Mathematisches Institut Prof. Dr. R. Braun

Düsseldorf, den 9. Oktober 2012

(1) (10P) Für zwei Mengen A und B bezeichne $A \triangle B = (A \setminus B) \cup (B \setminus A)$ ihre symmetrische Differenz. Es sei X eine Menge und es sei \mathcal{R} eine Teilmenge von $\mathcal{P}(X)$. Zeigen Sie:

 \mathcal{R} ist genau dann ein Ring von Teilmengen von X, wenn gilt:

- (a) $\emptyset \in \mathcal{R}$.
- (b) Sind $A, B \in \mathcal{R}$, so ist $A \cap B \in \mathcal{R}$.
- (c) Sind $A, B \in \mathcal{R}$, so ist $A \triangle B \in \mathcal{R}$.
- (2) (10P) Sei X eine Menge und sei $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ der Körper mit zwei Elementen. Dann ist $\mathrm{Abb}(X,\mathbb{F}_2) = \{f \colon X \to \mathbb{F}_2 \mid f \text{ Abbildung}\}$, versehen mit der punktweisen Addition und Multiplikation, ein Ring. (Das brauchen Sie nicht zu zeigen.) Sei nun $\mathcal{R} \subset \mathcal{P}(X)$ ein Ring von Teilmengen von X. Zeigen Sie, dass \mathcal{R} isomorph zu einem Unterring von $\mathrm{Abb}(X,\mathbb{F}_2)$ ist.

Hinweis: Die dem Element $A \in \mathcal{R}$ zugeordnete Abbildung ist $\chi_A \in \text{Abb}(X, \mathbb{F}_2)$, wobei

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

Anschließend ist die Frage zu klären, welche der vier zur Verfügung stehenden Operationen \cup , \cap , \setminus und \triangle die Rollen von Addition und Multiplikation übernehmen.

Abgabe: Di, 16.10.2012, 10:20 Besprechung: eine Woche später in den Übungen