Mathematik für Biologen

Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net

Heinrich-Heine-Universität Düsseldorf

10. Januar 2014

Gesetz der seltenen Ereignisse und Gesetz der großen Zahl

- 1) Gesetz der seltenen Ereignisse und Gesetz der großen Zahl
 - Das Gesetz der seltenen Ereignisse
 - Das schwache Gesetz der großen Zahl

Poissonverteilung

Es sei $\lambda > 0$. Die Poissonverteilung zum Parameter λ ist definiert durch

$$P_{\lambda}(k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$

Unter den folgenden Voraussetzungen ist eine Zufallsvariable X poissonverteilt zum Parameter λ :

- X zählt das Auftreten eines Ereignisses pro Zähleinheit
- Im Mittel treten λ Ereignisse pro Zähleinheit auf
- Die Ereignisse beeinflussen sich nicht gegenseitig

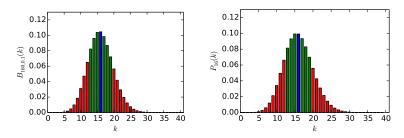
Beispiel Tumor

- Ein Tumor aus 160 Zellen wird bestrahlt
- Im Mittel stirbt jede Minute ein Zehntel aller Tumorzellen
- Mit welcher Wahrscheinlichkeit sterben 10 Zellen in der ersten Minute?
- Zwei Modelle sind angemessen
 - Binomialverteilung
 - Poissonverteilung

Beispiel Tumor: Rechnung mit Binomialverteilung

- Modell: 160 unabhängige ja/nein-Experimente
 Erfolg: Tod der Tumorzelle
- ullet Erfolgswahrscheinlichkeit im Einzelfall p=0.1
- ullet Anzahl der Erfolge verteilt gemäß $B_{160,\,0.1}$
- Antwort:

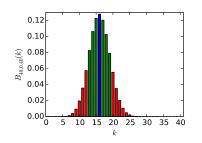
$$B_{160,0.1}(10) = {160 \choose 10} \cdot 0.1^{10} \cdot 0.9^{150} = 0.03113$$

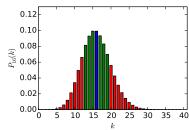

Beispiel Tumor: Rechnung mit Poissonverteilung

- Modell: seltenes Ereignis, das im Mittel 16 mal pro Minute auftritt
- Was ist hier selten?
- Für die einzelne Zelle sind Treffer selten
- Parameter der Poissonverteilung ist $\lambda = 16$
- ullet Anzahl der Ereignisse pro Zähleinheit ist verteilt gemäß P_{16}
- Antwort

$$P_{16}(10) = \frac{16^{10}}{10!}e^{-16} = 0.03410$$

• Zum Vergleich $B_{160,0.1}(10) = 0.03113$


Vergleich Binomial- und Poissonverteilung



Beide beschreiben einen Prozess mit 16 Erfolgen im Mittel. Der Unterschied ist, dass beim Poissonprozess die Anzahl der Erfolge potenziell unbeschränkt ist.

Vergleich Binomial- und Poissonverteilung, Fortsetzung

 $B_{40,0.4}$ und P_{16} besitzen ebenfalls beide den Erwartungswert 16

Gesetz der seltenen Ereignisse

Die Poisson-Verteilung P_{λ} mit $\lambda = n \cdot p$ ist eine sehr gute Annäherung an die Binomialverteilung $B_{n,p}$, falls $n \geq 100$ und $n \cdot p \leq 10$.

Im Beispiel waren

- n = 160
- p = 0.1

Die Annäherung ist daher nur gut, nicht sehr gut

Messwiederholungen

- Warum erhöhen mehrere Messungen die Genauigkeit?
- Warum braucht man 100-mal so viele Messungen, um die Genauigkeit zu verzehnfachen?

Rechenregeln für den Erwartungswert

- Für jede Zahl c und jede Zufallsvariable X ist $E(c \cdot X) = c \cdot E(X)$
- Für Zufallsvariablen $X_1, ..., X_n$ ist $E(X_1 + \cdots + X_n) = E(X_1) + \cdots + E(X_n)$
- X und Y unabhängige Zufallsvariable. Dann

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

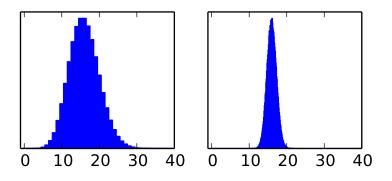
Rechenregeln für die Varianz

- Für jede Zahl a und jede Zufallsvariable X gilt Var(a + X) = Var(X)
- Für Zahl c und jede Zufallsvariable X gilt $Var(c \cdot X) = c^2 \cdot Var(X)$
- X und Y unabhängige Zufallsvariable. Dann

$$Var(X + Y) = Var(X) + Var(Y)$$

Zwei unabhängige, identisch verteilte Zufallsvariable

- X_1 und X_2 seien unabhängige Zufallsvariable, die derselben Verteilung gehorchen (also z. B. Messwiederholungen). Sei $Y=\frac{1}{2}(X_1+X_2)$ der Durchschnittswert
- Der Erwartungswert von X_1 heiße μ , also $E(X_1)=E(X_2)=\mu$
- Die Streuung von X_1 heiße σ , also $Var(X_1) = Var(X_2) = \sigma^2$
- $E(Y) = \frac{1}{2}(E(X_1) + E(X_2)) = \mu$
- $Var(Y) = \left(\frac{1}{2}\right)^2 Var(X_1) + \left(\frac{1}{2}\right)^2 Var(X_2) = \frac{1}{4}\sigma^2 + \frac{1}{4}\sigma^2 = \frac{1}{2}\sigma^2$
- Also ist $\frac{\sigma}{\sqrt{2}}$ die Streuung von Y


Das schwache Gesetz der großen Zahl

- "Mit ausreichend vielen Messwiederholungen lässt sich jede Genauigkeit erreichen"
- Präziser: X_1, \ldots, X_n unabhängig, alle mit derselben Verteilung
- $\mu = E(X_1) = \cdots = E(X_n)$ und $\sigma^2 = Var(X_1) = \cdots = Var(X_n)$
- $Y = \frac{1}{n}(X_1 + \dots + X_n)$
- Y ist das arithmetische Mittel der X_1, X_2, \ldots, X_n
- Dann $E(Y) = \mu$ und die Streuung von Y beträgt

$$\sigma_Y = \frac{\sigma}{\sqrt{n}}$$

 Das bedeutet: Um die Streuung zu zehnteln, müssen 100 mal so viele Versuche durchgeführt werden

Messwiederholungen: Beispiel

Links: Poissonverteilung P₁₆, Streuung ist 4

Rechts: Durchschnittswerte aus zehn P_{16} -verteilten Zufallsvariablen, Streuung ist $\frac{4}{\sqrt{10}}=1.26$

Versuchsplanung: α -Strahler

- Der Einschlag von α -Teilchen wird mit der Poisson-Verteilung P_{λ} modelliert, wobei λ die Zahl der Einschläge pro Sekunde ist
- ullet λ soll bis auf einen Fehler (Streuung) von 0.25 bestimmt werden
- Wie viele Einzelversuche von einer Sekunde Dauer sind erforderlich?
- Dazu müssen wir aus einem Pilotversuch einen Anhaltspunkt für λ kennen. Der Pilotversuch habe $\lambda\cong 25$ ergeben
- $Var(P_{\lambda}) = \lambda$. Also hat jeder Einzelversuch die Streuung $\sqrt{25} = 5.0$
- Löse Gleichung

$$\frac{5.0}{\sqrt{n}}=0.25$$

• Also $\sqrt{n} = 20 \text{ und } n = 400$

Teil III

Schließende Statistik

Allgemeine Hypothesentests

- 2 Allgemeine Hypothesentests
 - Nullhypothese und Alternative
 - Beispiel *L*-Bakterien
 - Signifikanztests

Beispiel L-Bakterien

- Ein Bakterium kommt in ungestörtem Boden zu 75% in der L-Variante und zu 25% in der R-Variante vor
- Es soll getestet wrden, ob ein bestimmtes Pestizid L-Bakterien mehr schädigt als R-Bakterien
- Dazu wird ein Experiment gemacht, statistisch bewertet und schließlich eine Antwort auf die Frage gegeben:

Schädigt das Pestizid L-Bakterien mehr als R-Bakterien?

Beispiel L-Bakterien

- Generell sind vier Ausgänge des Experiments möglich
 - Das Pestizid schädigt L-Bakterien nicht mehr als R-Bakterien und das Experiment beantwortet die Frage mit nein Korrekte Antwort
 - Das Pestizid schädigt L-Bakterien nicht mehr als R-Bakterien und das Experiment beantwortet die Frage mit ja Falsche Antwort
 - Das Pestizid schädigt L-Bakterien nicht mehr als R-Bakterien und das Experiment beantwortet die Frage mit nein Falsche Antwort
 - Das Pestizid schädigt L-Bakterien nicht mehr als R-Bakterien und das Experiment beantwortet die Frage mit ja Korrekte Antwort
- Durch die Auswahl der Stichprobe kommt Zufall ins Spiel.
 Falsche Antworten sind unvermeidbar.
- Ziel der Statistik ist es, Schranken für die Wahrscheinlichkeit falscher Antworten zu geben

Nullhypothese und Alternativhypothese

- Nullhypothese H₀: Das ist diejenige Hypothese, deren fälschliche Ablehnung man nach Möglichkeit vermeiden will Häufig ist die Nullhypothese die Aussage, dass kein Einfluss vorliegt
- Alternativhypothese H₁: Das ist die Alternative zur Nullhypothese

Nullhypothese und Alternativhypothese, Fortsetzung

- Wissenschaft ist konservativ. Wer mit einer neuen Idee kommt, muss zeigen, dass sie besser ist als die alte
- Daher ist die Nullhypothese in der Regel die Annahme, dass die bestehende Theorie so gut ist wie die Neuerungen bzw. dass der untersuchte Stoff ohne Einfluss ist
- Neutralitätshypothese in der Genetik: Die Nullhypothese besagt, dass die untersuchte Variation der Gensequenz folgenlos ist.

Fehler erster und zweiter Art

- Der Fehler 1. Art ist die fälschliche Ablehnung der Nullhypothese.
- Der Fehler 2. Art ist die fälschliche Annahme der Nullhypothese

Die Priorität liegt auf der Vermeidung des Fehlers 1. Art. Diese Asymmetrie ist ein entscheidendes Merkmal der Testtheorie.

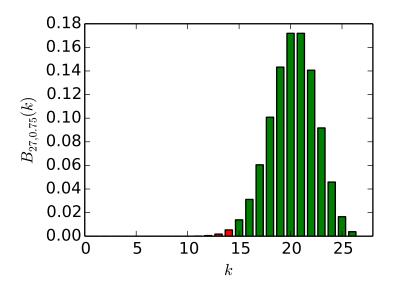
Beispiel L-Bakterien

- Ein Bakterium kommt in ungestörtem Boden zu 75% in der L-Variante und zu 25% in der R-Variante vor
- Pilotversuche deuten an, dass ein bestimmtes Pestizid
 L-Bakterien mehr schädigt als R-Bakterien
- Hypothesen:

Nullhypthese H_0 : "Das Pestizid schädigt L-Bakterien nicht mehr als R-Bakterien"

Alternative H_1 : "Das Pestizid schädigt L-Bakterien mehr als R-Bakterien"

- Experiment: 27 Bakterien zufällig ausgewählt, davon 14 Lund 13 R-Bakterien
- Aus früherer Rechnung wissen wir, dass dieses Ergebnis unter der Nullhypthese sehr unwahrscheinlich ist
- Die Nullhypothese wird abgelehnt


L-Bakterien: Fortsetzung

- Welche Fehlerwahrscheinlichkeit haben wir?
- Wir haben H_0 abgelehnt, es kann sich also höchstens um einen Fehler erster Art handeln
- Seine Wahrscheinlichkeit haben wir bereits ausgerechnet: Es ist die Wahrscheinlichkeit, in einem ja/nein-Experiment mit Erfolgswahrscheinlichkeit p=0.75 für den Einzelfall in einer Stichprobe vom Umfang n=27 höchstens 14 Erfolge zu haben
- In Formeln: Die Wahrscheinlichkeit eines Fehlers erster Art beträgt für dieses Ergebnis

$$\sum_{k=0}^{14} B_{27,0.75}(k) = 0.007778$$

 Unsere Antwort hat also eine Fehlerwahrscheinlichkeit von 0.8%

L-Bakterien: Fortsetzung

Testverfahren: Fehler erster und zweiter Art

- Ein *Test* besteht aus einer Vorschrift, die zu jedem möglichen Versuchsausgang festlegt, ob die Nullhypothese H_0 angenommen oder abgelehnt wird.
- Dabei kann es zu zwei verschiedenen Fehlentscheidungen kommen:

	H_0 wird angenommen	H_0 wird abgelehnt
H ₀ trifft zu	richtige Entscheidung	Fehler 1. Art
H_1 trifft zu	Fehler 2. Art	richtige Entscheidung

Signifikanztests

- Für den Fall, dass H₀ zutrifft, bezeichnet man die Wahrscheinlichkeit, dass H₀ trotzdem abgelehnt wird, als Fehlerwahrscheinlichkeit erster Art
- Ein Test heißt Signifikanztest zum Niveau α , wenn alle Fehlerwahrscheinlichkeiten erster Art $\leq \alpha$ sind
- Das übliche Niveau ist 0.05
- Für den Fall, dass H₀ nicht zutrifft, bezeichnet man die Wahrscheinlichkeit, dass H₀ trotzdem nicht abgelehnt wird, als Fehlerwahrscheinlichkeit zweiter Art

Test für die L-Bakterien

- Wir konstruieren einen Test zum Signifikanzniveau $\alpha=0.05$
- Wären 15 oder gar 16 L-Bakterien immer noch Grund gewesen, H₀ abzulehnen?
- Die Tabelle zeigt, dass 15 L-Bakterien immer noch ein Grund zur Ablehnung sind, 16 aber nicht

Daher lautet die Testvorschrift

- Bei 15 oder weniger L-Bakterien wird H_0 abgelehnt
- bei 16 oder mehr L-Bakterien wird H₀ beibehalten

Tabelle der Werte $\sum_{k=0}^{r} B_{n,p}(k)$ für n=27

r	р	0.75	0.76	0.77	0.78	0.79
9	0.	00001				
10 11 12 13 14		00003 00016 00067 00245 00778	00002 00010 00042 00161 00538	00001 00006 00026 00103 00364	00001 00003 00015 00065 00240	00002 00009 00039 00153
15 16 17 18 19		02162 05278 11325 21405 35729	01573 04031 09067 17927 31217	01119 03016 07126 14769 26889	00777 02208 05488 11951 22804	00526 01577 04136 09483 19012
20 21 22 23 24 25 26		52917 70105 84168 93340 97926 99577 99958	48050 65819 81165 91729 97305 99423 99939	43120 61232 77770 89806 96521 99219 99914	38195 56385 73973 87530 95540 98948 99878	33350 51330 69777 84864 94322 98592 99828

Fehlerwahrscheinlichkeit zweiter Art im Beispiel

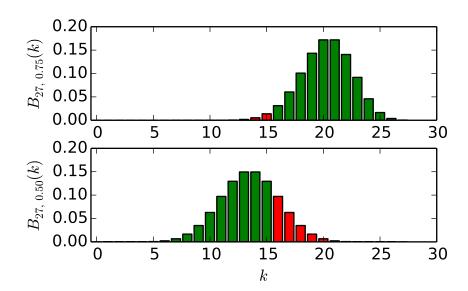
- Wie groß ist die Fehlerwahrscheinlichkeit zweiter Art?
- Das ist keine gute Frage
- Wenn das Pestizid die Wahrscheinlichkeit von L-Bakterien von 75% auf 74.999% senkt, dann ist das sehr schwer nachzuweisen
- Sinnvoll ist folgende Frage

Angenommen, das Pestizid senkt die Wahrscheinlichkeit von L-Bakterien auf 50%, mit welcher Wahrscheinlichkeit wird unser Test diesen Rückgang entdecken?

- Wenn q die Fehlerwahrscheinlichkeit zweiter Art ist, dann bezeichnet man 1-q als *Power* des Tests
- Die Power hängt also davon ab, welche Annahme man über den Abstand zwischen Nullhypothese und Alternative macht

Fehlerwahrscheinlichkeit zweiter Art: Fortsetzung

- Bei 16 oder mehr L-Bakterien wird H₀ nicht abgelehnt
- Wie wahrscheinlich ist dieses Ergebnis, wenn tatsächlich nur 50% aller Bakterien L-Bakterien sind?
- Gesucht


$$\sum_{k=16}^{27} B_{27,0.5}(k) = 1 - \sum_{k=0}^{15} B_{27,0.5}(k) = 1 - 0.77897 = 0.22103$$

 Unter der Annahme beträgt die Fehlerwahrscheinlichkeit zweiter Art 22%

Tabelle der Werte $\sum_{k=0}^{r} B_{n,p}(k)$ für n=27

r	p	0.50	0.51	0.52	0.53	0.54
3	0.	00002 00016	00002 00010	00001 00007	00001 00005	00003
5		00076	00053	00037	00025	00017
6		00296	00216	00155	00111	00078
7		00958	00723	00540	00399	00292
8		02612	02043	01582	01213	00920
9		06104	04944	03966	03150	02476
10		12389	10379	08614	07081	05764
11		22103	19121	16396	13933	11730
12		35055	31253	27637	24235	21068
13		50000	45823	41689	37640	33716
14		64945	60987	56911	52756	48563
15		77897	74666	71203	67528	63669
16		87611	85344	82815	80022	76969
17		93896	92535	90955	89138	87071
18		97388	96693	95854	94850	93660
19		99042	98744	98368	97900	97324
20 21 22 23 24		99704 99924 99984 99998	99597 99893 99977 99996	99457 99851 99967 99994 99999	99276 99794 99953 99992 99999	99044 99717 99933 99988 99998

Fehler 1. und 2. Art

