Can we lift it?

Herman Rohrbach

Bergische Universität Wuppertal

November 19, 2020

Yes we can!

Last week

Theorem Let R be a complete DVR with uniformizing parameter π and $R/\pi^m R$ finite for all $m \ge 1$. Let $(f_1, \ldots, f_r) \subset R[T_1, \ldots, T_n]$. If

$$\forall m \geq 1 : \exists \underline{a}_m \in (R/\pi^m)^n : \underline{f}(\underline{a}_m) \in \pi^m R,$$

then

$$\exists \underline{a} \in R^n : \underline{f}(\underline{a}) = 0.$$

Can we lift it? Yes we can!

Herr	nan	Ro	hrbach
Can	we	lift	it?

This week See a version of this theorem for *Henselian DVR's*. Use it to prove: if k is C_i , then k((t)) is C_{i+1} .

Next week Arthur gives a proof of the theorem.

Henselian local rings

Definition

A Henselian local ring is a local ring (R, \mathfrak{m}, k) such that for any monic $f \in R[T]$ and simple root $a_0 \in k$ of \overline{f} , there exists an $a \in R$ such that f(a) = 0 and $\overline{a} = a_0$.

Example

- 1. a field k
- 2. \mathbb{Z}_p , by Hensel's lemma
- 3. a local ring R such that ker $(R \rightarrow k)$ is nilpotent
- 4. *k*[[*t*]]
- 5. any complete local ring (stay tuned)

Henselian local rings

Let (R, \mathfrak{m}, k) be a local ring. The following are equivalent:

- 1. *R* is Henselian.
- 2. For $f, g \in R[T]$, f monic, f' invertible in $R[T]_g$ and a commutative diagram

there exists a unique lift.

- 3. $R \rightarrow k$ has the right lifting property with respect to all étale ring maps $A \rightarrow B$.
- 4. Any finite R-algebra S is a finite product of local rings.

Completion

Definition

Let R be a ring and $I \subset R$ an ideal. The completion of R with respect to I (or I-adic completion of R) is the ring

$$\widehat{R}_I = \lim_n R/I^n.$$

Call *R* complete with respect to *I* if $R = \hat{R}_I$. Visualize completion as follows:

Completion

Example

- 1. If *I* is nilpotent, then $\widehat{R} = R$.
- 2. If I is idempotent, then $\widehat{R} = R/I$.
- 3. If R = k[T], then $\widehat{k[T]}_{(T-a)} = k[[T-a]]$.

4. If
$$R = \mathbb{Z}$$
, then $\widehat{\mathbb{Z}}_{(p)} = \mathbb{Z}_p$.

Complete local rings are Henselian

Lemma

Let (R, \mathfrak{m}, k) be a complete local ring. Then R is Henselian.

Proof.

Let $f \in R[T]$ monic. Let

1. $f_n \in (R/\mathfrak{m}^{n+1})[T]$ the image of $f \mod \mathfrak{m}^{n+1}$

2. f'_n the derivative of f_n with respect to T

3. $a_0 \in k$ a simple root of $f_0(a_0)$.

Assume there exists $a_n \in R/\mathfrak{m}^{n+1}$ such that

 $f_n(a_n) = 0$ and $\forall m < n : a_n = a_m \mod \mathfrak{m}^{m+1}$.

Choose a lift $b \in R/\mathfrak{m}^{n+2}$ of a_n . Then $f_{n+1}(b) \in \mathfrak{m}^{n+1}/\mathfrak{m}^{n+2}$.

Complete local rings are Henselian

Can we lift it?

- $f \in R[T]$
- ▷ $f_n, f'_n \in (R/\mathfrak{m}^{n+1})[T]$
- ▷ $a_n \in R/\mathfrak{m}^{m+1}$
- $f_n(a_n) = 0$
- $\triangleright \quad a_n = a_m \mod \mathfrak{m}^{m+1}$
- ▷ $b \in R/\mathfrak{m}^{n+2}$
- $\triangleright \quad b = a_n \mod \mathfrak{m}^{n+1}$
- $f_{n+1}(b) \in \mathfrak{m}^{n+1}/\mathfrak{m}^{n+2}$

Yes we can!

Proof (continued).

Note that $f'_{n+1}(b) = f'_0(a_0) \mod \mathfrak{m}$, so $f'_{n+1}(b)$ is invertible. Set

$$a_{n+1} = b - f_{n+1}(b)/f'_{n+1}(b).$$

Then $a_{n+1} - b \in \mathfrak{m}^{n+1}/\mathfrak{m}^{n+2}$. May evaluate $f_{n+1}(a_{n+1})$ using Taylor series expansion

$$f_{n+1}(a_{n+1}) = f_{n+1}(b) + (a_{n+1} - b)f'_{n+1}(b).$$

Hence $f_{n+1}(a_{n+1}) = 0$. Get a sequence $a = (a_0, a_1, ...) \in \lim_n R/\mathfrak{m}^n = R$, such that f(a) = 0 and $\bar{a} = a_0$. Thus R is Henselian.

Greenberg's theorem

The setup

1. Let (R, \mathfrak{m}, k) be a Henselian DVR, $K = \operatorname{Frac}(R)$ its field of fractions, \widehat{R} its completion and $\widehat{K} = \operatorname{Frac}(\widehat{R})$.

2. Let
$$I = (f_1, \ldots, f_r) \subset R[T_1, \ldots, T_n].$$

3. Assume $K \subset \widehat{K}$ is separable.

Theorem (Greenberg)

There exist $N \ge 1, c \ge 1, s \ge 0$, such that $\forall \nu \ge N$ and diagrams

the answer to the question "Can we lift it?" is "Yes we can!"

Schemes

An affine scheme is a locally ringed topological space (Spec A, O_{Spec A}).

▷ For $f \in A$, $D(f) = \{ \mathfrak{p} \mid f \notin \mathfrak{p} \}$ and $\mathcal{O}_{\operatorname{Spec} A}(D(f)) = A_f$.

- A scheme is a locally ringed topological space (X, \mathcal{O}_X) that is locally isomorphic to $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$, "a bunch of rings glued together along localizations."
- For a ring R, the R-valued points X(R) of X are maps Spec $R \to X$.
- ▷ $\pi: X \to \text{Spec } R$ is of finite type if it is quasi-compact, and $R_f \to \mathcal{O}_X(U)$ is of finite type for every $f \in R$ and open affine $U \subset \pi^{-1}(D(f))$.

Projective space

 $\mathbb{P}_{R}^{n} = \operatorname{Proj} R[T_{0}, \dots, T_{n}] \text{ can be covered by } n+1 \text{ copies of } \mathbb{A}_{R}^{n} = \operatorname{Spec} R[T_{0}/T_{i}, \dots, T_{n}/T_{i}] = D_{+}(T_{i}).$

▷ If R = k, then

 $\mathbb{P}_k^n(k) = \{(a_0:\ldots:a_n) \mid a_i \in k \text{ not all zero}\},\$

the classical $\mathbb{P}(k^{n+1})$.

► Homogeneous ideal $I \subset R[T_0, ..., T_n]$ defines

$$X = \operatorname{Proj} R[T_0, \ldots, T_n]/I \subset \mathbb{P}_R^n$$

a closed subscheme. X(k) given by simultaneous roots of $f \in I$.

Herman Rohrbach Can we lift it?

Corollary (1)

Let $X \to \text{Spec } R$ finite type. Then there exist $N \ge 1$, $c \ge 1$, $s \ge 0$, such that for any $\nu \ge N$ and any diagram

there exists a lift that makes the square commute.

Herr	nan	Ro	hrbach
Can	we	lift	it?

Proof.

Let $\{X_i\}_{i \in I}$ a finite affine cover of X. For S a local R-algebra,

$$X(S)=X_i(S).$$

Hence Spec $R/\mathfrak{m}^{\nu} \to X$ factors through X_i for some *i*. Each X_i satisfies Greenberg's theorem with N_i , c_i and s_i . Then $N = \max N_i$, $c = \max c_i$ and $s = \max s_i$ do the job.

- R Henselian DVR
- \triangleright N \geq 1, c \geq 1, s \geq 0
- $\triangleright \nu \ge N$
- $\succ X \rightarrow \operatorname{Spec} R$ finite type

Corollary (2)

The following are equivalent:

1. $X(R) \neq \emptyset$ 2. for all $\nu \ge 1$, $X(R/\mathfrak{m}^{\nu}) \neq \emptyset$ 3. $X(\widehat{R}) \neq \emptyset$.

Proof. $(1 \Rightarrow 3)$ is easy. $(3 \Rightarrow 2)$ is easy. $(2 \Rightarrow 1)$ is corollary (1).

...and from geometry to algebra!

Definition

A domain R is C_i if every homogeneous $f \in R[T_1, ..., T_n]_d$ of degree d, $n > d^i$, has a nontrivial zero in R.

Lemma

Let R be a C_i-PID and $I \subset R$. Let $f \in (R/I)[T_1, ..., T_n]_d$, $n > d^i$. Then $\operatorname{Proj}(R/I)[T_1, ..., T_n]/(f)$ has an (R/I)-valued point.

Proof.

Choose homogeneous $g \in R[T_1, ..., T_n]_d$ lying over f. Let $S = \operatorname{Proj} R[T_1, ..., T_n]/(g)$ and $S' = \operatorname{Proj}(R/I)[T_1, ..., T_n]/(f)$. As R is PID, $S(R) \neq \emptyset$ if and only if g has a nontrivial zero in R. Thus $S(R) \neq \emptyset$ by assumption, so $S(R/I) \neq \emptyset$, so $S'(R/I) \neq \emptyset$.

...and from geometry to algebra!

Theorem (Greenberg)

Let k be a C_i -field. Then k((t)) is C_{i+1} .

Proof.

It suffices to show that R = k[[t]] is C_{i+1} . Let $f \in R[T_1, \ldots, T_n]_d$, $n > d^i$. Set $X = \operatorname{Proj} R[T_1, \ldots, T_n]/(f)$. Then X is of finite type over R. Fix $\nu \ge 1$. There is a map

$$\frac{(R/t^{\nu})[T_1,\ldots,T_n]/(f_{<\nu})}{X' \longrightarrow X}.$$

Note that $R/t^{\nu} = k[t]/t^{\nu}$. As k[t] is C_{i+1} , the lemma above gives $x \in X'(R/t^{\nu})$. Hence $X(R/t^{\nu}) \neq \emptyset$, so by corollary (2), $X(R) \neq \emptyset$. Thus k[[t]] is C_{i+1} .

Can we lift it? Yes we can!

Questions?

Herman Rohrbach Can we lift it?