Mathematik für Biologen

Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net

Heinrich-Heine-Universität Düsseldorf

21. Januar 2015

- 1 t-Tests für Erwartungswerte
 - Verbundene und unverbundene Stichproben
 - Teststatistik für verbundene Stichproben
 - Die *t*-Verteilung
 - *t*-Test für verbundene Stichproben
 - Beispiel Blutdrucksenker
 - t-Test für den Vergleich eines Erwartungswerts mit einem Referenzwert

Organisatorisches

t-Tests für Erwartungswerte

Verbundene und unverbundene Stichproben

Zwei Versuchsreihen liefern Messergebnisse. Der Test soll entscheiden, ob sich diese Ergebnisse signifikant unterscheiden.

Unverbundene Stichproben: Die Messerergebnisse werden an verschiedenen Populationen gewonnen.

Beispiel: 9 Maisfelder werden mit einem Bodenbakterium behandelt, 10 weitere bleiben unbehandelt. Bei allen wird der Befall mit Maiszünsler bestimmt.

Verbundene Stichproben: Beide Messungen werden an derselben Population wird unter identischen Bedingungen durchgeführt.

Beispiel: Bei 10 Patienten mit Bluthochdruck wird der Blutdruck vor und nach einer Therapie bestimmt.

Verbundene Stichproben

- Ein Versuch wird n-mal durchgeführt
- Ein Parameter wird geändert
- Der Versuch wird mit dem geänderten Parameter mit demselben Kollektiv wiederholt
- Die Messergebnisse werden verglichen

t-Test zum Vergleich zweier Erwartungswerte bei verbundenen Stichproben

- Gegeben sind Zufallsvariable X_1, \ldots, X_n und Y_1, \ldots, Y_n
- Verteilungsvoraussetzungen sind
 - Alle X_j sind normalverteilt mit unbekanntem Erwartungswert μ_1 und unbekannter Varianz σ^2
 - Alle Y_j sind normalverteilt mit unbekanntem Erwartungswert μ_2 und unbekannter Varianz σ^2
- Ziel: μ_1 und μ_2 sollen verglichen werden

t-Test für unverbundene Stichproben, Fortsetzung

• x_j und y_j seien Realisierungen

t-Tests für Erwartungswerte

- $z_i = y_i x_i$ seien die Differenzen
- Bestimme arithmetischen Mittelwert

$$\overline{z} = \frac{1}{n} \sum_{j=1}^{n} z_j$$

und Stichprobenstreuung

$$s = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (z_j - \overline{z})^2}$$

Die Teststatistik ist

$$t = \frac{\overline{z}}{s} \cdot \sqrt{n}$$

Die Teststatistik wird mit einem Quantil der t-Verteilung verglichen

Teststatistik

- Wenn kein Unterschied zwischen X_j und Y_j besteht, dann ist die Teststatistik für große n annähernd standardnormalverteilt
- ullet Die tatsächliche Verteilung der Teststatistik ist die $t ext{-Verteilung}$ mit (n-1) Freiheitsgraden
- Die *t*-Verteilungen sind tabelliert

Quantile der t-Verteilung

f	90%	95%	97.5%	99%	99.5%	99.9%
1	3.078	6.314	12.706	31.821	63.657	318.309
2	1.886	2.920	4.303	6.965	9.925	22.327
3	1.638	2.353	3.182	4.541	5.841	10.215
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
∞	1.282	1.645	1.960	2.326	2.576	3.090

Freiheitsgrade

Heuristisch:

- n Versuche, um den Parameter \overline{z} zu schätzen
- Jeder andere Parameter, der hilfsweise geschätzt werden muss, verringert die Zahl der Freiheitsgrade um 1
- Beim t-Test für verbundene Stichproben muss s hilfsweise geschätzt werden
- Daher gibt es (n-1) Freiheitsgrade

Ein- und zweiseitige Tests

- Tests können ein- oder zweiseitig sein
- \bullet Es sind μ_1 und μ_2 die unbekannten wahren Erwartungswerte der beiden Stichproben
- Bei zweiseitigen Tests ist die Nullhypothese von der Form $H_0 = \{\mu_1 = \mu_2\}$
- Bei einseitigen Tests ist die Nullhypothese von der Form $H_0=\{\mu_1\leq \mu_2\}$ bzw. $H_0=\{\mu_1\geq \mu_2\}$

t-Tests, Fortsetzung

- ullet Das Signifikanzniveau sei lpha
- Die Quantile der t-Verteilung müssen verwendet werden

$$t_{n-1,\,1-lpha/2}$$
 beim zweiseitigen Test $t_{n-1,\,1-lpha}$ bei einem einseitigen Test

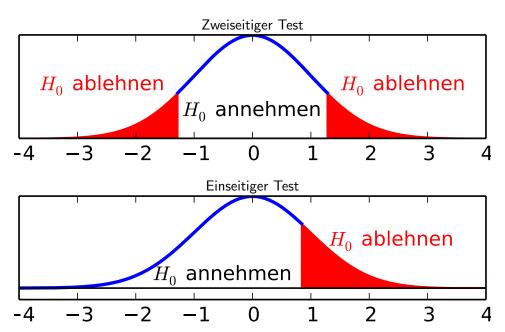
• $z_j = y_j - x_j$ und Teststatistik

$$t = \frac{\overline{z}}{s} \cdot \sqrt{n}$$

• Entscheidung:

$$H_0=\{\mu_1=\mu_2\}$$
: Die Nullhypothese H_0 wird abgelehnt, wenn $|t|>t_{n-1,\,1-\alpha/2}$ $H_0=\{\mu_1\geq\mu_2\}$: Die Nullhypothese H_0 wird abgelehnt, wenn $t>t_{n-1,\,1-\alpha}$ $H_0=\{\mu_1\leq\mu_2\}$: Die Nullhypothese H_0 wird abgelehnt, wenn $t<-t_{n-1,\,1-\alpha}$

Ein- und zweiseitige Tests



Beispiel Blutdrucksenker

- 10 Blutdruckpatienten erhalten eine Woche lang das Medikament und eine Woche lang das Placebo. Der Blutdruck am Ende der jeweiligen Behandlung wird notiert.
 Zwischen beiden Behandlungen vergehen zwei Wochen mit Standard-Therapie.
- Ob jemand zuerst das Medikament oder zuerst das Placebo bekommt, wird ausgelost.
- Für den *j*-ten Patienten

$$X_j = \mathsf{Blutdruck}$$
 unter Placebo
 $Y_j = \mathsf{Blutdruck}$ unter Medikament
 $Z_j = Y_j - X_j$

Beispiel Blutdrucksenker

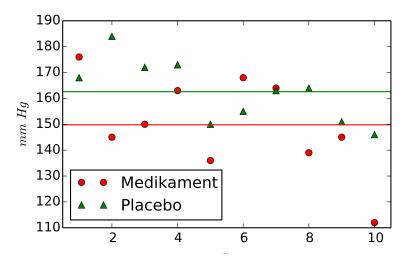
Blutdruck [mm hg]										
Placebo X_j	168	184	172	173	150	155	163	164	151	146
Medikament Y_j	176	145	150	163	136	168	164	139	145	112
Differenz Z_i	8	-39	-22	-10	-14	13	1	-25	-6	-34

$$\overline{z} = \frac{1}{10} \sum_{j=1}^{10} z_j = -12.8$$

$$s = \sqrt{\frac{1}{9} \sum_{j=1}^{10} (z_j - \overline{z})^2}$$

- Frage: Ist die beobachtete Differenz signifikant, oder lässt sie sich durch Zufall erklären?
- ullet Das Signifikanzniveau sei zu lpha=0.05 festgelegt

Blutdrucksenker



Blutdrucksenker: Fortsetzung

- Beim Blutdrucksenker interessiert nur, ob der Blutdruck tatsächlich sinkt
- Ein einseitiger Test ist angemessen
- $\mu_1 = Blutdruck$ unter Placebo, $\mu_2 = Blutdruck$ unter Medikament
- Die Nullhypothese ist $H_0: \mu_1 \leq \mu_2$, das Signifikanzniveau ist $\alpha = 0.05$
- Das benötigte Quantil ist $t_{9,0.95} = 1.833$
- Teststatistik

$$t = \frac{\overline{z}}{s}\sqrt{n} = \frac{-12.8 - 0}{17.36} \cdot \sqrt{10} = -2.332$$

- ullet Die Nullhypothese wird abgelehnt, wenn $t<-t_{9,\,0.95}$
- $oldsymbol{\circ}$ Das trifft hier zu. Die Wirksamkeit des Blutdrucksenkers ist zum Signifikanzniveau lpha=0.05 nachgewiesen

Quantile der t-Verteilung

f	90%	95%	97.5%	99%	99.5%	99.9%
1	3.078	6.314	12.706	31.821	63.657	318.309
2	1.886	2.920	4.303	6.965	9.925	22.327
3	1.638	2.353	3.182	4.541	5.841	10.215
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
∞	1.282	1.645	1.960	2.326	2.576	3.090

t-Test für den Vergleich eines Erwartungswerts mit einem Referenzwert

- X_1, \ldots, X_n bezeichnen unabhängig erhobene, gleichartige Messwerte.
- Verteilungsvoraussetzungen: Alle X_j sind normalverteilt mit unbekanntem Erwartungswert μ und unbekannter Varianz σ^2
- Ziel: μ soll mit einem festen Referenzwert μ_0 verglichen werden.
- \bullet x_j seien Realisierungen der X_j
- Bestimme arithmetisches Mittel und Stichprobenstreuung

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$$
 und $s_x = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})^2}$

Die Teststatistik ist

$$t = \frac{\overline{x} - \mu_0}{s_x} \sqrt{n}$$

Die Teststatistik wird mit dem passenden Quantil verglichen

t-Tests, Fortsetzung

- ullet Das Signifikanzniveau sei lpha
- Die Quantile der t-Verteilung müssen verwendet werden

$$t_{n-1,\,1-lpha/2}$$
 beim zweiseitigen Test $t_{n-1,\,1-lpha}$ bei einem einseitigen Test

• Entscheidung:

$$H_0=\{\mu=\mu_0\}$$
: Die Nullhypothese H_0 wird abgelehnt, wenn $|t|>t_{n-1,\,1-\alpha/2}$ $H_0=\{\mu\geq\mu_0\}$: Die Nullhypothese H_0 wird abgelehnt, wenn $t<-t_{n-1,\,1-\alpha}$ $H_0=\{\mu\leq\mu_0\}$: Die Nullhypothese H_0 wird abgelehnt, wenn $t>t_{n-1,\,1-\alpha}$

An- und Abmeldung

- Anmeldung im LSF
- Keine Pflichtanmeldung mehr, auch zu Wiederholungsprüfungen muss man sich selbst anmelden
- Keine Zulassungsvoraussetzungen mehr
- Wenn nötig: Abmeldung im LSF bis eine Woche vor der Prüfung

Klausurhilfsmittel

- Vier beidseitig beschriebene A4-Blätter
- Ein Taschenrechner. Der Taschenrechner darf nicht symbolisch integrieren können

Termine

- 23.01.: Vorlesung
- 28.01.: Vorlesung und Besprechung von Blatt 12
- 30.01.: Vorlesung
- 04.02.: Präsenzübung zur Vorbereitung auf die Prüfung
- 06.02.: Keine Vorlesung
- 11.02.: Klausur