Problems for Tutorial 1

(Thursday, 18.11, at 10 a.m.)
For computation of integrals, you can use Google. Until Monday, you can solve Problems 1-2, after Monday you can solve Problems 3-4.

Problem 1. Prove Lemma 1.2.6 from the script:
(a) For any real r, there exists a transformation from $\mathrm{Möb}_{\mathbb{R}}$, which sends \mathbf{A}_{r} to \mathbf{A}_{0}.
(b) For any two different reals r_{1}, r_{2}, there exists a transformation from Möb $\mathbb{R}_{\mathbb{R}}$, which sends $\mathbf{C}_{r_{1}, r_{2}}$ to \mathbf{A}_{0}.

Problem 2.

(a) Compute the hyperbolic length of the Euclidean segment from $1+i$ to $3+3 i$.
(b) Compute the hyperbolic distance $\rho(1+i, 3+3 i)$ between the points $1+i$ and $3+3 i$.

Compare the numbers in (a) und (b) with the help of a calculator.

Problem 3.

(a) Let C be the Euclidean circle with the center $(3+2 i)$ and the radius 1. Compute the hyperbolic length of C.
(b) Let A be the hyperbolic circle in \mathbb{H} with the center $a+i b$ and the hyperbolic radius r. Let B be the Euclidean circle in \mathbb{H} with the center $a+i b \operatorname{ch}(r)$ and of Euclidean radius $b \sqrt{\operatorname{ch}^{2}(r)-1}$. Prove that $A=B$.
(c) Compute the hyperbolic radius and the hyperbolic center of the hyperbolic circle C.

Hint. Formula (2) from Theorem 1.3.8 in the script can be written in the following form:

$$
\operatorname{ch} \rho(a+i b, x+i y)=1+\frac{(x-a)^{2}+(y-b)^{2}}{2 b y} .
$$

Prove the above statement (b) with the help of this formula.
Problem 4. Let $A B C$ be the hyperbolic triangle, where $A=i, B=\sqrt{5} i, C=2+i$.
(a) Compute the hyperbolic angles of this triangle. For that you can use the function arctan.
(b) Compute the hyperbolic area of this triangle.

