1 → Mod-BL

is an equivalence (with inverse −⊗BL B);

(d) B ⊗R B is flat as left B-module, and for every M ∈M(B⊗RB)·1,

M coB ⊗BL B →M, m⊗ b 7→ mb,

is an isomorphism.

Notice that B⊗RB is flat (projective) as left B-module provided B is flat (projec-

tive) as R-module. Of course this is always the case if R is a field. For this situation

a direct proof of the implication (a)⇒ (d) is given in [1, Theorem 3.9].

5.13. Remark. We can follow the proof of [1, Lemma 3.7] to show: If B is a weak

Hopf algebra with antipode S, then for any right B ⊗R B-comodule M , the map

(I⊗S) ◦ %M : M →M co(B⊗B)

is a splitting BL-morphism.

This entails that the first part of the proof of [5, Theorem 5.6] can be applied here

without the initial condition that B is flat as left BL-module. Therefore we can add

as additional equivalent conditon in 5.12:

(e) B is a weak Hopf algebra, and B ⊗R B is flat as left B-module.
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