Abgabe: 9.07. bis 10:20 Uhr

Kombinatorische Gruppentheorie

Übungsblatt 12

Am 2.07.19 haben wir den folgenden Satz bewiesen:

Satz. (Adian, Rabin) Sei \mathcal{M} eine Markov-Eigenschaft. Dann gibt es keinen Algorithmus der entscheidet, ob eine Gruppe, gegeben durch eine endliche Präsentation, die Eigenschaft \mathcal{M} besitzt.

(Siehe G. Baumslag "Topics in Combinatorial Group Theory", Birkhauser, Berlin, 1993; S. 112.)

Aufgabe 1. Sei G = A * B mit $A \neq 1$ und $B \neq 1$.

8+12P.

- (a) Beweisen Sie, dass $G \not\cong C \times D$ mit $C \neq 1$ und $D \neq 1$ ist.
- (b) Beweisen Sie, dass Aut(G) unendlich ist, falls A oder B unendlich ist.

Aufgabe 2. Wir betrachten die folgenden Eigenschaften einer endlich präsentierbaren 8+12P. Gruppe G:

- (1) G ist isomorph zu A * B mit nichttrivialen A und B.
- (2) Aut(G) ist unendlich.
- (3) Das Zentrum von G ist gleich 1.
- (4) G hat eine Untergruppe, die nicht endlich erzeugt ist.
- (a) Beweisen Sie, dass diese Eigenschaften keine Markov-Eigenschaften sind.
- (b) Beweisen Sie, dass diese Eigenschaften unentscheidbar sind für die Gruppen, die durch eine endliche Präsentation gegeben sind.

Beispiel. Wir betrachten die Eigenschaft $\mathcal{M}: G \cong G \times G$. Ich weiss nicht ob \mathcal{M} eine Markov-Eigenschaft ist. Trotzdem kann man beweisen, dass \mathcal{M} unentscheidbar in der Klasse endlich präsentierter Gruppen (EP-Gruppen) ist:

Sei U_0 eine EP-Gruppe mit unlösbarem Wortproblem. Wir haben gestartet von einer EP-Gruppe G_2 , die eine spezifische Eigenschaft hatte. Jetzt ändern wir den Beweis minimal: Wir starten von der Gruppe $G_2 = \mathbb{Z}$. Im Beweis haben wir für jedes Wort $w \in U_0$ eine Gruppe W_w konstruiert, so dass folgendes gilt:

$$W_w = 1 \Leftrightarrow w =_{U_0} 1.$$

Jetzt setzen wir $G_w = W_w * W_w$. Nach Aufgabe 1 (a) ist

$$G_w = G_w \times G_w \Leftrightarrow W_w = 1.$$

Also ist

$$G_w = G_w \times G_w \iff w =_{U_0} 1.$$

Somit ist die Eigenschaft \mathcal{M} unentscheidbar in der Klasse von EP-Gruppen.