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Normic Forms

We start by recalling the definition of normic forms

Definition

A form f of degree d in n variables with coefficients in a field k is said to
be normic of order i if n = d i and the only zero of f is the trivial one.
When i = 1 the form is simply called normic.
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Normic Forms

We start by recalling the definition of normic forms

Definition

A form f of degree d in n variables with coefficients in a field k is said to
be normic of order i if n = d i and the only zero of f is the trivial one.
When i = 1 the form is simply called normic.

In the rest of the talk we will only be concerned with normic forms, i.e. of
order 1.

Example

Over the field Q the form

f (x , y) = x2 + y2

is normic of degree 2.
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Why the Name “Normic” Forms?

Lemma A

Let E/k be a finite field extension of degree e > 1, then the norm of the
extension, N := NE/k is a normic form of degree e.
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Why the name “normic” forms?

Lemma A

Let E/k be a finite field extension of degree e > 1, then the norm of the
extension, N := NE/k is a normic form of degree e.

Proof.

We fix a basis of E as a k vector space. Then N(x) becomes a
homogeniuous polynomial of degree e in the coefficients of x , and we
know from field theory that N(x) = 0 ⇐⇒ x = 0, so N is normic.
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Normic Forms of Arbitrarily High Degree

Lemma B

Let k be a field. If k is not algebracially closed, then k admits a normic
form of arbitrarily high degree.
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Normic Forms of Arbitrarily High Degree

Lemma B

Let k be a field. If k is not algebracially closed, then k admits a normic
form of arbitrarily high degree.

Proof.

Since k is not algebraically closed, we can find some normic form over k.
For instance, we can find a finite extension of k and take it’s norm. So let
φ be such a normic form, and denote by e the degree of φ.
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Normic Forms of Arbitrarily High Degree

Lemma B

Let k be a field. If k is not algebracially closed, then k admits a normic
form of arbitrarily high degree.

Proof.

Since k is not algebraically closed, we can find some normic form over k.
For instance, we can find a finite extension of k and take its norm. So let
φ be such a normic form, and denote by e the degree of φ.
We define the following iterations of φ:

φ(1) = φ(φ|φ| . . . |φ),

φ(2) = φ(1)(φ|φ| . . . |φ),

...
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Normic Forms of Arbitrarily High Degree

Proof continued.

These iterations are defined as follows: To define φ(1), we substitute φ in
for each of the variables in φ, and the vertical line is meant to indicate
that each φ takes a new set of variables. Therefore, since φ has degree e
(and is a form in e variables since it is normic) we see that φ(1) is a form
of degree e2 in e2 variables. In general φ(m) is a form of degree em+1 in
em+1 variables.

Caveat

Greenberg claims that φ(m) has degree em, not em+1 like I claim. Please
correct me if I am wrong.
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Normic Forms of Arbitrarily High Degree

Example interlude

Consider again the normic form f (x , y) = x2 + y2 of degree 2 over Q. We
have

f (1)(x , y , z ,w) = f (f |f )

= f (f (x , y), f (z ,w))

= f (x2 + y2, z2 + w2)

= x4 + 2x2y2 + y4 + z4 + 2z2w2 + w4,

a form of degree 4 = 22 over Q.
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Normic Forms of Arbitrarily High Degree

proof continued

These iterations are defined as follows: To define φ(1), we substitute φ in
for each of the variables in φ, and the vertical line is meant to indicate that
each φ takes a new set of variables. Therefore, since φ has degree e (and is
a form in e variables since it is normic) we see that φ(1) is a form of degree
e2 in e2 variables. In general φ(m) is a form in em+1 in em+1 variables.

Each of these φ(m) is normic. Consider φ(1), if φ(1)(x) = 0 for some
x = (x1, . . . , xe , xe+1, . . . , xe2), then since φ(1) = φ(φ| . . . |φ) and φ is
normic we see that we must have x = 0, so φ(1) is normic. The statement
for φ(m) follows by induction.
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Lang-Nagata

Lang-Nagata Theorem

Let K be a Ci field and let f1, . . . , fr be forms in n variables of degree d . If
n > rd i then they have a non-trivial common zero in K .
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Lang-Nagata

Lang-Nagata Theorem

Let K be a Ci field and let f1, . . . , fr be forms in n variables of degree d . If
n > rd i then they have a non-trivial common zero in K .

Proof

If K is algebraically closed (so i = 0), then each fi defines a hypersurface
Hi in Pn−1

K . The dimension of the intersection
⋂

1≤i≤r Hi is then greater
than or equal to n − 1− r ≥ 0 so in particular the fi ’s have a common
non-trivial zero.
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Lang-Nagata

Proof

If K is algebraically closed (so i = 0), then each fi defines a hypersurface
Hi in Pn−1

K . The dimension of the intersection
⋂

1≤i≤r Hi is then greater
than or equal to n − 1− r ≥ 0 so in particular the fi ’s have a common
non-trivial zero.

So we can assume K is not algebraically closed. Then we know by Lemma
B that we can find a normic form of degree e ≥ r , let φ be such a form.
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Lang-Nagata

Proof

If K is algebraically closed (so i = 0), then each fi defines a hypersurface
Hi in Pn−1

K . The dimension of the intersection
⋂

1≤i≤r Hi is then greater
than or equal to n − 1− r ≥ 0 so in particular the fi ’s have a common
non-trivial zero.

So we can assume K is not algebraically closed. Then we know by Lemma
B that we can find a normic form of degree e ≥ r , let φ be such a form.

We now define (in a similar way as in the proof of Lemma B) new forms
φ(1), φ(2), etc. in the following manner:
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Lang-Nagata

We now define (in a similar way as in the proof of Lemma B) new forms
φ(1), φ(2), etc. in the following manner:

φ(1) = φ(f1, . . . , fr |f1, . . . , fr | . . . |f1, . . . , fr |0, . . . , 0),

φ(2) = φ(1)(f1, . . . , fr |f1, . . . , fr | . . . |f1, . . . , fr |0, . . . , 0),

...

where as before, the vertical lines indicate that we introduce new variables.
We fit as many complete sets of fi into φ and fill the rest with zeros.
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Lang-Nagata

Example Interlude

If e = r then
φ(1) = φ(f1, . . . , fr ),

If e = 2r + 1 then

φ(1) = φ(f1, . . . , fr |f1, . . . , fr |0),

etc.
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Lang-Nagata

Proof Continued.

We see that φ(1) has nb er c variables and degree de. We have
b er c ≤

e
r < b

e
r c+ 1, and so

de < dr(be
r
c+ 1).

If K is C1 then we want to have nb er c ≥ dr(b er c+ 1), i.e.

(n − dr)be
r
c > dr .

This we can ensure, since n−dr > 0 by assumption, and we can by Lemma
B chose e to be arbitrarily large. Since K is C1, φ(1) has a non-trivial zero,
and that gives us a non-trivial common zero of f1, . . . , fr since φ is normic.
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Lang-Nagata

Proof Continued

Now let K be a Ci field with i > 1. We have to analyse φ(m) for higher
m’s now. Inductively it is easy to see that the degree of φ(m) is dme, and
if we denote the number of variables in φ(m) by Nm then

Nm+1 = nbNm

r
c. (∗)

Caveat.

Greenberg writes here Nm+1 = bNm
r c, but I am pretty sure the factor of n

should be there. Please let me know if I’m mistaken.
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Lang-Nagata

Proof Continued

Now let K be a Ci field with i > 1. We have to analyse φ(m) for higher
m’s now. Inductively it is easy to see that the degree of φ(m) is dme, and
if we denote the number of variables in φ(m) by Nm then

Nm+1 = nbNm

r
c. (∗)

Our aim now is to choose m large enough to ensure that Nm > (Dm)i ,
where Dm = dme denotes the degree of φ(m). Again, since
bNm

r c ≤
Nm
r < bNm

r c+ 1, we can write

bNm

r
c =

Nm

r
− tm

r
, (∗∗)

where this remainder term tm satisfies 0 ≤ tm < r .
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Lang-Nagata

Proof Continued.

We have

Nm+1

D i
m+1

=
nbNm

r c
d iD i

m

by definition of degree and (∗)

=
n

rd i

Nm

D i
m

− n

rd i

tm
e i (d i )m

by (∗∗)

≥ n

rd i

Nm

D i
m

− n

rd i

r

e i (d i )m
since 0 ≤ tm < r .
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Lang-Nagata

Proof Continued.

We use this same inequality for all j ≤ m and obtain

Nm+1

D i
m+1

≥ n

rd i

Nm

D i
m

− n

rd i

r

e i (d i )m

≥ (
n

rd i
)2
(Nm−1

D i
m−1

− r

e i (d i )m−1

)
− (

n

rd i
)(

r

e i (d i )m
)

...

≥ (
n

rd i
)m

N1

D i
1

− r

e i
n

r

1

(d i )m+1

(m−1∑
j=0

(
n

r
)j
)

= (
n

rd i
)m

N1

D i
1

− r

e i
n

r

1

(d i )m+1

(nr )m − 1
n
r − 1

.
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Lang-Nagata

Proof Continued.

We plug in D1 = ed , N1 = nb er c and write b er c = e
r −

t
r where 0 ≤ t < r .
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Lang-Nagata

Proof Continued.

We plug in D1 = ed , N1 = nb er c and write b er c = e
r −

t
r where 0 ≤ t < r .

Nm+1

D i
m+1

≥ (
n

rd i
)m+1 e − t

e i
− r

e i
n

r

1

(d i )m+1

r(nm − rm)

rm(n − r)

= (
n

rd i
)m+1 e − t

e i
− r

e i
n

rd i

n

n − r

(
(
n

rd i
)m − 1

(d i )m
)

= (
n

rd i
)m+1

(e − t

e i
− r2

e i (n − r)

)
+

1

(d i )m
( rn

e id i (n − r)

)
= (

n

rd i
)m+1 (n − r)(e − t)− r2

e i (n − r)
+

1

(d i )m
( rn

e id i (n − r)

)
.
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Lang-Nagata

Proof Continued.

Again we can use Lemma B to choose e as large as we want, so we choose
it such that (n − r)(e − t)− r2 > 0. Since n

rd i > 1 (we have n > rd i by
assumption) we see that the first term tends to ∞ as m→∞. The
second term tends to 0 as m→∞ so we see that Nm

D i
m
→∞ as m→∞.
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Lang-Nagata

Proof Continued.

Again we can use Lemma B to choose e as large as we want, so we choose
it such that (n − r)(e − t)− r2 > 0. Since n

rd i > 1 (we have n > rd i by
assumption) we see that the first term tends to ∞ as m→∞. The
second term tends to 0 as m→∞ so we see that Nm

D i
m
→∞ as m→∞.

We can thus find some m such that Nm > D i
m, but then φ(m) has a

non-trivial zero, and that will give us a non-trivial common zero of
f1, . . . , fr .
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Extensions.

We can now prove the two main theorems of this talk.
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Extensions.

We can now prove the two main theorems of this talk.

Theorem 4

Every algebraic extension of a Ci field is Ci .

Theorem 5

If K is a Ci field and E/K is a an extension of trancendence degree j , then
E is a Ci+j field.
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Theorem 4

Theorem 4

Every algebraic extension of a Ci field is Ci .

Proof.

Let K be a Ci field. It is enough to prove the statement for finite
extensions E/K since the coefficients of any given form over E lie in a
finite extension over K .

Grétar Amazeen (Wuppertal) Extensions November 6, 2020 30 / 41



Theorem 4

Proof continued.

Fix a basis b1, . . . , be of E as a K -vector space. Let f (x1, . . . , xn) be a
form of degree d over E with n > d i .
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Theorem 4

Proof continued.

Fix a basis b1, . . . , be of E as a K -vector space. Let f (x1, . . . , xn) be a
form of degree d over E with n > d i .

We introduce new variables yij with

xi =
e∑

j=1

yijbj .

Then

f (x1, . . . , xn) =
e∑

i=1

fi (y)bi

where the fi are forms in en variables of degree d over K .
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Theorem 4

Proof Continued.

Finding a zero for f in E is then equivalent to finding a common zero of
f1, . . . , fe in K . Now en > ed i by the assumption on n and d , and so by
the Lang-Nagata theorem we can find a non-trivial zero for f , and E is
therefore a Ci field.
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Theorem 5

Theorem 5

If K is a Ci field and E/K is a an extension of trancendence degree j , then
E is a Ci+j field.

Proof.

E is an algebraic extension of a purely trancendental extension of K . By
Theorem 4, we can assume E is purely trancendental over K .
Furthermore, we can by induction reduce to the case where E = K (T ).
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Theorem 5

Proof.

E is an algebraic extension of a purely trancendental extension of K . By
Theorem 4, we can assume E is purely trancendental over K .
Furthermore, we can by induction reduce to the case where E = K (T ).

We can always clear denominators, so we can reduce to considering forms
with coefficients in the polynomial ring K [T ].

Grétar Amazeen (Wuppertal) Extensions November 6, 2020 35 / 41



Theorem 5

Proof Continued.

Suppose f (x1, . . . , xn) is a form of degree d with coefficients in K [T ]. We
introduce new variables yij with

xi =
s∑

j=0

yijT
j .

We specify what this s is later.
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Theorem 5

Proof Continued.

Suppose f (x1, . . . , xn) is a form of degree d with coefficients in K [T ]. We
introduce new variables yij with

xi =
s∑

j=0

yijT
j .

We specify what this s is later.

Let r be the highest degree occurring in a coefficient of f , then we can
write

f (x1, . . . , xn) =
ds+r∑
j=0

fj(y)T j ,

where each fj is a form over K of degree d in n(s + 1) variables.
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Theorem 5

Proof Continued.

We now specify what this s is. It is some positive integer large enough so
that we have

n(s + 1) > d i (ds + r + 1).
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Theorem 5

Proof Continued.

We now specify what this s is. It is some positive integer large enough so
that we have

n(s + 1) > d i (ds + r + 1).

We rewrite this as

(n − d i+1)s > d i (r + 1)− n,

and notice that by assumption n > d i+1 and the quantity on the
right-hand side is fixed, so we can choose such a large enough s.
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Theorem 5

Proof Continued.

We can now use the Lang-Nagata theorem to find a non-trivial common
zero of the f0, . . . , fds+r , which is precisely the same as finding a non-trivial
zero for f , showing that K (T ) is a Ci+1 field.
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Thank You!
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