Extensions of C_{i} fields

Grétar Amazeen

Bergischen Universität Wuppertal
amazeen@uni-wuppertal.de

November 6, 2020

Overview

(1) Normic Forms
(2) Theorem of Lang and Nagata
(3) Extensions of C_{i} Fields.

Normic Forms

We start by recalling the definition of normic forms

Definition

A form f of degree d in n variables with coefficients in a field k is said to be normic of order i if $n=d^{i}$ and the only zero of f is the trivial one. When $i=1$ the form is simply called normic.

Normic Forms

We start by recalling the definition of normic forms

Definition

A form f of degree d in n variables with coefficients in a field k is said to be normic of order i if $n=d^{i}$ and the only zero of f is the trivial one. When $i=1$ the form is simply called normic.

In the rest of the talk we will only be concerned with normic forms, i.e. of order 1.

Example

Over the field \mathbb{Q} the form

$$
f(x, y)=x^{2}+y^{2}
$$

is normic of degree 2 .

Why the Name "Normic" Forms?

Lemma A

Let E / k be a finite field extension of degree $e>1$, then the norm of the extension, $N:=N_{E / k}$ is a normic form of degree e.

Why the name "normic" forms?

Lemma A

Let E / k be a finite field extension of degree $e>1$, then the norm of the extension, $N:=N_{E / k}$ is a normic form of degree e.

Proof.

We fix a basis of E as a k vector space. Then $N(x)$ becomes a homogeniuous polynomial of degree e in the coefficients of x, and we know from field theory that $N(x)=0 \Longleftrightarrow x=0$, so N is normic.

Normic Forms of Arbitrarily High Degree

Lemma B

Let k be a field. If k is not algebracially closed, then k admits a normic form of arbitrarily high degree.

Normic Forms of Arbitrarily High Degree

Lemma B

Let k be a field. If k is not algebracially closed, then k admits a normic form of arbitrarily high degree.

Proof.

Since k is not algebraically closed, we can find some normic form over k. For instance, we can find a finite extension of k and take it's norm. So let ϕ be such a normic form, and denote by e the degree of ϕ.

Normic Forms of Arbitrarily High Degree

Lemma B

Let k be a field. If k is not algebracially closed, then k admits a normic form of arbitrarily high degree.

Proof.

Since k is not algebraically closed, we can find some normic form over k. For instance, we can find a finite extension of k and take its norm. So let ϕ be such a normic form, and denote by e the degree of ϕ. We define the following iterations of ϕ :

$$
\begin{aligned}
& \phi^{(1)}=\phi(\phi|\phi| \ldots \mid \phi), \\
& \phi^{(2)}=\phi^{(1)}(\phi|\phi| \ldots \mid \phi),
\end{aligned}
$$

Normic Forms of Arbitrarily High Degree

Proof continued.

These iterations are defined as follows: To define $\phi^{(1)}$, we substitute ϕ in for each of the variables in ϕ, and the vertical line is meant to indicate that each ϕ takes a new set of variables. Therefore, since ϕ has degree e (and is a form in e variables since it is normic) we see that $\phi^{(1)}$ is a form of degree e^{2} in e^{2} variables. In general $\phi^{(m)}$ is a form of degree e^{m+1} in e^{m+1} variables.

Caveat

Greenberg claims that $\phi^{(m)}$ has degree e^{m}, not e^{m+1} like I claim. Please correct me if I am wrong.

Normic Forms of Arbitrarily High Degree

Example interlude

Consider again the normic form $f(x, y)=x^{2}+y^{2}$ of degree 2 over \mathbb{Q}. We have

$$
\begin{aligned}
f^{(1)}(x, y, z, w) & =f(f \mid f) \\
& =f(f(x, y), f(z, w)) \\
& =f\left(x^{2}+y^{2}, z^{2}+w^{2}\right) \\
& =x^{4}+2 x^{2} y^{2}+y^{4}+z^{4}+2 z^{2} w^{2}+w^{4}
\end{aligned}
$$

a form of degree $4=2^{2}$ over \mathbb{Q}.

Normic Forms of Arbitrarily High Degree

proof continued

These iterations are defined as follows: To define $\phi^{(1)}$, we substitute ϕ in for each of the variables in ϕ, and the vertical line is meant to indicate that each ϕ takes a new set of variables. Therefore, since ϕ has degree e (and is a form in e variables since it is normic) we see that $\phi^{(1)}$ is a form of degree e^{2} in e^{2} variables. In general $\phi^{(m)}$ is a form in e^{m+1} in e^{m+1} variables.

Each of these $\phi^{(m)}$ is normic. Consider $\phi^{(1)}$, if $\phi^{(1)}(\underline{x})=0$ for some $\underline{x}=\left(x_{1}, \ldots, x_{e}, x_{e+1}, \ldots, x_{e^{2}}\right)$, then since $\phi^{(1)}=\phi(\phi|\ldots| \phi)$ and ϕ is normic we see that we must have $\underline{x}=0$, so $\phi^{(1)}$ is normic. The statement for $\phi^{(m)}$ follows by induction.

Lang-Nagata

Lang-Nagata Theorem

Let K be a C_{i} field and let f_{1}, \ldots, f_{r} be forms in n variables of degree d. If $n>r d^{i}$ then they have a non-trivial common zero in K.

Lang-Nagata

Lang-Nagata Theorem

Let K be a C_{i} field and let f_{1}, \ldots, f_{r} be forms in n variables of degree d. If $n>r d^{i}$ then they have a non-trivial common zero in K.

Proof

If K is algebraically closed (so $i=0$), then each f_{i} defines a hypersurface H_{i} in \mathbb{P}_{K}^{n-1}. The dimension of the intersection $\bigcap_{1 \leq i \leq r} H_{i}$ is then greater than or equal to $n-1-r \geq 0$ so in particular the f_{i} 's have a common non-trivial zero.

Lang-Nagata

Proof

If K is algebraically closed (so $i=0$), then each f_{i} defines a hypersurface H_{i} in \mathbb{P}_{K}^{n-1}. The dimension of the intersection $\bigcap_{1 \leq i \leq r} H_{i}$ is then greater than or equal to $n-1-r \geq 0$ so in particular the f_{i} 's have a common non-trivial zero.

So we can assume K is not algebraically closed. Then we know by Lemma B that we can find a normic form of degree $e \geq r$, let ϕ be such a form.

Lang-Nagata

Proof

If K is algebraically closed (so $i=0$), then each f_{i} defines a hypersurface H_{i} in \mathbb{P}_{K}^{n-1}. The dimension of the intersection $\bigcap_{1 \leq i \leq r} H_{i}$ is then greater than or equal to $n-1-r \geq 0$ so in particular the f_{i}^{\prime} 's have a common non-trivial zero.

So we can assume K is not algebraically closed. Then we know by Lemma B that we can find a normic form of degree $e \geq r$, let ϕ be such a form.

We now define (in a similar way as in the proof of Lemma B) new forms $\phi^{(1)}, \phi^{(2)}$, etc. in the following manner:

Lang-Nagata

We now define (in a similar way as in the proof of Lemma B) new forms $\phi^{(1)}, \phi^{(2)}$, etc. in the following manner:

$$
\begin{aligned}
\phi^{(1)} & =\phi\left(f_{1}, \ldots, f_{r}\left|f_{1}, \ldots, f_{r}\right| \ldots\left|f_{1}, \ldots, f_{r}\right| 0, \ldots, 0\right), \\
\phi^{(2)} & =\phi^{(1)}\left(f_{1}, \ldots, f_{r}\left|f_{1}, \ldots, f_{r}\right| \ldots\left|f_{1}, \ldots, f_{r}\right| 0, \ldots, 0\right),
\end{aligned}
$$

where as before, the vertical lines indicate that we introduce new variables. We fit as many complete sets of f_{i} into ϕ and fill the rest with zeros.

Lang-Nagata

Example Interlude

If $e=r$ then

$$
\phi^{(1)}=\phi\left(f_{1}, \ldots, f_{r}\right),
$$

If $e=2 r+1$ then

$$
\phi^{(1)}=\phi\left(f_{1}, \ldots, f_{r}\left|f_{1}, \ldots, f_{r}\right| 0\right)
$$

etc.

Lang-Nagata

Proof Continued.

We see that $\phi^{(1)}$ has $n\left\lfloor\frac{e}{r}\right\rfloor$ variables and degree $d e$. We have $\left\lfloor\frac{e}{r}\right\rfloor \leq \frac{e}{r}<\left\lfloor\frac{e}{r}\right\rfloor+1$, and so

$$
d e<d r\left(\left\lfloor\frac{e}{r}\right\rfloor+1\right)
$$

If K is C_{1} then we want to have $n\left\lfloor\frac{e}{r}\right\rfloor \geq d r\left(\left\lfloor\frac{e}{r}\right\rfloor+1\right)$, i.e.

$$
(n-d r)\left\lfloor\frac{e}{r}\right\rfloor>d r .
$$

This we can ensure, since $n-d r>0$ by assumption, and we can by Lemma B chose e to be arbitrarily large. Since K is $C_{1}, \phi^{(1)}$ has a non-trivial zero, and that gives us a non-trivial common zero of f_{1}, \ldots, f_{r} since ϕ is normic.

Lang-Nagata

Proof Continued

Now let K be a C_{i} field with $i>1$. We have to analyse $\phi^{(m)}$ for higher m 's now. Inductively it is easy to see that the degree of $\phi^{(m)}$ is $d^{m} e$, and if we denote the number of variables in $\phi^{(m)}$ by N_{m} then

$$
N_{m+1}=n\left\lfloor\frac{N_{m}}{r}\right\rfloor
$$

Caveat.

Greenberg writes here $N_{m+1}=\left\lfloor\frac{N_{m}}{r}\right\rfloor$, but I am pretty sure the factor of n should be there. Please let me know if I'm mistaken.

Lang-Nagata

Proof Continued

Now let K be a C_{i} field with $i>1$. We have to analyse $\phi^{(m)}$ for higher m 's now. Inductively it is easy to see that the degree of $\phi^{(m)}$ is $d^{m} e$, and if we denote the number of variables in $\phi^{(m)}$ by N_{m} then

$$
\begin{equation*}
N_{m+1}=n\left\lfloor\frac{N_{m}}{r}\right\rfloor . \tag{*}
\end{equation*}
$$

Our aim now is to choose m large enough to ensure that $N_{m}>\left(D_{m}\right)^{i}$, where $D_{m}=d^{m} e$ denotes the degree of $\phi^{(m)}$. Again, since $\left\lfloor\frac{N_{m}}{r}\right\rfloor \leq \frac{N_{m}}{r}<\left\lfloor\frac{N_{m}}{r}\right\rfloor+1$, we can write

$$
\left\lfloor\frac{N_{m}}{r}\right\rfloor=\frac{N_{m}}{r}-\frac{t_{m}}{r}
$$

where this remainder term t_{m} satisfies $0 \leq t_{m}<r$.

Lang-Nagata

Proof Continued.

We have

$$
\begin{aligned}
\frac{N_{m+1}}{D_{m+1}^{i}} & =\frac{n\left\lfloor\frac{N_{m}}{r}\right\rfloor}{d^{i}} D_{m}^{i} \\
& =\frac{n}{r d^{i}} \frac{N_{m}}{D_{m}^{i}}-\frac{n}{r d^{i}} \frac{t_{m}}{e^{i}\left(d^{i}\right)^{m}} \text { by }(* *) \\
& \geq \frac{n}{r d^{i}} \frac{N_{m}}{D_{m}^{i}}-\frac{n}{r d^{i}} \frac{r}{e^{i}\left(d^{i}\right)^{m}} \text { since } 0 \leq t_{m}<r .
\end{aligned}
$$

Lang-Nagata

Proof Continued.

We use this same inequality for all $j \leq m$ and obtain

$$
\begin{aligned}
\frac{N_{m+1}}{D_{m+1}^{i}} & \geq \frac{n}{r d^{i}} \frac{N_{m}}{D_{m}^{i}}-\frac{n}{r d^{i}} \frac{r}{e^{i}\left(d^{i}\right)^{m}} \\
& \geq\left(\frac{n}{r d^{i}}\right)^{2}\left(\frac{N_{m-1}}{D_{m-1}^{i}}-\frac{r}{e^{i}\left(d^{i}\right)^{m-1}}\right)-\left(\frac{n}{r d^{i}}\right)\left(\frac{r}{e^{i}\left(d^{i}\right)^{m}}\right) \\
& \vdots \\
& \geq\left(\frac{n}{r d^{i}}\right)^{m} \frac{N_{1}}{D_{1}^{i}}-\frac{r}{e^{i}} \frac{n}{r} \frac{1}{\left(d^{i}\right)^{m+1}}\left(\sum_{j=0}^{m-1}\left(\frac{n}{r}\right)^{j}\right) \\
& =\left(\frac{n}{r d^{i}}\right)^{m} \frac{N_{1}}{D_{1}^{i}}-\frac{r}{e^{i}} \frac{n}{r} \frac{1}{\left(d^{i}\right)^{m+1}} \frac{\left(\frac{n}{r}\right)^{m}-1}{\frac{n}{r}-1} .
\end{aligned}
$$

Lang-Nagata

Proof Continued.

We plug in $D_{1}=e d, N_{1}=n\left\lfloor\frac{e}{r}\right\rfloor$ and write $\left\lfloor\frac{e}{r}\right\rfloor=\frac{e}{r}-\frac{t}{r}$ where $0 \leq t<r$.

Lang-Nagata

Proof Continued.

We plug in $D_{1}=e d, N_{1}=n\left\lfloor\frac{e}{r}\right\rfloor$ and write $\left\lfloor\frac{e}{r}\right\rfloor=\frac{e}{r}-\frac{t}{r}$ where $0 \leq t<r$.

$$
\begin{aligned}
\frac{N_{m+1}}{D_{m+1}^{i}} & \geq\left(\frac{n}{r d^{i}}\right)^{m+1} \frac{e-t}{e^{i}}-\frac{r}{e^{i}} \frac{n}{r} \frac{1}{\left(d^{i}\right)^{m+1}} \frac{r\left(n^{m}-r^{m}\right)}{r^{m}(n-r)} \\
& =\left(\frac{n}{r d^{i}}\right)^{m+1} \frac{e-t}{e^{i}}-\frac{r}{e^{i}} \frac{n}{r d^{i}} \frac{n}{n-r}\left(\left(\frac{n}{r d^{i}}\right)^{m}-\frac{1}{\left(d^{i}\right)^{m}}\right) \\
& =\left(\frac{n}{r d^{i}}\right)^{m+1}\left(\frac{e-t}{e^{i}}-\frac{r^{2}}{e^{i}(n-r)}\right)+\frac{1}{\left(d^{i}\right)^{m}}\left(\frac{r n}{e^{i} d^{i}(n-r)}\right) \\
& =\left(\frac{n}{r d^{i}}\right)^{m+1} \frac{(n-r)(e-t)-r^{2}}{e^{i}(n-r)}+\frac{1}{\left(d^{i}\right)^{m}}\left(\frac{r n}{e^{i} d^{i}(n-r)}\right)
\end{aligned}
$$

Lang-Nagata

Proof Continued.

Again we can use Lemma B to choose e as large as we want, so we choose it such that $(n-r)(e-t)-r^{2}>0$. Since $\frac{n}{r d^{i}}>1$ (we have $n>r d^{i}$ by assumption) we see that the first term tends to ∞ as $m \rightarrow \infty$. The second term tends to 0 as $m \rightarrow \infty$ so we see that $\frac{N_{m}}{D_{m}^{i}} \rightarrow \infty$ as $m \rightarrow \infty$.

Lang-Nagata

Proof Continued.

Again we can use Lemma B to choose e as large as we want, so we choose it such that $(n-r)(e-t)-r^{2}>0$. Since $\frac{n}{r d^{i}}>1$ (we have $n>r d^{i}$ by assumption) we see that the first term tends to ∞ as $m \rightarrow \infty$. The second term tends to 0 as $m \rightarrow \infty$ so we see that $\frac{N_{m}}{D_{m}^{i}} \rightarrow \infty$ as $m \rightarrow \infty$.

We can thus find some m such that $N_{m}>D_{m}^{i}$, but then $\phi^{(m)}$ has a non-trivial zero, and that will give us a non-trivial common zero of f_{1}, \ldots, f_{r}.

Extensions.

We can now prove the two main theorems of this talk.

Extensions.

We can now prove the two main theorems of this talk.

Theorem 4

Every algebraic extension of a C_{i} field is C_{i}.

Theorem 5

If K is a C_{i} field and E / K is a an extension of trancendence degree j, then E is a C_{i+j} field.

Theorem 4

Theorem 4

Every algebraic extension of a C_{i} field is C_{i}.

Proof.

Let K be a C_{i} field. It is enough to prove the statement for finite extensions E / K since the coefficients of any given form over E lie in a finite extension over K.

Theorem 4

Proof continued.

Fix a basis b_{1}, \ldots, b_{e} of E as a K-vector space. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a form of degree d over E with $n>d^{i}$.

Theorem 4

Proof continued.

Fix a basis b_{1}, \ldots, b_{e} of E as a K-vector space. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a form of degree d over E with $n>d^{i}$.

We introduce new variables $y_{i j}$ with

$$
x_{i}=\sum_{j=1}^{e} y_{i j} b_{j}
$$

Then

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{e} f_{i}(\underline{y}) b_{i}
$$

where the f_{i} are forms in en variables of degree d over K.

Theorem 4

Proof Continued.

Finding a zero for f in E is then equivalent to finding a common zero of f_{1}, \ldots, f_{e} in K. Now en $>e d^{i}$ by the assumption on n and d, and so by the Lang-Nagata theorem we can find a non-trivial zero for f, and E is therefore a C_{i} field.

Theorem 5

Theorem 5

If K is a C_{i} field and E / K is a an extension of trancendence degree j, then E is a C_{i+j} field.

Proof.

E is an algebraic extension of a purely trancendental extension of K. By Theorem 4, we can assume E is purely trancendental over K. Furthermore, we can by induction reduce to the case where $E=K(T)$.

Theorem 5

Proof.

E is an algebraic extension of a purely trancendental extension of K. By Theorem 4, we can assume E is purely trancendental over K. Furthermore, we can by induction reduce to the case where $E=K(T)$.

We can always clear denominators, so we can reduce to considering forms with coefficients in the polynomial ring $K[T]$.

Theorem 5

Proof Continued.

Suppose $f\left(x_{1}, \ldots, x_{n}\right)$ is a form of degree d with coefficients in $K[T]$. We introduce new variables $y_{i j}$ with

$$
x_{i}=\sum_{j=0}^{s} y_{i j} T^{j}
$$

We specify what this s is later.

Theorem 5

Proof Continued.

Suppose $f\left(x_{1}, \ldots, x_{n}\right)$ is a form of degree d with coefficients in $K[T]$. We introduce new variables $y_{i j}$ with

$$
x_{i}=\sum_{j=0}^{s} y_{i j} T^{j} .
$$

We specify what this s is later.

Let r be the highest degree occurring in a coefficient of f, then we can write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=0}^{d s+r} f_{j}(\underline{y}) T^{j}
$$

where each f_{j} is a form over K of degree d in $n(s+1)$ variables.

Theorem 5

Proof Continued.

We now specify what this s is. It is some positive integer large enough so that we have

$$
n(s+1)>d^{i}(d s+r+1)
$$

Theorem 5

Proof Continued.

We now specify what this s is. It is some positive integer large enough so that we have

$$
n(s+1)>d^{i}(d s+r+1)
$$

We rewrite this as

$$
\left(n-d^{i+1}\right) s>d^{i}(r+1)-n
$$

and notice that by assumption $n>d^{i+1}$ and the quantity on the right-hand side is fixed, so we can choose such a large enough s.

Theorem 5

Proof Continued.

We can now use the Lang-Nagata theorem to find a non-trivial common zero of the $f_{0}, \ldots, f_{d s+r}$, which is precisely the same as finding a non-trivial zero for f, showing that $K(T)$ is a C_{i+1} field.

Thank You!

