Norm eines Ideals und das Symbol $\left(\frac{\alpha}{P}\right)_{\mathfrak{m}}$

Sebastian Sura

23. Juli 2017

14.1 Die Norm eines Ideals

Sei K/\mathbb{Q} ein algebraischer Zahlenkörper und sei $D=\mathcal{O}_K$ sein Ganzzahlring. Wir werden in diesem Abschnitt wieder nur nicht-triviale Ideale betrachten.

Definition. Sei $A \subseteq D$ ein Ideal. Wir nennen

$$N_A := N(A) := |D/A| \in \mathbb{N}$$

die Norm des Ideals A.

Satz 14.1.1. Sind A, B \leq D zwei Ideale, so gilt N(AB) = N(A)N(B).

Beweis. Sind A, B koprim, d.h. D = A + B, so gilt $AB = A \cap B$; insbesondere folgt aus 12.3.1

$$D/(AB) \cong D/A \oplus D/B$$

und somit N(AB) = N(A)N(B). Ist $A = P_1^{e_1} \dots P_r^{e_r}$ die Primidealzerlegung von A (vgl. 12.2.8), so gilt also

$$N(A) = \prod_{i=1}^{r} N(P_i^{e_i}),$$

da die Ideale $P_1^{e_1},\dots,P_r^{e_r}$ paarweise koprim sind. Nach Proposition 12.3.2 gilt weiter

$$N(P_i^{e_i}) = N(P_i)^{e_i}, i \in \{1, ..., r\}.$$

Wir erhalten also

$$N\left(\prod_{i=1}^{r} P_{i}^{e_{i}}\right) = \prod_{i=1}^{r} N(P_{i})^{e_{i}},$$

insbesondere also N(AB) = N(A)N(B).

Satz 14.1.2. Angenommen K/\mathbb{Q} sei eine Galois-Erweiterung mit Galoisgruppe $G = \operatorname{Gal}(K/\mathbb{Q})$. Dann gilt für jedes Ideal $A \leq D$ schon

$$\prod_{\sigma \in G} A^{\sigma} = \langle N(A) \rangle.$$

Beweis. Da beide Seiten multiplikativ in A sind, reicht es den Fall zu betrachten, dass P=A ein Primideal ist. Seien P_1,\ldots,P_g die paarweise verschiedenen Primideale in $\{P^\sigma\mid\sigma\in G\}$. Das "Orbit-Stabilizer-Theorem" liefert dann

$$|G| = g|G(P)|$$
,

wobei $G(P)=\{\sigma\in G\mid P^\sigma=P\}\leq G$ der Stabilisator von P in G ist. Aus $P\cap\mathbb{Z}\neq 0,$ folgt

$$0 \neq P_1 \cap \mathbb{Z} = \ldots = P_g \cap \mathbb{Z} = \mathfrak{p}\mathbb{Z}$$

für eine Primzahl $\mathfrak{p}\in\mathbb{N}$. In Kapitel 12 §3 haben wir gesehen, dass $e,f\in\mathbb{N}$ existieren dergestalt, dass

$$pD = P_1^e \cdots P_g^e$$
, $N(P) = |D/P_1| = \ldots = |D/P_g| = p^f$

und

$$n = [K : \mathbb{Q}] = |G| = efg.$$

Somit gilt |G(P)| = ef und mit Hilfe von Kapitel 12, Theorem 3' und Proposition 12.3.3 erhalten wir

$$\prod_{\sigma \in G} P^{\sigma} = (P_1 \dots P_n)^{ef} = (pD)^f = (p^f)D.$$

Satz 14.1.3. Sei K/\mathbb{Q} eine Galois-Erweiterung mit Galois-Gruppe $G = \operatorname{Gal}(K/\mathbb{Q})$. Sei $\alpha \in D$ beliebig und sei $A = \alpha D$ das von α erzeugte Hauptideal. Dann gilt

$$N(A) = |N(\alpha)|$$
.

Beweis. Wie gerade gesehen gilt

$$N(A)D = \prod_{\sigma \in G} A^{\sigma} = \prod_{\sigma \in G} (\alpha D)^{\sigma} = \prod_{\sigma \in G} (\alpha^{\sigma})D = \left(\prod_{\sigma \in G} \alpha^{\sigma}\right)D.$$

In Kapitel 12 §1 haben wir bemerkt, dass $\prod_{\sigma \in G} \alpha^{\sigma} = N(\alpha)$, d.h. es gilt

$$N(A)D = N(\alpha)D$$
.

Wir haben also zwei ganze Zahlen $N(A), N(\alpha) \in \mathbb{Z}$ die sich nur durch eine Einheit (aus D) unterscheiden, also

$$|N(A)| = |N(\alpha)|$$
.

Da N(A) definitionsgemäß stets positiv ist, gilt also $N(A) = |N(A)| = |N(\alpha)|$.

Bemerkung 14.1.4. Die Tatsache, dass $N(A) = |N(\alpha)|$ gilt auch ohne die Vorraussetzung, dass K/\mathbb{Q} Galois ist. Der Beweis ist aber um einiges schwerer.

14.2 Das Symbol $\left(\frac{\alpha}{p}\right)_{m}$

Für $m \in \mathbb{N}$ sei D_m der Ganzheitsring von $\mathbb{Q}(\zeta_m)$. Sei $P \unlhd_{\mathrm{prim}} D_m$ ein Primideal, welches m nicht enthält und sei $q = N(P) = |D_m/P|$ seine Norm. Aus Proposition 14.2.3 folgt, dass die Nebenklassen $1 + P, \zeta_m + P, \ldots, \zeta_m^{m-1} + P$ paarweise verschieden sind und dass $q \equiv_m 1$ gilt, d.h. $q-1 \in mD$.

Satz 14.2.1. Sei $\alpha \in D_m \setminus P$ beliebig. Dann existiert genau eine Nebenklasse $\mathfrak{i} + m\mathbb{Z} \in \mathbb{Z}/m\mathbb{Z}$, so dass

$$\alpha^{(q-1)/m} \equiv_P \zeta_m^i$$
.

Beweis. Die multiplikative Gruppe von $F=D_{\mathfrak{m}}/P\cong \mathbb{F}_q$ ist zyklisch von Ordnung q-1. Nach dem Satz von Lagrange gilt somit für alle $\alpha\in D_{\mathfrak{m}}\smallsetminus P$ schon

$$\alpha^{q-1} \equiv_P 1$$
.

 $\alpha^{(q-1)/\mathfrak{m}} + P \in F$ ist also eine Nullstelle von

$$X^{\mathfrak{m}} - 1 = \prod_{i=0}^{\mathfrak{m}-1} (X - \zeta_{\mathfrak{m}}^{i}) \in D_{\mathfrak{m}}[X]$$

über F, d.h. $\alpha^{(q-1)/m} - \zeta_m^i \equiv_P 0$ für ein $0 \le i < m$. Da die Nebenklassen der ζ_m^j , $0 \le j < m$, verschieden sind, ist $i + m\mathbb{Z}$ eindeutig.

Definition. Sei $\alpha \in D_m$ eine beliebige, algebraische Ganzzahl. Sei weiter $P \leq_{\text{prim}} D_m$ ein beliebiges Primideal, welches nicht m enthält. Dann schreiben wir:

$$\left(\frac{\alpha}{P}\right)_{\mathfrak{m}} = \begin{cases} 0 & \alpha \in P \\ \zeta & \alpha \not \in P \end{cases},$$

wobei $\zeta \in \mathsf{D}_{\mathfrak{m}}$ die eindeutige $\mathfrak{m}\text{-te}$ Einheitswurzel mit

$$\alpha^{(q-1)/m} \equiv_P \zeta$$

ist.

Satz 14.2.2. Seien $\alpha, \beta \in D_{\mathfrak{m}}$ und sei P ein Primideal, welches nicht \mathfrak{m} enthält. Sei weiter q = N(P).

- (a) Es gilt $\alpha^{(q-1)/m} \equiv_P \left(\frac{\alpha}{P}\right)_m$.
- (b) Es gilt $\left(\frac{\alpha\beta}{P}\right)_{m} = \left(\frac{\alpha}{P}\right)_{m} \left(\frac{\beta}{P}\right)_{m}$.
- (c) Ist $\alpha \equiv_P \beta$, so gilt $\left(\frac{\alpha}{P}\right)_m = \left(\frac{\beta}{P}\right)_m$.
- (d) $x^m \equiv_P \alpha$ ist genau dann lösbar, wenn $\left(\frac{\alpha}{P}\right)_m = 1$.

Beweis. (a), (b) und (c) sind klar. Zu (d):

Ist $\alpha \in P$, so sind beide Aussagen stets falsch. Sei also $\alpha \notin P$. Ist $\beta \in D_m$ mit $\beta^m \equiv_P \alpha$, so folgt aus (b) und (c) bereits

$$\left(\frac{\alpha}{P}\right)_{\mathfrak{m}}\stackrel{\text{(c)}}{=}\left(\frac{\beta^{\mathfrak{m}}}{P}\right)_{\mathfrak{m}}\stackrel{\text{(b)}}{=}\left(\frac{\beta}{P}\right)_{\mathfrak{m}}^{\mathfrak{m}}=1,$$

da $\left(\frac{\beta}{P}\right)_{\mathfrak{m}}$ eine m-te Einheitswurzel ist. Sei nun also umgekehrt $\left(\frac{\alpha}{P}\right)_{\mathfrak{m}}=1$. Dann gilt schonmal $\alpha+P\neq 0+P\in D_{\mathfrak{m}}/P\cong \mathbb{F}_q$, also

$$\alpha \equiv_{\mathsf{P}} \gamma^k$$

für ein $k \in \mathbb{N}$, wobei $\gamma \in D_{\mathfrak{m}}$ modulo P ein zyklischer Erzeuger von $\Gamma = (D_{\mathfrak{m}}/P)^*$ ist. Es reicht nun zu zeigen, dass k von \mathfrak{m} geteilt wird. Aus (a) folgt

$$\alpha^{(q-1)/m} \equiv_P \left(\frac{\alpha}{P}\right)_m = 1,$$

also $\gamma^{k(q-1)/m} \equiv_P 1$. Da γ in Γ die Ordnung q-1 hat, folgt daraus

$$q - 1 | k(q - 1)/m$$

und somit $k/m \in \mathbb{Z}$, was $m \mid k$ zur Folge hat.

Korollar. Ist $m \notin P$ ein Primideal und q = N(P), so gilt

$$\left(\frac{\zeta_{\mathfrak{m}}}{P}\right)_{\mathfrak{m}} = \zeta_{\mathfrak{m}}^{(q-1)/\mathfrak{m}}.$$

Beweis. Aus 14.2.2 (a) folgt diese Gleichung modulo P. Da die Nebenklassen verschiedener m-ter Einheitswurzeln verschieden sind, gilt hier sogar Gleichheit.

Definition. Sei $A \subseteq D_{\mathfrak{m}}$ ein Ideal, welches zu \mathfrak{m} koprim ist, d.h. $D_{\mathfrak{m}} = A + \mathfrak{m}D_{\mathfrak{m}}$. Sei $A = P_1 \cdots P_n$ die Primidealzerlegung von A. Für $\alpha \in D_{\mathfrak{m}}$ definieren wir dann

$$\left(\frac{\alpha}{A}\right)_{m} = \prod_{i=1}^{n} \left(\frac{\alpha}{P_{i}}\right)_{m}.$$

Ist $\beta \in D_m$ teilerfrem zu m, so definieren wir

$$\left(\frac{\alpha}{\beta}\right)_{\mathfrak{m}} = \left(\frac{\alpha}{\beta D_{\mathfrak{m}}}\right)_{\mathfrak{m}}.$$

Bemerkung. Da A zu m koprim ist, gilt auch $m \notin P_i$ für alle $1 \le i \le m$. Somit ist dies wohldefiniert.

Satz 14.2.3. Seien $A, B \subseteq D_m$ zwei Ideale, die koprim zu m sind und $\alpha, \beta \in D_m$. Dann gelten:

- (a) $\left(\frac{\alpha\beta}{A}\right)_{\mathfrak{m}} = \left(\frac{\alpha}{A}\right)_{\mathfrak{m}} \left(\frac{\beta}{A}\right)_{\mathfrak{m}}$
- (b) $\left(\frac{\alpha}{AB}\right)_{m} = \left(\frac{\alpha}{A}\right)_{m} \left(\frac{\alpha}{B}\right)_{m}$ und
- (c) Ist A koprim zu α und $X^{\mathfrak{m}} \equiv_{A} \alpha$ lösbar in $D_{\mathfrak{m}}$, so gilt $\left(\frac{\alpha}{A}\right)_{\mathfrak{m}} = 1$. Die Umkehrung gilt im Allgemeinen nicht.

Beweis. (a) Die Gleichung ist multiplikativ in A. Wir müssen also nur noch den Fall betrachten, dass A prim ist. Dies wurde gerade in Proposition 14.2.2 (b) gezeigt.

- (b) Dies folgt sofort aus der Definition.
- (c) Sei $A=P_1\dots P_n$ die Primidealzerlegung von A. Wegen $A\subseteq P_i$ und $\alpha\not\in P_i$ für alle $1\le i\le n$, ist also auch $X^m\equiv_P\alpha$ in D_m lösbar, d.h. $\left(\frac{\alpha}{P_i}\right)_m=1$ für alle $0\le i\le n$. Somit gilt

$$\left(\frac{\alpha}{A}\right)_{\mathfrak{m}} = \prod_{i=1}^{\mathfrak{n}} \left(\frac{\alpha}{P_i}\right)_{\mathfrak{m}} = 1.$$

Wir wollen nun untersuchen wie sich $\left(\frac{\alpha}{A}\right)_m$ unter der kanonischen Operation der Galois-Gruppe $G=\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ verhält.

Satz 14.2.4. Sei $A \subseteq D_{\mathfrak{m}}$ ein Ideal, welches koprim zu \mathfrak{m} ist und sei $\sigma \in G$. Dann gilt

$$\left(\frac{\alpha}{A}\right)_{m}^{\sigma} = \left(\frac{\alpha^{\sigma}}{A^{\sigma}}\right)_{m}.$$

Beweis. Da beide Seiten dieser Gleichung multiplikativ in A sind, dürfen wir ohne Einschränkung annehmen, dass P=A ein Primideal ist. Sei q=N(P). Per Definition gilt

$$\alpha^{(q-1)/m} \equiv_P \left(\frac{\alpha}{P}\right)_m$$
.

Somit gilt also

$$\left(\frac{\alpha^{\sigma}}{P^{\sigma}}\right)_{\mathfrak{m}} \equiv_{P^{\sigma}} (\alpha^{\sigma})^{(q-1)/\mathfrak{m}} \equiv_{P^{\sigma}} \left(\frac{\alpha}{P}\right)_{\mathfrak{m}}^{\sigma}.$$

Wegen $q = N(P) = N(P^{\sigma})$ folgt aus der Eindeutigkeit schon

$$\left(\frac{\alpha}{P}\right)_{m}^{\sigma} = \left(\frac{\alpha^{\sigma}}{P^{\sigma}}\right)_{m},$$

da $\left(\frac{\alpha}{P}\right)_{\mathfrak{m}}^{\sigma}$, $\left(\frac{\alpha^{\sigma}}{P^{\sigma}}\right)_{\mathfrak{m}}$ beide m-te Einheitswurzeln sind.

Wir wollen abschließend noch das Eisensteinsche Reziprozitätsgesetz benennen. Dazu benötigen wir zuerst einmal einige wichtige Definitionen. Sei dazu $l \in \mathbb{Z}$ eine ungerade Primzahl. In Prop. 13.2.7 wird gezeigt, dass

$$lD_1 = (1 - \zeta_1)^{l-1}D_1$$

und dass $(1 - \zeta_1)D_1$ ein Primideal des Grades 1 ist.

Definition. Ein $0 \neq \alpha \in D_m$ wird *primär* genannt, falls es keine Einheit ist, teilerfremd zu l ist und kongruent zu einer ganzen Zahl modulo $(1 - \zeta_l)^2$ ist.

Lemma. Sei $\alpha \in D_1$ eine zu l teilerfremde Ganzzahl. Dann existiert ein $c \in \mathbb{Z}$, welches eindeutig modulo l ist, so dass $\zeta_l^c \alpha$ primär ist.

Beweis. Sei $\lambda=1-\zeta_l$. Wir sahen bereits, dass das Primideal λD_l den Grad 1 hat, d.h. es gilt

$$D_l/\lambda D_l \cong \mathbb{F}_l$$
.

Insbesondere existieren also für alle $\omega \in D_1$ schon ein $w \in \mathbb{Z}$ mit $\omega \equiv_{\lambda} w$. Somit existiert also ein $a \in \mathbb{Z}$ mit

$$\alpha \equiv_{\lambda} \alpha$$
.

Da also $(\alpha - \alpha)/\lambda \in D_1$ ganz ist, existiert ein $b \in \mathbb{Z}$, sodass

$$(\alpha - \alpha)/\lambda \equiv_{\lambda} b$$
.

Insbesondere gilt also $\alpha \equiv_{\lambda^2} \alpha + b\lambda$. Aus $\zeta_1 = 1 - \lambda$ folgt weiter

$$\zeta_1^c \equiv_{\lambda^2} 1 - c\lambda.$$

Somit gilt

$$\zeta_{l}^{c}\alpha \equiv_{\lambda^{2}} \alpha + (b - ac)\lambda.$$

Da $\lambda^{l-1} \sim l$ gilt, gilt also auch $\alpha \equiv_{\lambda} \alpha \not\equiv_{\lambda} 0$ und α ist wie α koprim zu l. Sei daher $c \in \mathbb{Z}$ die Lösung der Gleichung $\alpha x \equiv_{l} b$. Dann ist

$$\zeta_l^c\alpha\equiv_{\lambda^2}\alpha$$

und $\zeta^c_1\alpha$ ist primär. Sei nun $\tilde{c}\in\mathbb{Z}$ eine weitere solche Lösung, d.h.

$$b - a\tilde{c} \equiv_{\lambda} 0 \equiv_{\lambda} b - ac$$
.

Da $\mathfrak a$ teilerfremd zu λ ist, gilt $\mathfrak c \equiv_{\lambda} \tilde{\mathfrak c}$, d.h. $\lambda \mid \mathfrak c - \tilde{\mathfrak c}$. Somit gilt $\mathfrak c - \tilde{\mathfrak c} \in \lambda D \cap \mathbb Z = \mathfrak l \mathbb Z$, d.h. $\mathfrak c \equiv_{\mathfrak l} \tilde{\mathfrak c}$.

Theorem 1 (Das Repiprozitätsgesetz von Eisenstein). Seien $l \in \mathbb{Z}$ eine ungerade Primzahl, $a \in \mathbb{Z}$ teilerfremd zu l und $\alpha \in D_l$ primär. Angenommen α und a seien koprim, dann gilt

 $\left(\frac{\alpha}{a}\right)_{l} = \left(\frac{a}{\alpha}\right)_{l}$

Beweis. Dies wird im fünften Abschnitt mit Hilfe der Stickelberger Relationen bewiesen. $\hfill\Box$