Problems for Tutorial 5

(Thursday, 16.12, at 10 a.m.)

Problem 1.

- (1) Let G_1 be a topological group, G_2 be a group and $\varphi : G_1 \to G_2$ an epimorphism. We consider G_2 as a topological group with respect to the quotient topology. Let H be a subgroup of G_2 . Prove the following statements.
 - (a) If $\varphi^{-1}(H)$ is discrete in G_1 , then H is discrete in G_2 . [4 P.]
 - (b) Suppose additionally that G_1 is Hausdorff and that ker(φ) is finite. If H is discrete in G_2 , then $\varphi^{-1}(H)$ is discrete in G_1 . [4 P.]
- (2) Deduce from this that a subgroup H of $PSL_2(\mathbb{R})$ is discrete if and only if its full preimage $\varphi^{-1}(H)$ is discrete in $SL_2(\mathbb{R})$.

Problem 2. Consider the set $\widehat{\mathbb{H}} = \mathbb{H} \cup \partial \mathbb{H}$, where $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$. Define a topology \mathcal{T} on $\widehat{\mathbb{H}}$ so that the following three properties are satisfied. [9 P.]

- (a) The usual topologies on \mathbb{H} and on \mathbb{R} are induced by the topology on $\widehat{\mathbb{H}}$.
- (b) The closure of \mathbb{H} in $\widehat{\mathbb{H}}$ is $\widehat{\mathbb{H}}$.
- (c) $(\widehat{\mathbb{H}}, \mathcal{T})$ is a compact topological space.

Problem 3. Recall that for any subset $S \subseteq \mathbb{H}$ we denote by $\mathbf{AP}_{\widehat{\mathbb{H}}}(S)$ the set of accumulation points of S in $\widehat{\mathbb{H}}$. Recall that the *limit set* of a subgroup $G \leq \mathrm{PSL}_2(\mathbb{R})$ is defined to be as

$$\Lambda(G) = \bigcup_{z \in \mathbb{H}} \mathbf{AP}_{\widehat{\mathbb{H}}}(G(z))$$

(a) Prove that for any point $z_0 \in \mathbb{H}$ we have

$$\Lambda(G) = \mathbf{AP}_{\widehat{\mathbb{H}}}(G(z_0)).$$

- (b) Prove that if G is a Fuchsian group, then $\Lambda(G)$ is closed. [4 P.]
- (c) Let $G = \text{PSL}_2(\mathbb{R})$. Prove that $\Lambda(G) = \mathbb{R} \cup \{\infty\}$. [4 P.]

[4 P.]