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1 Hyperbolic Geometry

1.1 Hyperbolic Metric (Lecture 1)

The hyperbolic plane is the metric space (H, p), where
H:= {z € C|Im(z) > 0}

is the upper open halfplane of complex numbers and p : H x H — R is a certain metric,
which we define below.

By definition, a C'-curve in H is any C'-map z : [0, 1] — H. We write z in the form
2(t) = a(t) +iy(t),

where z and y are real functions. Recall that the Fuclidean length of z is the number

1 1
z) = / \/(x/(t))2 + (y/(t))2 dt = / |2/ (t)| dt.
0 0

The hyperbolic length of z is defined to be the number

1 ’ 2 ’ 2 1
2 () + (¢ S
h(z) :[ \/( ())y<t) '®) dt[ IJH(S&‘)) dt. (1.1.1)

The hyperbolic distance from a point z; € H to a point 2o € H is defined to be the
number

p(z1, z2) = inf h(2), (1.1.2)
where the infimum is taken over over all C'-curves z in H with 2(0) = z; and 2(1) = z,.

Theorem 1.1.1 The function p : H x H — R is a metric on H, i.e. for any 21, 29, 23 € H
we have

(1) p(z1,21) =0 and p(z1, z2) > 0 if 21 # 29,
(2) p(21,22) = p(z2,21),
(3) p(21,22) < pl21, 22) + p(22, 23).



Proof. (1) is clear, (3) will be proved in later (see Corollary 1.2.9). Now we prove (2).
Let z(t) = x(t) +iy(t), t € [0,1] be a Cl-curve from z; to z,. We define s(t) := 1 —¢. Then

2(s(t)) +y(s(t)),

t € [0,1] is C'-curve from 25 to 21. In the following computation we use the chain rule for
the differentiation and the substution rule for the integration.

o= [l [EO 0 [ s
0 0 0
= /OZ/((S)) als/1 Z/((S))‘ ds = h(z).
1 0

1.2 The group of Mdbius transformations
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Let A = (CCL Z) € SLy(C), i.e. a,b,c,d € C, ad — be = 1. The map
Ty:CU{o0} — CU{o0}
= az+0b
cz+d

is called the Mdbius transformation of C U {co} associated with A. Here we agree that

acc+b  Ja/c, of c#0 ,
cocot+d oo, If c=0 .

Note that
TAOTB :TABa TE :Zd, (121)

where F is the identity matrix. The group
Mobe = {TA | Ae SLQ(C)}

with respect to the composition is called the group of Mdbius transformations of CU{oc}.
The set
Méb]}g = {TA | A € SLQ(R)}

forms a subgroup of Mobc.

Theorem 1.2.1 Any transformation 74 € M6bg maps the set H homeomorphically to
itself.



Proof. We denote w = T's(z). Then we have

_az+b  (az+b)(cZ+d)  aclz]’ + adz + bez + bd

Cczt+d lcz + d? B lcz + d|? ’
w—w z—Z Im(2)
I = = = ) 1.2.2
W) = = Yl dE e+ dP (12.2)
Hence, if Im(z) > 0 then Im(w) > 0. Therefore T4 maps H to itself. The bijectivity of
(Ta)m : H — H follows from the formula (Ta)m o (Ta-1)m = idm.
The continuity of (74)m and of the inverse map (74-1)g is obvious. O

Definition 1.2.2 .
1) (Mobg)jm denotes the set of all maps from Mo6bg restricted to H.

2) By Z(G), we denote the center of the group G. We have
r 0 10
z@L®) = {(§ ) Ire RV Z6LE) = (g |

3) The groups
PGL2(R) := GL2(R)/Z(GLy(R)) und PSLy(R) := SLy(R)/Z(SLy(R)).
are called projective general linear groups and projective special linear groups.
Theorem 1.2.3 (M&bg)u = PSLy(R).

Beweis. The map
¢ : SLQ(R) — (MObR)‘H
A — (TA)\H

10

is an epimorphism with Ker¢ = {£ (0 1

)} Therefore we have

(Mdbg) g 2 SLy(R)/Kerg = PSLy(R).
O

Theorem 1.2.4 The transformations from (M&bg)y preserve the hyperbolic lengths of
C'-curves in H.

Proof. Let
T:-H — H,

az+b
H
cz+d

be a transformation from (M6bg )y with

(Z Z) € SLy(R).
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Let z(t) = x(t) + iy(t) be a C'-curve in H. Denote w(t) := T(z(t)). We shall prove
that h(w) = h(z):

h(w) = IM dt = e <) dt (1.2.3)
O e T m@G@) -
We have (¢ 4 d) — c(az 1 b) )
;o alcz —c(az B
Tz) = (cz+d)? ~ (ez+d)?
Using formula (1.2.2), we deduce
| - m(T'(2))
Substituting into (1.2.3), we obtain
h(w) = | 2/@)‘ dt = h(z)
W= | Tm(() T ?
O

Corollary 1.2.5 The function p is Mobg-invariant, i.e. for any two points z1, 2o € H and
any 1" € M6bg, we have

p(z1,22) = p(T'(21), T'(22))-

Proof. Using the definition of p and Theorem 1.2.4, we have

p(z1,29) = inf h(z) = inf h(T(2)) = inf h(w) = p(T(z1),T(22)).

z2€Z z2€EZ weWw

Here Z is the set of all C''-curves from z; to 2o, and W is the set of all C''-curves from
T(z1) to T'(z2). O

Definition 1.2.6 (a) For any r € R, let A, be the open Euclidean axis in H, whose
closure begins at the point r of the real axis and is perpendicular to this axis.

b) For any two different numbers 1,75 € R, let C,, ,,, be the open Euclidean half-circle
in H, whose closure begins at the point r; of the real axis and ends at the point rs.

These open axes and open half-circles are called geodesic lines in H.

c¢) For any two different points 21, zo in H, we define the curve [z1, 25| in H with the
beginning z; and the end z; as follows:

Case 1. Re(z1) = Re(2).

Then there exists a unique axis A, containing z1, z9. Let [z, 25| be the curve which
goes “inside” of A, from z; to z3. More precisely, let

(21, 20)(t) = (1 — )z + tz.
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Case 2. Re(z1) # Re(z2).

Then there exists a unique half-circle C,, ,,, containing 21, zo. Let [z, z2] be the
“natural” curve which goes “inside” of C,, ,, from z; to 2.

In both cases we call the curve [z1, 23] the geodesic segment from z; to zs.

Lemma 1.2.7 .

(a) For any real r, there exists a transformation from Mobg, which sends A, to Ay.

(b) For any two different reals r1, 79, there exists a transformation from M&bg, which
sends C,, ,, to Ay.

Proposition 1.2.8 Let z be a C'-curve in H from z; to z,. Then

Im(z9)
h(z) > ‘1 T (1.2.5)
In particular,
Im(Zg)
> 2.
p(z1,20) = ‘hl () (1.2.6)

Proof. Denote z(t) = x(t) + iy(t). Then

1 1 !
(1) + (v 1) V) / | —z
h(z)[ : o W[ y(t)dt}[ b 2 = 0] = pa ] = i 25

The second formula follows from the first one; use the definition of p as infimum of h(z)
over all z from z; to zs. O

Theorem 1.2.9 Let 21, 2, be two different points in H and let z be an arbitrary C'-curve
in H from 2 to zo. Then h(z) > h([21, 22]) > 0.

Proof. By Lemma 1.2.7 and Theorem 1.2.4, we can assume that z; = ia and 2y = ib
(b > a > 0). Denote z(t) = x(t) + iy(t). Then, using formula (1.2.5), we deduce

2)

Im(z
Im(z;)

b
=In—
a

h(z) > ]m

It suffices to prove that

h([z1, 22]) = In S.

Denote w = [z1, 2] and recall that w(t) = i(a +t(b—a)), t € [0,1]. Then

h(w)[ %dt/ﬂ %dt:ln(aﬂ(b—a))

zlnb—lnazlné.
a

O—r



Corollary 1.2.10 .

(1) For any two points 21, 2o in H holds
p(z1, 20) = h(|z1, 29]). (1.2.7)

(2) For any two real numbers b > a > 0, we have

b
plia,ib) = In —. (1.2.8)
a

(3) For any three points z1, 29, 23 in H, we have
p(21,23) < p(21, 22) + p(22, 23).
The equality happens exactly in the case where 2o € |21, 23].

Proof. Statement (1) follows from Theorem 1.2.9, statement (2) was established in the
proof of this theorem. We prove (3). W.lLo.g., 21 = ia, z3 =ib (b > a > 0). Then

3)
2)

Im( 2z Im(z9) Im(z3)

Im(2;) o Im(z9) Im(z;) a

( > In
Im(z;

)
)

Im(z
1
+‘ " Im(z

p(z1, 22)+p(22, 23) = ‘ln



1.3 Some formulas for the hyperbolic metric p (Lecture 2)
Lemma 1.3.1 We have SLy(R) = ({4,, B, |r € R}) = ({4, |r € R} U{C}), where

B S )
Corollary 1.3.2 We have Mobg = ({¢, |7 € R} U {¢}), where
PYr: 2=z,
Vi oz —%.

Definition 1.3.3 The set C := CU {oo} is called Riemannian sphere. The cross-ratio of
four different points 21, 29, 23, 24 € C is defined to be

(21 — 22) (23 — 24)
(20 — 23)(24 — 21)

(217 293 %3, 24) —

If some z; equals to oo, we first cancel the (two) terms containing oo, using the rule

(0. ¢]

— =41.
+00

We also use some natural rules like

20 (aeR), g:oo (beR\ {0}).

(0. 9]

Theorem 1.3.4 The cross-ratio is Mobg-invariant.
Proof. The proof follows with the help of Corollary 1.3.2. O

Theorem 1.3.5 Let z,w be two different points in H. Let z* and w* be the ends of the
geodesic line passing through z and w. We assume that the order of the four points in the
completion of this geodesic line is z*, z, w, w* (see Fig.1). Then

p(z,w) = In(w, z*; 2z, w").

w




Proof. By Lemma 1.2.7, there exist T" € Mébg which maps the geodesic line to the
imaginary axis Ag. Applying the maps 0, and v, and using Theorem 1.3.4, we may assume
that T'(z*) = 0, T(w*) = oo. Then T'(2) = ia and T(w) = b for some 0 < a < b. By
Corollary 1.2.10, we have

oz, w) = p(T(2), Tw)) = plia,it) = *.

We also have

(w, 2% z,w") = (T(w), T("); T(2), T(w"))

Il
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Definition 1.3.6 We define the following three functions from R to R:

t —t

ch(t): = ‘ +2€ (hyperbolic cosinus),
el —et

sh(t): = 5 (hyperbolic sinus),
h(t) e —e!

th(t) : = zhgt; = zt n Z*t (hyperbolic tangens)

Theorem 1.3.7 For every two points z, w € H the following formulas are valid.

|z—w|—|—|z—w|'

W o) - U
(2) chp(z,w) :1+2h|112(;)—%;
) sh[3otw)] =gt
L2777 2 (Im(z) Im(w) )1/2”
r1 B |z — 0| '
(4) ch 12 (2, w) ~ 2(Im(z) Im(w))1/2’
o o] -2

Proof. One can directly prove that these equations are equivalent. Therefore, we prove
only (3).

By Theorem 1.2.4, the left side of (3) is Mobg-invariant. With the help of Corolla-
ry 1.3.2, we first verify that the right side of (3) is also M&bg-invariant. Since the right
side of (3) is evidently ,-invariant, it suffices to check that it is ¢-invariant:

O I et N -t R
2 I ™ 5 (=) () )7 2 )T

/N
—
=
O
X
g

Therefore, after application of a suitable 7' € Mobg, we may assume that z = ia, w = ib
(a < b). Using p(ia,ib) = In 2, we can easily verify (3). O
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1.4 Isometries of H

Definition 1.4.1 A map f : H — H is called an isometry if p(f(z1), f(22)) = p(z1, 22)
for all z1, z9 € H.

The set of all Isometries the hyperbolic plane H is a group.! This group is denoted by
Isom(H).

Lemma 1.4.2 The following statements hold.
(1) (M6bg)jm < Isom(H).
(2) Isometries map geodesic lines to geodesic lines (see Definition 1.2.6).

Proof. (1) follows from Theorem 1.2.4. The proof of (2) can be extracted from the
proof of Theorem 1.2.10. O

Notation 1.4.3 We will use the following maps from M&bg:
Oz —kz (keRy).
We introduce the map from H to H which is not from M&bg (show this!).
n:iz— —Z.
Theorem 1.4.4 We have

Isom(H) = ((M6bg)m,n)
~ PSLy(R) % Zs.

Beweis. We prove Isom(H) < ((M&bg)m, 7). Let ¢ € Isom(H). Then ¢ maps geodesic
lines to geodesic lines. Let I := {ir|r > 0}. Then (/) is a geodesic line. By Lemma 1.2.7,
there exists 7" € (M6bg) i such that 7o p(I) = I. Using the maps z — kz (k > 0) and
Z —i if necessary, we may assume that 7" o ¢ fixes the point ¢ and maps the axes (0, 7]
and [i,00) onto itself. From this, it follows that the isometry T" o ¢ fixes all points on I.
We prove that T'o ¢ € {id,n}. Let z = x +iy € H and let T o p(z) = u + iv. Then for all
t>0:

px + iy, it) = p(T' o p(2), T o p(it)) = p(u + iv,it).
By Theorem 1.3.7 (3), we have

2+ (y—t)? _ v+ (v—t)
ty tv '

It follows that v = y and © = 4wu. Thus, T o ¢(z) € {z,—Z}. Since every isometry is
continuous, the map 7' o ¢ is either the identity on H, or 7. O

!This will be clear only after Theorem 1.4.4.



1.5 Hyperbolic Area (Lecture 3)
Definition 1.5.1 Let A be an open set in H. The hyperbolic area of A is defined by the

formula
dx dy
n(A) = / 5
1 Yy

In this integral, we consider A as a subset of R

Remark 1.5.2 (Transformation-formula)
e Let A be an open subset of R2.

e Let ¢ : A — R? be an injective differentiable function with continuous partial
derivatives. We write ¢ = (1, o) mit ¢; : A — R and use the Jacobian of ¢:

ox oy

02 Opa

9p1 Qﬂ)
ox oy

J(p) = det <

o Let f:p(A) — R be a continuous function. Then the function f has an integral on
¢(A) if and only if the function (f o ¢) - |J(¢)| has an integral on A. In this case,
we have

/ f(x,y)dwdyZ/(fow)(w,y)-‘J(w)(x,y)’dxdy.
»(A) A

Theorem 1.5.3 The function p is Mob(R)-invariant, i.e. for every open subset A C H
and every T' € (Mobg)m we have

Proof. Let
az+b
T(2) —
(2) cz+d

We write z = x + iy. Then there exist functions u, v with T'(z) = u(z,y) + iv(z,y). Since
T is complex-differentiable (holomorph), u and v satisfy Cauchy-Riemann equations

(a,b,c,d € R, ad —bc = 1)

o _ o
ox oy’
o _ _ v
oy Oz

Using these equations, we compute the Jacobian of the map

¢ (z,y) = (ulz,y),v(r,y)).

ou  Ou
o= (i) = G (5 =G+ 50 = 1 = e
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Then?
B dx dy _ 1 ‘ .

2. d* 1
(1:22) /\cz—i— | dz dy = u(A).

L (m(2)? " ez +df*

1.6 Angles in H

Definition 1.6.1 Let 7, : [c1,d1] — H and 75 : [c2, d] — H be two injective diffrentiable
curves in H, which pass through some common point z. The hyperbolic angle between ~,
and 7, at the point z is the Euclidian angle between the tangent lines ¢; and (; to these
curves at the point z:

Z(71,72; 2) = 4e(C17C2; z).

Theorem 1.6.2 The transformations 7' € (Mébg)jm are conform, i.e. they preserve the
orientation and angles between C'-curves:

Z(T(n), T(72);T(2)) = £(71,72; ).

1.7 Gauf3-Bonnet formula

A hyperbolic n-gon in H is a closed subset of H, which is bounded by n hyperbolic segments
of the form [z, w]. We also consider hyperbolic n-gons in the extension H := HUR U {oo}.

Theorem 1.7.1 (GauB-Bonnet) Let A be a hyperbolic triangle in H with the angles
a, 3,7. Then

pA)=mr—a—-pg-1.
Proof. Let A = ABC..
Case 1. Let A,B € H and C € RU {o0}.
Since Mobius transformations preserve areas and angles, we may assume that C' = oo.
Then the side AB lies on the halfcircle C,, ,,. We may assume that 0 is the center of

C,, .- Let R be the radius of this halfcircle. Sine the sides AC' and BC' are geodesic lines
and C' = oo, they are vertical axes. Let a and b be x-coordinates of these axes. Then

b [eS) b
dxdy dy dx
M(A)/ /d/ —2/—*.
A y a \/RQ—mQy a R? — 2

After substitution x = R cos #, we obtain

B
—sin 6 df

2In this case, we have f : (z,y) — ﬁ and ¢ : (z,y) — (u,v).
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Case 2. Let A, B,C € H.
Case 3. Let A€ Hund B,C € RU {0}
Case 4. Let A, B,C € RU{o0}.

These cases can be reduced to Case 1. O

1.8 Hyperbolic trigonometry

Theorem 1.8.1 Let A be a geodesic triangle in H with finite hyperbolic lengths a, b, ¢ of
its sides and with the non-zero angles «, 3, (opposite to the corresponding sides). Then

sha shb she
(1) = =

sina  sinfB  sinvy’

(sinus theorem)

(2) che=chachb—shashb cos~y. (first cosinus theorem)

cos v cos 3 + cosy

(3) che= (second cosinus theorem)

sin « sin 3

Theorem 1.8.2 If two geodesic triangles in H have the same angles, then there exists
an isometry which maps one triangle to the other.

Theorem 1.8.3 (Pythagoras Theorem for H) Let A be a geodesic triangle in H with
finite hyperbolic lengths a, b, ¢ of its sides and with the non-zero angles «, 8,7 (opposite
to the corresponding sides). If v = 7, then

che=chachb.
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2 Fuchsian groups
2.1 Classification of elements of PSLy(R)

Definition 2.1.1 Let A = (CCL Z) be an element of the group SL(R) different from +F.

The number
Tr(A) :==a+d

is called the trace of A.
o Ais called elliptic if |Tr(A)| < 2.
e A is called parabolic if |Tr(A)| = 2.
e A is called hyperbolic if |Tr(A)| > 2.

A nontrivial element from PSLy(R) is called elliptic, parabolic, or hyperbolic if some
(equivalently any) its preimage in SLy(R) is elliptic, parabolic, or hyperbolic, respectively.
We write A ~ B if A and B are conjugate by a matrix from SLs(R).

SLa(R

Lemma 2.1.2 Suppose that +F # A = (Z 2

of A. Then the following holds.

) € SLy(R), and let A1, Ay be eigenvectors

1) A is hyperbolic if and only if A, Ay € R, A\; # Ao. In this case
A SLa(R) (3 19)\)

2) A is parabolic if and only if A\; = Ay € {—1,1}. In this case
A o ® ((1) ?)

3) A is elliptic if and only if A\;, As € C\ R. In this case Ay = A1, [Ai| = [Xo| = 1 and

A cosf sinf
SLy(R) \ —sinf cos6

for some 6 € (0,7) U (, 27).

for some A € R, \ # £1.

for some a € {—1,1}.

Definition 2.1.3 The element A = [CCL b] € PSLy(R) acts on H as the map z +—» %0

d cz+d”
The set of fized points of A in H is

az+b

cz+d b

The action of A on H can be naturally extended to an action of A on the compactified
hyperbolic plane H:= HUOH, where GH RU{oo}. The subset OH is called the boundary
of H. The set of fixed points of A in H is denoted by le(A)

Fix(A) :={z € H|z=

13



Theorem 2.1.4 For any A € PSLy(R) the following holds.

1) If Ais hyperbolic, then F/1\X(A) consists of two points in OH. One of them is attracting
and the other one is repelling.

2) If A is parabolic, then 1*:1;(14) consists of a single point in OH.
3) If A elliptic, then ﬁl\X(A) consists of a single point in H.

Definition 2.1.5 Suppose that A € PSLy(R) is hyperbolic. The geodesic line in H
connecting two fixed points of A is called the azis of A and is denoted by Axis(A).

Bemerkung 2.1.6 The axis of a hyperbolic element A € PSLy(R) is A-invariant.

Bemerkung 2.1.7 If we know the type of A (hyperbolic, parabolic, or elliptic) and the
fixed points of A, we can describe the action of A on H on a qualitative level, i.e. with
the help of pictures.

b
d

this case the corresponding transformation ¢4 : C — C has the form z — a?z + ba and
we have the following.

o If « = +£1, then A is parabolic.
e If a # £1, then A is hyperbolic with Fix(A) = {oo,

Bemerkung 2.1.8 The element A = [Z ] € PSLy(R) fixes oo if and only if ¢ = 0. In

ba
1— a2}'

Subsections 2.2 and 2.3 contain necessary information about topo-
logical spaces and topological groups.

2.2 Topological spaces

Definition 2.2.1 (Topology, topological space, open and closed sets)
Let X be a set. A topology T on X is a set of some subsets of X (each such subset is
called an open set in X), which satisfies the following axioms:

(1) The empty set @ and the set X are open.
(2) The intersection of finitely many open sets is open.
(3) the union of arbitrary set of open sets is open

The pair (X, %) is called a topological space. Sometimes we simply write X for the
topological space if the topology ¥ is defined. A subset U of X is called closed if X \ U is
open.

Definition 2.2.2 (Basis of a topology)
Let (X, %) be a topological space. A subset B C ¥ is called a basis of the topology ¥
if each open set of X is a union of some open sets belonging to B.

Definition 2.2.3 (Neighborhood) Let (X, ¥) be a topological space and let x be a point
of X. A subset U of X is called a neighborhood of x if there exists an open subset O such
that r € O C U.

14



Definition 2.2.4 (Continuous maps)
Let (X1,%,) and (X»,%,) be two topological spaces. A map f : X; — X is called
continuous if for every open set U in X, the full preimage f~!(U) is open in X;.

Definition 2.2.5 (Induced topologie und quotient topology)

(1) Let (X,%T) be a topological space and let Y be a subset of X. We define on Y the
induced topology Ty as follows: A subset S C Y is defined to be open in Y if there
exists an open set O in X such that S=0NY.

(2) Let (X, %) be a topological space and let Y be a set. Let f : X — Y be a map. We
define on Y the quotient topology as follows: A subset U C Y is defined to be open
in Y if the full preimage f~(U) is open in X.

Remark 2.2.6

(1) Let (X,%) be a topological space and let Y be a subset of X. The inclusion map
1:Y — X, y — y, becomes continuous if we endow Y with the induced topology.
Moreover, the induced topology on Y is the weakest topology on Y for which the
map ¢ is continuous.

(2) Let (X, %) be a topological space and let Y be a set. Let f: X — Y be a map. The
map f : X — Y becomes continuous if we endow Y with the quotient topology.
Moreover, the quotient topology on Y is the weakest topology on Y for which the
map f is continuous.

Definition 2.2.7 (Discrete topological space and a discrete subset of a topological space)
(1) A topological space (X, %) is called discrete if one from two equivalent statements
is valid:
(a) For every point x € X the set {z} is open.
(b) Every subset of X is open.

(2) A subset X of a topological space Y is called discrete if X with the induced topology
is discrete. Equivalently, if for every point x € X there exists an open set O, in Y
such that O, N X = {z}.

Definition 2.2.8 (Hausdorff space) A topological space (X, ¥) is called Hausdorff space
if for every two different points x; and x5 in X there exist open sets O; and O, such that

.1'1601, Z'QEOQ and OlﬂOQ:Q.

Definition 2.2.9 (First countable topological spaces) A topological space (X, ¥) is called
first countable if the following holds:

For every point x € X, there exists a countable collection of neihborhoods Uy, Us, ...
of = such that, for every neighborhood U of x, there exists ¢« € N such that U; C U.
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Remark 2.2.10 (Continuity and countable sequences)
(1) Let (X, %) be a topological space and let (Y, Ty ) be a subspace with the induced
topology. Then the following holds:
(i) If (X, %) is first countable, then (Y, Ty ) is first countable.
(ii) Let (yn)nen €Y be a sequence and y € Y a point. Then y, — y in (Y, Ty) if
and only if y, — y in (X, %).

(2) Let (X1,%;) and (X3, %3) be two topological spaces. Let f : X; — X5 be a map.
We will compare the following two conditions.
(a) The map f is continuous.
(b) For every sequence (z,)neny in X; and every z € X; the following holds:
If x,, = z in (X1,%y), then f(z,) — f(x) in (Xs,Ts).

Condition (b) follows from condition (a), but not conversely, in general.
If (X;,%;),i=1,2, are first countable then (a) and (b) are equivalent.

Remark 2.2.11 (Criterium of discreteness) Let (X, %) be a first countable topological
space. Then this space is discrete if for every point x € X and every sequence (z,)nen € X
with x,, — = we have z,, = x for all sufficiently large n.

Definition 2.2.12 (Compact spaces and compact subsets)

(1) A topological space (X,%) is called compact if for each covering X = 'UIUi with
1€
U, € T, there exists a finite subset Iy C I such that X = U U,.

i€lp
(2) A subset Y of a topological space (X, %) is called compact if one of the following
equivalent conditions is satisfied:

(a) (Y,%y) is a compact space.

(b) For each covering Y C ‘UIUi with U; € €, there exists a finite subset Iy C I
1€
such that Y C U U,.

i€lp

Remark 2.2.13 (Compactness for metric spaces)
Let (X, d) be a metric space. For r > 0 and z € X the set

B.(z) :={a' € X |d(z,2") < r}

is called an open ball with the center x and radius r. A subset Y of X is called bounded
if Y lies in some open ball.
Let T be the topology on X for which the set {B,.(x)|x € X,r > 0} is a basis. Then

(1) The topological space (X, ¥) is Hausdorff and first countable.
(2) A subset Y in R™ is compact if and only if Y is closed and bounded.

Lemma 2.2.14 Every discrete and closed subset M of a compact topological space X is
finite.
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Proof. For every m € M let O(m) be an open neighborhood of m in X satisfying
O(m) N M = {m}. Then
X=X \M)u( U O@m))
me

is a covering of X by open sets. Since X is compact, there exists a finite subset My C M
such that
X=(X\M)u( U O(m)).

Then o
M=(U Om)NnM= U (Om)nM)= M,.

méeMo meMo

Definition 2.2.15 (Product topology)
Let (X7, %1) and (X3, T2) be two topological spaces. The product topology T on X7 x X,
consists of all possible unions of sets of the form U x V', where U € T; and V' € Ts.

Remark 2.2.16 The product topology is the weakest topology on X; x Xs, for which
the projections pry : X7 x Xo — X and pr, : X7 X Xy — X5 are continuous.

2.3 Topological groups

Definition 2.3.1 A group G, which is simultaneously a topological space, is called a
topological group, if the maps - : G X G — G, (z,y) — zy and 7' : G — G, v~ x7! are

continuous.
Remark 2.3.2 Let GG be a topological group. Then the following statements are valid.
(1) For every open set U C G and any element g € G the sets gU and Ug are open.

(2) For every neighborhood V of 1 in G, there exists a neighborhood U of 1 in G such
that YU~ C V.

Proof. (2) Since 1-1 = 1 and since the multiplication in G is continuous, there exist two
neighborhoods of 1, say Uy, Uy such that UyUy C V. For U3 = U; N Uy we have UsUs C V.
For U = Us N U;* we finally have UU~! C V. O

Definition 2.3.3 A subgroup H of a topological group G is called discrete in G if H is
discrete as a subset of the topological space G.

Theorem 2.3.4 Every discrete subgroup H of a Hausdorff topological group G is closed.

Proof. Since H is discrete in GG, there exists an open neighborhood V' of 1 such that
V' N H = {1}. Then there exists an open neighborhood U of 1 such that UU~! C V.

We show that G\ H is open. Let g € G\ H. We shall show that there exists an open
neighborhood W of ¢ which does not contain elements of H. Try W = Ug. Suppose it
contains some h € H. Then, since GG is Hausdorff, we can find an open neighborhood
Wy, C W of g, which does not contain h. Suppose that W; contains some other h; € H.
Then hg~t, hig~! € U. Then hhi' = (hg™')(hig~")~' € UU™' C V, hence hh;' =1, a
contradiction. Thus, W; is an open neighborhood of g that does not contain elements of
H. Hence, G \ H is open. O
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Remark 2.3.5 The variant of Theorem 2.3.4 for subspaces of topological spaces is not
valid. Indeed, consider the interval [0, 1] as a topological space with the topology that is
induced by the canonical topology on R. Then the topological space [0, 1] is Hausdorff and
compact. Die subset {Z |n € N} of the topological space [0, 1] is discrete but not closed.

Corollary 2.3.6 Every discrete subgroup H of a Hausdorff kompact topological group
G is finite.

Proof. The proof follows straightforwardly from Theorem 2.3.4 and Lemma 2.2.14. O
Corollary 2.3.7 Every discrete subgroup of the orthogonal group O(n) is finite.

Lemma 2.3.8 (Criterium of discreteness of a topological subgroup) Let G be a topolo-
gical group with a first countable Hausdorff topology. Then the following holds:

A subgroup H of G is discrete in G if and only if from h,, — e (where h,, € H and e
is a neutral element) follows that h,, = e for all sufficiently large n.

2.4 First two definitions of a Fuchsian group
The group SLy(R) can be considered as a subset of R* by identifying

a b
<c d)v»(a,b,c,d)

Thus, SLy(R) can be considered as a topological group (and even a metric space) with
the topology induced from R*. Now we consider the canonical epimorphism

From now on, we consider PSLy(R) as a topological group with the quotient topology
determined by 1.

Definition 2.4.1 (first definition of a Fuchsian group) A Fuchsian group is a discrete
subgroup of PSLy(R).

To understand the discreteness in PSLy(R) better, we need the following two general
statements.

Lemma 2.4.2 Let GG; be a topological group, G5 be a group and ¢ : G; — G2 an
epimorphism. We consider G4 as a topological group with respect to the quotient topology.
Let H be a subgroup of G5. Then the following statements are valid.

(a) If o '(H) is discrete in Gy, then H is discrete in G.

(b) Suppose additionally that G, is Hausdorff and that ker(yp) is finite.
If H is discrete in Gy, then ¢ ' (H) is discrete in G1.

Lemma 2.4.3 Let (G; be a topological group, GGy be a group. Let ¢ : G; — Gy be an
epimorphism and G5 is endowed by the quotient topology. Then the following statements
are valid.
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(1) If a subset O C G is open, then its image ¢(O) is open.

(2) If Gy is first countable, then G is also first countable.
Corollary 2.4.4 The topological group PSLy(R) is Hausdorff and first countable.

Using this corollary and the discreteness criterium 2.3.8, we give the second (equiva-
lent) definition of a Fuchsian group.

Definition 2.4.5 (second definition of a Fuchsian group) A subgroup H < PSLy(R) is
called Fuchsian if for any sequence (h,),en of elements of H with h, — 1, there exists
ng € N such that for every n > ngy, we have h,, = 1.

2.5 Proper discontinuous actions of groups on metric spaces

Definition 2.5.1 Let X be a topological space and S a subset of X. A point x € X is
called an accumulation point of S if every neighborhood of x contains a point of .S different
from . The set of all accumulation points of S in X is denoted by AP x(.S).

Assumption. From now on we assume that (X, d) is a metric space and G is a group
acting on X by isometries, i.e. for any element g € G and any two points z1, x5 € X we
have

d(z1,z2) = d(g(z1), 9(22)).
An action (by isometries) of G on X is denoted by G ~ X.

Definition 2.5.2 An action G ~ X is called proper discontinuous (abbreviated PDA),
if for every point z € X there exists a neighborhood V' of x such that

HgeGlg(V)NV #£0} < oc. (2.5.1)

Lemma 2.5.3 A group G acts on a metric space X properly discintinuously if and only
if the folowing two conditions are satisfied.

(1) For any « € X the orbit G(z) does not have an accumulation point in X.

(2) For any « € X the stabilizer Stg(z) := {g € G| g(x) = z} is finite.

Proof. | (1) &(2) = (PDA):

Let x € X be an arbitrary point. It follows from (1) that there exists € > 0 with

B.(x) N G(x) = {z}.

We claim that V' := B, /y(x) satisfies (2.5.1). Indeed, if g € G is an element satisfying

9(Bzj2(2)) N Bepa(x) # 0, (2.5.2)

then d(x, g(z)) < €, hence

g(x) € B-(x) N G(x) = {x},
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i.e. g € Stg(x). By (2), this stabilizer is finite. Thus, there exists only finitely many g € G
satisfying (2.5.2), and (PDA) is proved.

(2) =(PDA) |is evident. Now we prove

(1) = (PDA):

By (1), there exists # € X such that G(z) has an accumulation point y. Then there
exist different g; € G, i € N, such that g;,(z) € By/(y) \ {y}. In particular,

9 (Bui(y)) N g (Buyi(y)) #0
for all 4, j. Therefore, for 7 > i we have
959, (Biyi(y)) N Buyi(y) # 0.
Let £ > 0. We take ig € N such that 1/iy < e. Then
9i9 (B:(y)) N Be(y) # 0.
for all j > ig. This implies '(PDA). O
Lemma 2.5.4 Let 2y € H and let K be a compact subset of H. Then the set
M :={T € SLy(R) | T'(2) € K}
is compact.
Proof. Tt suffices to show that M (as a subset of R*) is closed and bounded.
1) We prove that M is closed. Consider the map
¥ : SLy(R) — H,

T — T(z).

Then
M = {T € SLy(R) | ¢(T) € K} = ¢~ (K).

Since 1 is continuous and K is closed, M is closed as well.
2) We prove that M is bounded.

a) Since K is bounded, there exists a constat C; > 0 such that |z| < C; for all
z € K. Then we have

‘azo+b

C 2.5.3
czo+d =& ( )

for all T = (a b) from M.
c d
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b) Since K is bounded, there exists a constant Cy > 0 such that

azo+ b
()50,
H czp+d s
By (1.2.2), we have
Im(z)
———— > (.
lczo + d|? ?
Therefore
Im(zp)
lczo + d| < . (2.5.4)
Cs
This and (2.5.3) imply
I
lazo + b < Cyy [ 20 (2.5.5)
C
From (2.5.4) and (2.5.5) we deduce that |a|, |b], ||, |d| are bounded. O

Theorem 2.5.5 A subgroup G of PSLy(R) is Fuchsian if and only if G acts properly
discontinuously on H.

Proof. Let 1) : SLy(R) — PSLy(R) be the canonical epimorphism. Then (tutorial)

e G is discrete in PSLy(R) if and only if ¢y~ !(G) discrete in SLy(R).

e G acts on H totally discontinuously if and only if /"1 (G) acts on H totally discon-
tinuously.

Therefore it suffices to prove the following:

A subgroup G of SLa(R) is Fuchsian if and only if G acts properly discontinuously on H.

1) Suppose that G is discrete in SLy(R).
To the contrary, suppose that the action G ~ H is not proper discontinuous. Then
there exists zy € H such that the set

Go:={g € G|g(Bi(20)) N Bi(z0) # 0}

is infinite. We set K := By(zp). Then g(29) € K for all g € Gy. Therefore
Gy C {g S SLQ(R) |g<Zo) € K} NnG.

e The set {g € SLy(R) | g(20) € K} is compact (see Lemma 2.5.4).
e Since G is discrete in SLy(R), G is closed (see Lemma 2.3.4).

e The intersection of a compact set and a discrete closed set is finite (see Lem-
ma 2.2.14).

Then G is finite. A contradiction.
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2) Suppose G is not discrete in SLy(R). Then there exists an infinite sequence (g )ren
of different and nontrivial elements of G such thatz g, — e. Each element from SLy(R)
fixes at most one point of H. Let 2y € H be a point, which is not fixed by any gx. Then

[ gk(Z()) 7£ 20 for all ]{?7
) 91:(20) — 20-

Thus, zp is an accumulation point of G(zp). By Lemma 2.5.3 the action G ~ H is not
proper discontinuous. O

Corollary 2.5.6 (Criterium for Fuchsian groups) A subgroup G < PSLy(R) is Fuchsian
if and only if for every point z € H the orbit G(z) does not have accumulation points
in H.

Proof. (=) follows from Theorem 2.5.5 and Lemma 2.5.3.

(<) Suppose that G is not discrete. As in the second part of the proof of Theorem 2.5.5,
there exists a point zy € H such that the orbit G(zp) has an accumulation point in H.
A contradiction. O

Definition 2.5.7 The limit set of a subgroup G < PSLy(R) is the set

AG) = | AP5(G(2)).

zeH
Thus, this is the set of all accumulation points (in Iﬁl) of all orbits G(z), z € H.

Lemma 2.5.8 If (G is a Fuchsian group, then
(1) AM(G) SR U {oo},
(2) GAMG)) = AG).
Proof. (1) follows from Corollary 2.5.6, (2) from Definition 2.5.7. O

Examples.

1) For G = (A) with A = [2 0 } we have A(G) = {0, 00}.

0 1/2
2) For G = PSLy(Z) we have A(G) = RU {oo}.

Corollary 2.5.9 For every Fuchsian group G the set of fixpoints of all its elliptic elements
does not have accumulation points in H. With other words, the set

{z € H|g(2) = z for some nontrivial g € G}
does not have accumulation points in H.

Proof. The proof follows from Theorem 2.5.5 and Definition 2.5.2. O
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2.6 Some algebraic properties of Fuchsian groups

Recall our agreements:

a-0+b  )b/d, if d#0, acc+b  Jajc, if c#0,
c-04+d" Joo, if d=0 cco+d oo, if c=0

The centralizer of an element a of GG is the subgroup

Cg(a) :=={g € G|ga = ag}.

The normalizer of a subgroup H of G is the subgroup
Na(H):={g € G|gH = Hg}.
Lemma 2.6.1 Let T',.S be two nontrivial elements of Mobg. If T'S = ST, then
S(l*:i\x(T)) — Fix(T).

Proof. Let z € 1*:1\X(T) Then S(z) = ST(z) = T'S(z), hence S(z) € F/I\X(T) Thus,
S(FE(T)) C Fix(T). Similarly, TS~! = S~'T implies S~ <1*:i\x(T)) C Fix(T). D

Theorem 2.6.2 Let T, S be two nontrivial elements of Mobg. Then
TS = ST < Fix(T) = Fix(S).
In particular, the types of S and T are coincide.

Proof. Consider three cases.
1) Let T be parabolic. W.l.o.g. (and using conjugation), we may assume 7" : z +— z+ 1.
In particular, P/‘l\X(T) = {o0}.
e First suppose that 7'S = ST. Then, by Lemma 2.6.1, we have S(0c0) = oo, hence
S': 2+ az+b. Furthermore, from ST' = T'S, we deduce that a = 1,50 S : 2 = 2 +b.
Thus, Fix(5) = {oo}.

e Now suppose that Fix(T) = ]i:l\X(S) Then Fix(S) = {oo}. Then S : z — az + b,
a # 0. If a # 1, then we have an additional fixed point. Thus, S : z — z + b that
implies T'S = ST.

2) Let T be hyperbolic. W.l.o.g. (and using conjugation), we may assume T : z — kz,
k>0, k # 1. In particular, Fix(T") = {0, oo}.

e First suppose that 7'S = ST. Then, by Lemma 2.6.1, we have S({0,00}) = {0, 00}.

The case S(0) = co and S(o0) = 0 is impossible, otherwise S : z +— —pu/z for some
p > 0, and hence T'S # ST. Thus, S(0) = 0 and S(c0) = o0, i.e. Fix(S) = Fix(T).

e Now suppose that ﬁB{(S) = @{(T) Then P:&(S) = {0,00}. Hence S : z + puz for
some g > 0. Then ST =1TS.
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3) Let T be elliptic. W.lL.o.g. (and using conjugation), we may assume 7' : z

cos 0-z+sin 0
—sin 0-z+cos 6

for some 6. In particular, P/’Ec(T) = {i}.

e First suppose that T'S = ST'. Then, by Lemma 2.6.1, we have i € 155((5) Then
{i} = Fix(S) by the classification Lemma 2.1.2.

e Now suppose that F/l\X(S) = F/‘l\X(T) Then 1*:1\X(S) = {i}. Hence, z — %‘%
for some . Then ST =T'S.

|

Corollary 2.6.3 The centralizer in Mobg of a hyperbolic, parabolic, or elliptic element
consists of id and all hyperbolic, parabolic, or elliptic elements, respectively, which have
the same fixed points.

Corollary 2.6.4 Two hyperbolic elements commute if and only if they have the same
axes.

Corollary 2.6.5 Let A, B, C three nontrivial Mobius transformations. If AB = BA and
BC = CB, then AC' = CA.

Lemma 2.6.6 Any discrete subgroup of (R, 4) is isomorphic to Z. Any discrete subgroup
of S* = ([0,27],+ mod 2«) is isomorphic to Z, for some finite n.

Theorem 2.6.7 Let G be a Fuchsian group such that all nontrivial elements of G' have
the same fixed points. Then G is cyclic. Moreover, if G' contains a hyperbolic or a parabolic
element, then G = Z, and if GG contains an elliptic element, then G = Z,, for some n.

Proof. Let go € G\ {1} be a fixed element and g € G \ {1} an arbitrary. Consider
three cases.

1) go is hyperbolic. After conjugation, we may assume gy : z — kz for some k& > 0.
Then Fix(g) = Fix(go) = {0, 00}. Therefore g : z — pz for some u > 0, and we have

G<{z—= 2|2 >0} = Ry, ) = (R, +).
By Lemma 2.6.6, G = Z.

2) go is parabolic. After conjugation, we may assume gq : 2z — 2z + 1 for some k > 0.
Then Fix(g) = Fix(go) = {oo}. Therefore g : z — z+b for some b € R, and we have

G<{z— 2+ A XAeR}E (R, +).
By Lemma 2.6.6, G = Z.

3) go is eHi\ptic. After conjugation, we may assume gy : 2 — % for some 6.
Then Fix(g) = Fix(go) = {i}. Therefore

cos -z +siny

Gé{zr—> ‘0<gp<27r}25’1.

—sinp -z 4 cos

By Lemma 2.6.6, G = Z,.
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Theorem 2.6.8 (1) Every abelian Fuchsian group is cyclic.
(2) If G is Fuchsian and g € G \ {1}, then the centralizer C(g) is cyclic.

Proof. Statement (1) follows from Theorems 2.6.2 and 2.6.7. Statement (2) follows
from Corollary 2.6.5 and statement (1).

Theorem 2.6.9 Let G be a Fuchsian group. If G is noncyclic, then N = Npgr,®)(G) is
also a Fuchsian group.

Proof. Suppose that N is not discrete. Then there exists a sequence (7});en, 77 — 1,
where all T; are different and nontrivial. Then for any g € G we have
T, 9T — g.
Since G is discrete, there exists ig = ip(g) such that for any ¢ > iy we have
T T =g.

Let g1, g2 be two nontrivial elements of GG. Then there exists T} from the above sequence
such that Tk_lngk = ¢; and Tk_lgng = ¢go. By Corollary 2.6.5, g1 and g, are commute,
hence G is abelian. By Theorem 2.6.8, GG is cyclic. O

2.7 Elementary Fuchsian groups

Definition 2.7.1 A subgroup G < PSLy(R) is called elementary if there exists a point
z € H such that the orbit G(z) is finite.

Remark 2.7.2 Since H and R U {oco} are PSLy(R)-invariant, we have
G(z) CH or G(z) CRU{o0}.

Theorem 2.7.3 Suppose that G is a subgroup of PSLy(R) such that all nontrivial ele-

ments of G are elliptic. Then all elements of G have a common fixed point in H.
In particular, G is abelian and elementary.

Beweis. Let A be an element in G \ {e}. After an appropriate conjugation, we have

A [COSQ —smé’} .

sinff cosf

a

Let B = [c b} be an arbitrary element of G. We have det(B) = 1. Then we have

d
Tr(ABA™'B™1) = 2adcos®(6) + (a® + b? + ¢ + d?) sin*(6) — 2bc cos?(6)
= 2cos?(0) + (a® + b* + & + d?) sin*(0)

=2+ (a® +b* + A2 + d* — 2) sin*(0)

=2+ ((a—d)* + (b+c)*)sin*(F) > 2.

Therefore the commutator [A, B] is either trivial or elliptic. But since it is not elliptic by
assumption, we have [A, B] = 1. Therefore G is abelian. By Theorem 2.6.2, all nontrivial
elements of GG have the same fixed points in H. In particular, GG is elementary. E O
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Corollary 2.7.4 Every Fuchsian group G, whose nontrivial elements are elliptic is a
finite cyclic group.

Proof. By Theorem 2.7.3, GG is abelian. By Theorem 2.6.2, the fixed points of nontrivial
elements of GG coincide. By Theorem 2.6.8, GG is a finite cyclic group. O

Theorem 2.7.5 Every elementary Fuchsian group G is isomorphic to Z, Z, (for some
finite n), or D4, (the infinite dihedral group). Moreover, the following holds:

(1) If G = Z, then G is conjugate to the group (z + kz) for some k& > 0, or to the
group (z — z + k) for some k > 0.

(2) If G = Z,, then G is conjugate to the group

COS2_W'Z+Sin2_7r
s 21 2
—sin == - z + cos =
n n

for some n € N.

(3) If G = D, then G is conjugate to the group Hy = (6, ) for some k > 0, where
Oz kzand ¢ : 2z — —1.

Proof. Let O be a finite orbit of G in H.
Case 1. Let |O] = 1.
Then O = {a} for some « € Fix(G).

Fall 1.1. Sei o € H.

Then all elements of G \ {e} are elliptic. By Corollary 2.7.4, G is a finite cyclic
group.

Fall 1.2. Let o € RU {o0}.

Then G has no elliptic elements. There are three subcases:

(a) G contains both, hyperbolic and parabolic elements.
After an appropriate conjugation G' contains an element g : z — Az, where
A > 0. We have a € Fix(G) C Fix(g) = {0, 00}. Therefore & = 0 or a = oc.
If o = 0, we consider )G~ instead of G (recall that ¢ : z — —1). Then

o Fix(yGy~t) = w(FiX(G)) = (o) = {oo}.
o g=vg T €PGyYTL
Therefore we may assume that @ = oo. If necessary, we also can replace g
by giand assume that A > 1. Let h be a parabolic element from G. From
a € Fix(G) C Fix(h) we deduce {oo} = Fix(h). Then h : z — z 4 b for some
b € R. We have

g "hg"(z) = z+ \7"b.

Since A > 0, we have
g "hg" — id.

that contradicts the discreteness of G.
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(b)

()

G \ {e} contains only parabolic elements.

Then each of them has « as a single fixed point. Then, by Theorem 2.6.7, we
have G = Z.

G \ {e} contains only hyperbolic elements.

As above, we may assume that G contains ¢ : z +— Az (A # 1). and a = oco. If
(9) = G, then we are done.

If (9) # G, then we consider some h € G\ (g). Since o € F/i\x(h), we have
h:zw az+0bfor some a# 0and b € R. Then ghg'h™ : 2 — 2z + (A = 1)b.
If b # 0, then this is a parabolic element that contradicts the assumption. If
b= 0, then h : z — az. Thus, all elements of G have the form z — kz, k € R,.
Then, up to an isomorphism, G is a discrete subgroup of (R4, ). Then G = Z.

Case 2. Let |O| =2, say O = {a, as}.
Fall 2.1. O C H.
Then all elements of G\ {e} are elliptic. By Corollary 2.7.4, G is a finite cyclic
group.
O CRU{oo}.

Then G does not have parabolic elements. (Indeed, a parabolic element has only
one finite orbit in R U {co}, and this orbit contains only one point.) We consider
three cases:

Fall 2.2.

(a)

(b)
()

G\ {e} contains only hyperbolic elements. Then a; and ay are their common
fixed points and both, {a;} and {as} are orbits of G. Hence, O is not an orbit
of G. A contradiction.

G\ {e} contains only elliptic elements. Then, by Corollary 2.7.4, G is a finite
cyclic group.

G \ {e} contains both, elliptic and hyperbolic elements. Then all elliptic ele-
ments have the order 2 and permute oy, as. After an appropriate conjugation,
we may assume that o; = 0 and oy = co. Then all hyperbolic elements in G
have the form

gr:z—kz, E>0k#1,

and all elliptic elements in G have the form
A
ex:z—=——, A>0.
z

Let Go be the subgroup of G consisting of id and all hyperbolic elements of
G. Then Gg has index 2 in (G. The second coset of GGy in GG consists of elliptic
elements. Let ey be one of them. We conjugate G by

q:zmVAz
Then qGoq ! = Gy and gexg~ ' = e; = 1. Therefore
qGq™' = Gy UyGy.
Since Gy is discrete, Gy = (gy) for some k > 0, k # 1. Hence qGq~! = Hy.
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Case 3. Let |O] > 3.
Then O C RU {oc} and G\ {e} contains only elliptic elements. By Corollary 2.7.4,
G is a finite cyclic group. O

2.8

Jorgensen inequality

Lemma 2.8.1 Let S, T € PSLy(R). We set Sy := S, and S,y = S, TS for r > 0.
If there is n > 1 such that S, = T', then (S, T’) is an elementary group and S, = 7.

Beweis. For T' = Id the statement is evident. Let T" # Id.

Case 1.

Case 2.

Let |Fix(T)| = 1.
Then ﬁB{(T) = {a} for some o € H.
Since 5,1 is conjugate to T, we have

IFix(S,41)] =1 for all > 0. (2.8.1)

Moreover,
Spi108(a)=5,0T0S oS, (a)=S.(a).

This implies .
Fix(S,41) = {S-(a)}. (2.8.2)

By assumption S,, = T, therefore ﬁl\x(Sn) = F/I\X(T) = {a}. With the help of (2.8.1)
and (2.8.2), we consequently obtain

Fix(S,-1) = {a},

Fix($) = {a},
Fix(S) 2 {a}.
Therefore we have
1) ae lfi\x<S, T). Hence, (S,T) is elementary.
2) F/i\x(Sl) ={a} = 1*:1\X(T) Hence, S;T = T'S; (see Theorem 2.6.2), i.e. Sy =1T.
Let |[Fix(T)| = 2.
Then F/I;{(T) = {a, B} for some «, 5 € H. Since S,11 is conjugate to T', we have
]F/S((STH)] =2, and S,y is hyperbolic for all r > 0. (2.8.3)
Moreover,
Srr108:({e, B}) = S, 0T 0 571 o S, ({a, B}) = S, ({e, B}).

Each hyperbolic element has a unique invariant 2-elements set and this set coincides
with the foxed point set. Therefore

Fix(S41) = {Si(a, 8)}. (2.84)
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By assumption S,, = T, therefore ﬁl\x(Sn) = F/I\X(T) = {a}. With the help of (2.8.1)
and (2.8.2), we consequently obtain

Fix(S,1) = {a, 8},

Fix($1) = {a,B},
Fix($) = {a,B}.
Therefore we have
1) {o, 8} D F/i\X<S, T). Hence, (S, T) is elementary.

2) 155((51) ={a,p} = 1;5{(82). Hence, 5152 = S25; (see Theorem 2.6.2) that implies
SlT = TSl s i.e. SQ =1T.

Theorem 2.8.2 (Jorgensen inequality) Let 7, .S € PSLy(R) such that (7',.S) is a nonele-
mentary Fuchsian group. Then

ITv*(T) — 4| + |Te(TST'S™) — 2| > 1. (2.8.5)

Proof. We set Sy := S, and S, = S, TS ! for r > 0 as in Lemma 2.8.1. We will show
that if the inequality (2.8.5) is not valid, then S,, = T" for some n € N. By Lemma 2.8.1
this would imply that the group (S, 7T is elementary, a contradiction.

Case 1. Suppose that T' is parabolic.
Since the trace is invariant with respect to conjugation of matrices, we may assume

that ;
1 1 a
r=lo o) s=[0d)

Suppose that the inequality (2.8.5) is not valid. A straightforward calculation shows

that |c| < 1. Let
a, b,
e ]

From S,;1 = S, 0T o S we obtain

Ay br+l o Qg br,- ) 11 )
Cri1 dr+]_ N Cr dr 0 1

d, —br} B [1 — a,c, a?

—c,  a, - 1+ac,
By induktion we obtain ¢, = —c*". Since |¢| < 1, we have
¢ — 0.

The equality a,+1 =1 — a,¢, and |c| < 1 imply that
a1 <1+ Jare| <1+ a | <o < (r+1) + al.
Therefore |a,c.| < (r+ |al)|c.| < (r + |a|)|c[* — 0. It follows

ary1 =1—ayc, = 1.
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Thus, S,.; — T. Since (S,T) is discrete, there exists n such that S,, = T. Then by
Lemma 2.8.1, the group (S,T) is elementary. A contradiction.

Case 2. Suppose that T' is hyperbolic.
After an appropriate conjugation, we may assume that

oo ool

po=|Tr*(T) — 4| + | Te(TST1S7Y) — 2.

We define

Suppose that the inequality (2.8.5) is not valid. Then
112
p=(1+ |bc|)‘u - —‘ < L
u

In particular,
1

From S, = S, 0T o St follows

} _ a,d,u — brcr arbr<% — u)

Ary1 brga U
Cr+1 dr+1 1 ardr
cr dr u — a u - brcru

Then Iz
bri1Cr41 = —brcr (14 becy) (u — 5) .

Claim. We have |b,c,| < p"|bcl.
Proof. We proceed the inductive step (where we use p < 1):

T r 12 r 12 r+1
brsscean] < p'lbel - (L o fbel) - [u = = | < el - (1 fbel) - |u = =] = el

(I
This claim and g < 1 imply the following statements.

(1) br—l—lcr—l—l — 07

(2) a,d, =1+ byc, — 1,

1
(3) arp1 —uwand doyqp — —.
u

Then for all sufficiently large r we have |a_r| < ,u_% (recall that p < 1). This and (2.8.6)
u
imply
e ful 1 ju”| "]

Since 1 < 1, we deduce
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b

ju”|

(4)

(5) ler| - |u"] = 0.
Then

— 0. Analogously, we deduce

b2r
Aoy
T8, T" = ur | = T.
CQT’UQT d2r
Since (S, T) is discrete, TSy, T" = T for all sufficiently large r. Then Sy, = T for all
sufficiently large r. We get a contradiction as in Case 1.

Case 3. Suppose that T is elliptic.

By classification Lemma 2.1.2, the eigenvalues A, Ay of T satisfy A\, Ay € C\ R,
Al = A2, M Ag = 1. Hence, \; = €% for some ¢ € (0, 7)U(, 27). Thus, after an appropriate
conjugation in PSLy(C), we may assume that

. u O )
T—{O 1/u] (u=e€%0<p<m).

The remaining proof follows repeats that in Case 2. O
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