Problems for Tutorial 3

(Thursday, 2.12, at 10 a.m.)

Problem 1.

- (1) Let G be a topological group. Let N be a normal subgroup of G.
 - (a) Prove that G/N is a topological group with respect to the quotient topology. ^[5 P.]
 - (b) Prove that the topology on G/N is Hausdorff if and only if N is closed in G. [5 P.]
- (2) Prove that $PSL_2(\mathbb{R})$ is a topological group with respect to the topology defined on the last lecture. [2 P.]

Problem 2. Consider

$$A = \begin{pmatrix} 5 & -3\\ \frac{9}{2} & -\frac{5}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1\\ -1 & 2 \end{pmatrix}.$$

For $X \in \{A, B\}$ define the type of the Möbius transformation T_X , compute $\widehat{\operatorname{Fix}}(T_X)$ and find all T_X -invariant geodesic lines in \mathbb{H} .

Problem 3.

- (a) Let $\varphi : \mathrm{SL}_2(\mathbb{R}) \to \mathrm{PSL}_2(\mathbb{R})$ be the canonical epimorphism. Prove that a subgroup H of $\mathrm{PSL}_2(\mathbb{R})$ is discrete if and only if its full preimage $\varphi^{-1}(H)$ is discrete in $\mathrm{SL}_2(\mathbb{R})$. ^[5 P.]
- (b) Prove that each Fuchsian group is countable.

Problem 4. Let r > 0. Consider the Möbius transformations

$$\begin{array}{ll} \theta_r: & z \to rz, \\ \psi: & z \mapsto -\frac{1}{z}. \end{array}$$

Prove that the subgroup $H_r := \langle \theta_r, \psi \rangle$ is discrete in $\text{M\"ob}_{\mathbb{R}}$.

Problem 5. Prove that each discrete subgroup G of \mathbb{R}^n is finitely generated¹.

Hint. We consider the vector subspace

$$U_G := \{ r_1 g_1 + \dots + r_s g_s \mid s \in \mathbb{N}, r_i \in \mathbb{R}, g_i \in G, i = 1, \dots, s \}.$$

Let $v_1, \ldots, v_m \in G$ be its \mathbb{R} -basis. (Why such a basis exists?) Consider the subgroup $H := \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_m$ of G. Prove that the group G/H is finite. Deduce from this that G is finitely generated.

Please read the second page.

[5 P.]

[5 P.]

¹From the classification of finitely generated abelian groups, it follows that $G \cong \mathbb{Z}^k$ for some $k \in \mathbb{N} \cup \{0\}$.

Definition. Let X be a topological space.

- (a) A subset $Y \subseteq X$ is called *dense* in X if for every $x \in X$ every neighborhood of x contains an element from Y.
- (b) The topological space X is called *separable* if X has a dense countable subset^a.
- (c) The topological space X is called *second countable* if there exists a countable set of open subsets U_1, U_2, \ldots so that for every $x \in X$ and every neighborhood U of x, there exists U_i with $x \in U_i \subseteq U$.

^{*a*}In particular, \mathbb{R} with respect to the usual topology is separable.

Problem 5. Prove that every separable metric space (X, d) is second countable as a topological space. [5 P.]

Problem 6. We define a topology on \mathbb{R} which differs from the classical one: The basis [5 P.] of this topology consists of all sets of the form [a, b) (a < b). Let $(\mathbb{R}, \mathcal{T})$ be the resulting topological space. Prove that

(a)	$(\mathbb{R}, \mathcal{T})$ is separable;	[2 P.]
(b)	$(\mathbb{R}, \mathcal{T})$ is not second countable;	[3 P.]
(b)	$(\mathbb{R}, \mathcal{T})$ is not metrizable.	[1 P.]