
1/21

Lecture 3: A Result on Fq((t))
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The Goal

Theorem (Special case of Greenberg)

Let k be a finite field. Then k((t)) is C2.

Tactic:
1. Reduce the problem to considering k[[t]];
2. Appeal to a result about discrete valuation rings to reduce to
k(t).
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Valued Fields with General Valuation Group

Definition

Let k be a field and let (Γ,+,≥) be a totally ordered abelian
group. A valuation on k is a function v : k× → Γ such that

(i) v(xy) = v(x) + v(y)

(ii) v(x + y) ≥ min{v(x), v(y)}.

The image v(k×) is called the value group, the pair (k, v) is
called a valued field, and the set R = {x ∈ k× | v(x) ≥ 0} ∪ {0}
is a ring called the valuation ring of v .

v is sometimes extended to 0 ∈ k by adjoining an element ∞ to Γ.
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Valued Fields with General Valuation Group

General facts:

- The ring R is local (i.e. has unique maximal ideal) integral
domain, with m = {x ∈ R | v(x) > 0}. Every element not in
m is a unit in R (general fact of local rings). The field R/m is
called the residue field of v ,R and/or (k , v).

- The ambient field may be recovered as k = Frac(R).

- For any x ∈ k we have x ∈ R or x−1 ∈ R (equivalent way of
defining valuation rings).

- For x , y ∈ R we have (x) = (y) if and only if v(x) = v(y).
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Discrete Valuation Rings

Definition

A discrete valuation is a valuation with value group isomorphic to
(Z,+). A discrete valuation ring (DVR) is an integral domain R
such that there is a discrete valuation on Frac(R) for which R is
the valuation ring.

Keep in mind the following intrinsic definition, which does not
require an ambient field:

Definition

A discrete valuation ring (DVR) is an integral domain R,
together with a surjective function v : R \ {0} → Z≥0 such that

(i) v(xy) = v(x) + v(y);

(ii) v(x + y) ≥ min{v(x), v(y)};
(iii) v(x) = 0 if and only if x is a unit in R, i.e. x has an inverse

x−1 ∈ R.
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Examples of DVRs

Examples of DVRs

- vp : Q× → Z the p-adic valuation vp(x) = a, where x = pa αβ
with α, β relatively prime to p. The valuation ring is Z(p).

- Fix irreducible f ∈ k[t]. Define vf : k(t)× → Z by vf (g) = a
where g = f a αβ with α and β not divisible by f . The valuation
ring is k[t](f ).

- The p-adic integers Zp with valuation vp : Zp \ {0} → Z
mapping a ∈ Zp to the index of the first non-zero coefficient
in the p-adic expansion of a. The fraction field is Qp.

- The field k((t)) of formal Laurent series,
∑∞

i=n ai t
i , n ∈ Z,

equipped with valuation v : k((t))× → Z given by
v(
∑∞

i=n ai t
i ) = m where m is minimal such that am 6= 0. The

valuation ring is k[[t]].
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Facts about DVRs

Equivalent definitions of DVR (there are many more):

(a) R is a local PID which is not a field.

(b) R is a local Dedekind domain which is not a field.

(c) R is regular, local integral domain of dimension 1.

(d) R is a UFD with a unique irreducible element (up to
multiplication by units).

(e) R is a Noetherian, local integral domain and not a field, with
principal maximal ideal.

m
(0)

Figure: A DVR geometrically. It has a closed point m and a ’fuzzy’ open,
dense point (0).
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Facts about DVRs

The unique maximal ideal m of a DVR R is principal:

By
surjectivity of v there is an element π ∈ R with v(π) = 1. Then
v(πn) = n. As (x) = (y) iff v(x) = v(y), the ideal (π) contains all
element of valuation > 0. But these are all the non-units of R, i.e.
(π) = m.

A generator of the maximal ideal of R is called a uniformizing
parameter.
As anything not in (π) is a unit, any element of R may be
expressed uniquely as uπn with u ∈ R×. The valuation may then
be recovered as v(uπn) = n.

From now on R will always denote a DVR, and π will be its
uniformizing parameter.
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Definition

Definition

Let Rn = R/(πn+1) and let ϕn : Rn → Rn−1 be the quotient.

A
sequence (ξ0, ξ1, . . . ) ∈

∏∞
i=0 Ri is said to be compatible if

ϕn(ξn) = ξn−1 for all n. The completion of R, denoted R̂, is the
subring of

∏∞
i=0 Ri consisting of all compatible sequences.

Equivalently, the completion of R is the inverse limit

R̂ := lim←−
n

Rn.

Either definition gives embedding R ↪→ R̂ mapping x ∈ R to the
element represented by the sequence ([x ]π, [x ]π2 , . . . ). If R ∼= R̂ via
this embedding, R is said to be complete.
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Definition

The completion R̂ of a DVR is in fact a complete DVR:

The
valuation on R̂ maps a compatible sequence (ξ0, ξ1, . . . ) to the
least index n such that ξn 6= 0. To see that R̂ is complete, it is
enough to note that by construction π becomes a unformizing
parameter of R̂ and R̂/(πn) ∼= R/(πn).
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Examples

Examples of complete DVRs

- The DVR Zp is complete. It is the completion of Z(p).

To prove this, note that Z(p)/p
nZ(p) = Z/pnZ, and that

mapping a powerseries in p, a0 + a1p · · ·+ anp
n + . . . with

0 ≤ ai < p to the compatible series (a0, a0 + a1p, . . . ) is an

isomorphism, so Zp
∼= Ẑ(p).

- The DVR k[[t]] is complete. It is the completion of k[t](t).
The argument is symmetric to the one above
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∼= Ẑ(p).

- The DVR k[[t]] is complete. It is the completion of k[t](t).
The argument is symmetric to the one above



12/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Let k = R/π, Rn = R/(πn+1) and fix for each α ∈ k a
representative a ∈ R. Then b ∈ Rn may be uniquely expressed as a
polynomial

b = a0 + a1π + · · ·+ anπ
n,

where ai ∈ R represents αi ∈ k.

Algorithm: Set α0 = [b]π. Then b − a0 = b1π for some b1 ∈ R.
Then replace b by b1, i.e. set α1 = [b1]π, and find b1 − a1 = b2π
etc.

With this expression, the quotient Rn → Rn−1 is simply

a0 + · · ·+ anπ
n 7→ a0 + · · ·+ an−1π

n−1.
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General Facts

If the DVR R is complete, the previous may be extended to R, in
the sense that each element ξ ∈ R may be expressed uniquely as a
power series in π, with coefficients in R/π.

Argument: Indeed, if ξ is represented by the compatible sequence
(ξ0, ξ1 . . . ), then each ξn may be expressed a polynomial in π with
coefficients in k. The fact that the sequence is compatible implies
that if ξn = a0 + · · ·+ anπ

n then ξn−1 = a0 + · · ·+ an−1π
n−1.

Then we express ξ as a power series where the πn coefficient is the
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General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.

⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0. Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.
Thus ξn 6∈ πRn, hence ξn is a unit.
⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!
Example: In general, if R = k[[t]], then k is the residue field of R.
Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



14/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.
⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0.

Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.
Thus ξn 6∈ πRn, hence ξn is a unit.
⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!
Example: In general, if R = k[[t]], then k is the residue field of R.
Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



14/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.
⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0. Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.

Thus ξn 6∈ πRn, hence ξn is a unit.
⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!
Example: In general, if R = k[[t]], then k is the residue field of R.
Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



14/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.
⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0. Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.
Thus ξn 6∈ πRn, hence ξn is a unit.

⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!
Example: In general, if R = k[[t]], then k is the residue field of R.
Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



14/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.
⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0. Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.
Thus ξn 6∈ πRn, hence ξn is a unit.
⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!
Example: In general, if R = k[[t]], then k is the residue field of R.
Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



14/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.
⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0. Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.
Thus ξn 6∈ πRn, hence ξn is a unit.
⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!

Example: In general, if R = k[[t]], then k is the residue field of R.
Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



14/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.
⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0. Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.
Thus ξn 6∈ πRn, hence ξn is a unit.
⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!
Example: In general, if R = k[[t]], then k is the residue field of R.

Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



14/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

General Facts

Suppose R is complete. Then x ∈ R is a unit if and only if the
constant term of x is non-zero.
⇒: Suppose ξ = (ξ0, ξ1, . . . ) ∈ R with ξ0 6= 0. Each ξn is a
polynomial in π over R/m, and as the sequence is compatible, with
ξ0 6= 0, this polynomial expression has a non-zero constant term.
Thus ξn 6∈ πRn, hence ξn is a unit.
⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need
not be!
Example: In general, if R = k[[t]], then k is the residue field of R.
Now, the residue field of Zp is Fp, which has characteristic p. But
Z ↪→ Zp, hence Zp has characteristic 0. Thus Zp 6∼= Fp[[t]].



15/21

Overview Valued Fields and Valuation Rings Complete Discrete Valuation Rings The Result on Fq((t))

Primitive Solutions

Suppose x = (x1, . . . , xn) ∈ Rn is a common solution to
homogeneous polynomials f1, . . . , fr ∈ R[t1, . . . , tn]. If atleast one
xi is a unit, i.e. xi 6∈ (π), we say x is primitive.

Assume x is a not necessarily primitive solution. Then

fj(π
−min{v(xi )}x) = π−min{v(xi )}fj(x) = 0,

and at least one coordinate of π−min{v(xi )}x is a unit, i.e.
π−min{v(xi )}x is primitive
Conclusion: We need only consider primitive solutions.
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Primitive Solutions

Theorem (I)

Let R be a complete DVR with uniformizing parameter π and
Rm = R/πm+1 all finite. Let f1, . . . , fr ∈ R[t1, . . . , tn] be
homogenous.

Then the f1, . . . , fr have a common primitive solution
in R if and only if the system of congruences

fi (x) ≡ 0 (mod πm+1), i = 1, . . . , r

has a primitive solution in Rm for all m = 0, 1 . . . .
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Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each
m. Let Sm ⊂ (Rm)n be the set of primitive solutions, and let ϕm

denote the quotient Rm → Rm−1 as well as the induced map
(Rm)n → (Rm−1)n.
Note that ϕm maps primitive solutions to primitive solutions.

Indeed, a solution mod πm+1 is also a solution mod πm.
Furthermore, if u 6∈ πRm, then ϕm(u) 6∈ πRm−1.
Now, let Sj ,m = ϕm ◦ · · · ◦ ϕj(Sj) ⊂ Sm for j > m. Then

Sm ⊇ Sm+1,m ⊇ · · · ⊇ Sj ,m ⊇ · · · .

As Rm is finite, all Sj ,m are finite (and by assumption non-empty).
Thus the intersection Tm is non-empty. In general
ϕm(Tm) = Tm−1 and by construction, Tm consists of solutions
mod πm+1 which lift to solutions mod πj+1 for all j > m. So pick
ξ0 ∈ T0, lift to ξ1 ∈ T1, and so forth. This then defines a
compatible sequence i.e defines ξ ∈ Rn. As ξ0 is primitive, so is
ξ.
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Primitive Solutions

Why is ξ primitive?: As notation, set ξi = (xi ,1, xi ,2, . . . , xi ,n). The
j ’th coordinate of ξ is then the compatible sequence (x0,j , x1,j , . . . ).
Suppose, without loss of generality, that xi ,1 is the unit coordinate
of ξi . Then x0,1 is a unit in R0, so in particular (x0,1, x1,1, . . . ) is a
unit in R (since any element in a complete DVR is a unit if and
only if the constant term is non-zero i.e. a unit in R0 = R/π).
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Recall:

Theorem (3, Chevalley-Warning)

Let f be a polynomial in n variables with coefficients in a finite
field k and let d be its degree. If n > d , then the number of
solutions of f in k is congruent to 0 modulo p. In particular, finite
fields are C1.

Theorem (5, Tsen/Lang-Nagata)

Let k be a Ci -field. If K is an extension of k of transcendence
degree n, then K is Ci+n.

Corollary

Let k be a finite field. Then k(t) is C2.
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Theorem (Special case of Greenberg)

Let k be a finite field. Then k((t)) is C2.

Proof: Let f be a homogeneous polynomial of degree d in n > d2

variables with coefficients in k((t)).

Clearing denominators, we
may assume the coefficients of f lie in k[[t]]. Our goal is then to
find a primitive solution in k[[t]]. Theorem (I) implies, that it is
enough to find a primitive solution modulo tm+1 for each m ≥ 0.
Reducing f modulo tm+1 each power series coefficient becomes a
polynomial in t of degree at most m. So we have homogeneous
polynomial equations of degree d in n > d2 variables, with
coefficients in k[t]. But k(t) is C2, so there is a non-trivial solution
in k(t). As the equation is homogeneous, we may clear
denominators of such a non-trivial solution, to obtain a non-trivial
primitive solution in k[t].
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find a primitive solution in k[[t]]. Theorem (I) implies, that it is
enough to find a primitive solution modulo tm+1 for each m ≥ 0.
Reducing f modulo tm+1 each power series coefficient becomes a
polynomial in t of degree at most m.

So we have homogeneous
polynomial equations of degree d in n > d2 variables, with
coefficients in k[t]. But k(t) is C2, so there is a non-trivial solution
in k(t). As the equation is homogeneous, we may clear
denominators of such a non-trivial solution, to obtain a non-trivial
primitive solution in k[t].
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Thank you for listening.
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