Lecture 3: A Result on $\mathbb{F}_q((t))$

GRK 2240 Workshop: Ci-FIELDS

November 12th, 2020 Speaker: Jakob Bergqvist

<u> </u>	
()verviev	M
0,00,010	

The Result on $\mathbb{F}_q((t))$

The Goal

Theorem (Special case of Greenberg)

Let k be a finite field. Then k((t)) is C_2 .

The Goal

Theorem (Special case of Greenberg)

Let k be a finite field. Then k((t)) is C_2 .

Tactic:

1. Reduce the problem to considering *k*[[*t*]];

2. Appeal to a result about discrete valuation rings to reduce to k(t).

	Valued Fields and Valuation Rings •••••••	
Valued Fields with	General Valuation Group	

Let k be a field and let $(\Gamma, +, \geq)$ be a totally ordered abelian group. A **valuation** on k is a function $v \colon k^{\times} \to \Gamma$ such that

(i)
$$v(xy) = v(x) + v(y)$$

(ii)
$$v(x+y) \ge \min\{v(x), v(y)\}.$$

	Valued Fields and Valuation Rings ●○○○○○	
Valued Fields with	n General Valuation Group	

Let k be a field and let $(\Gamma, +, \geq)$ be a totally ordered abelian group. A **valuation** on k is a function $v \colon k^{\times} \to \Gamma$ such that

(i)
$$v(xy) = v(x) + v(y)$$

(ii)
$$v(x+y) \ge \min\{v(x), v(y)\}.$$

The image $v(k^{\times})$ is called the **value group**, the pair (k, v) is called a **valued field**, and the set $R = \{x \in k^{\times} | v(x) \ge 0\} \cup \{0\}$ is a ring called the **valuation ring** of v.

	Valued Fields and Valuation Rings	
Valued Fields with	General Valuation Group	

Let k be a field and let $(\Gamma, +, \geq)$ be a totally ordered abelian group. A **valuation** on k is a function $v \colon k^{\times} \to \Gamma$ such that

(i)
$$v(xy) = v(x) + v(y)$$

(ii)
$$v(x+y) \geq \min\{v(x), v(y)\}$$

The image $v(k^{\times})$ is called the **value group**, the pair (k, v) is called a **valued field**, and the set $R = \{x \in k^{\times} | v(x) \ge 0\} \cup \{0\}$ is a ring called the **valuation ring** of v.

v is sometimes extended to $0 \in k$ by adjoining an element ∞ to Γ .

	Valued Fields and Valuation Rings ○●○○○○	
Valued Fields wit	h General Valuation Group	

The ring R is local (i.e. has unique maximal ideal) integral domain, with m = {x ∈ R | v(x) > 0}. Every element not in m is a unit in R (general fact of local rings). The field R/m is called the residue field of v, R and/or (k, v).

	Valued Fields and Valuation Rings ○●○○○○	
Valued Fields wit	h General Valuation Group	

- The ring R is local (i.e. has unique maximal ideal) integral domain, with $\mathfrak{m} = \{x \in R \mid v(x) > 0\}$. Every element not in \mathfrak{m} is a unit in R (general fact of local rings). The field R/\mathfrak{m} is called the **residue field** of v, R and/or (k, v).
- The ambient field may be recovered as k = Frac(R).

	Valued Fields and Valuation Rings ○●○○○○	
Valued Fields wit	h General Valuation Group	

- The ring R is local (i.e. has unique maximal ideal) integral domain, with $\mathfrak{m} = \{x \in R \mid v(x) > 0\}$. Every element not in \mathfrak{m} is a unit in R (general fact of local rings). The field R/\mathfrak{m} is called the **residue field** of v, R and/or (k, v).
- The ambient field may be recovered as k = Frac(R).
- For any x ∈ k we have x ∈ R or x⁻¹ ∈ R (equivalent way of defining valuation rings).

	Valued Fields and Valuation Rings ○●○○○○	
Valued Fields wit	h General Valuation Group	

- The ring R is local (i.e. has unique maximal ideal) integral domain, with $\mathfrak{m} = \{x \in R \mid v(x) > 0\}$. Every element not in \mathfrak{m} is a unit in R (general fact of local rings). The field R/\mathfrak{m} is called the **residue field** of v, R and/or (k, v).
- The ambient field may be recovered as k = Frac(R).
- For any $x \in k$ we have $x \in R$ or $x^{-1} \in R$ (equivalent way of defining valuation rings).
- For $x, y \in R$ we have (x) = (y) if and only if v(x) = v(y).

Valued Fields and Valuation Rings $\circ \circ \circ \circ \circ \circ$

Complete Discrete Valuation Rings

The Result on $\mathbb{F}_q((t))$

Discrete Valuation Rings

Definition

A **discrete valuation** is a valuation with value group isomorphic to $(\mathbb{Z}, +)$. A **discrete valuation ring** (DVR) is an integral domain R such that there is a discrete valuation on Frac(R) for which R is the valuation ring.

Valued Fields and Valuation Rings $\circ \circ \circ \circ \circ \circ$

Complete Discrete Valuation Rings

The Result on $\mathbb{F}_q((t))$

Discrete Valuation Rings

Definition

A **discrete valuation** is a valuation with value group isomorphic to $(\mathbb{Z}, +)$. A **discrete valuation ring** (DVR) is an integral domain *R* such that there is a discrete valuation on Frac(R) for which *R* is the valuation ring.

Keep in mind the following intrinsic definition, which does not require an ambient field:

Definition

A discrete valuation ring (DVR) is an integral domain R, together with a surjective function $v: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that (i) v(xy) = v(x) + v(y); (ii) $v(x + y) \ge \min\{v(x), v(y)\}$; (iii) v(x) = 0 if and only if x is a unit in R, i.e. x has an inverse $x^{-1} \in R$.

v_p: Q[×] → Z the p-adic valuation v_p(x) = a, where x = p^a α/β with α, β relatively prime to p. The valuation ring is Z_(p).

Examples of DVRs

- v_p: Q[×] → Z the p-adic valuation v_p(x) = a, where x = p^a α/β with α, β relatively prime to p. The valuation ring is Z(p).
- Fix irreducible $f \in k[t]$. Define $v_f \colon k(t)^{\times} \to \mathbb{Z}$ by $v_f(g) = a$ where $g = f^a \frac{\alpha}{\beta}$ with α and β not divisible by f. The valuation ring is $k[t]_{(f)}$.

Examples of DVRs

- v_p: Q[×] → Z the p-adic valuation v_p(x) = a, where x = p^a α/β with α, β relatively prime to p. The valuation ring is Z(p).
- Fix irreducible $f \in k[t]$. Define $v_f : k(t)^{\times} \to \mathbb{Z}$ by $v_f(g) = a$ where $g = f^a \frac{\alpha}{\beta}$ with α and β not divisible by f. The valuation ring is $k[t]_{(f)}$.
- The *p*-adic integers Z_p with valuation v_p: Z_p \ {0} → Z mapping a ∈ Z_p to the index of the first non-zero coefficient in the *p*-adic expansion of a. The fraction field is Q_p.

Examples of DVRs

- v_p: Q[×] → Z the p-adic valuation v_p(x) = a, where x = p^a α/β with α, β relatively prime to p. The valuation ring is Z(p).
- Fix irreducible $f \in k[t]$. Define $v_f : k(t)^{\times} \to \mathbb{Z}$ by $v_f(g) = a$ where $g = f^a \frac{\alpha}{\beta}$ with α and β not divisible by f. The valuation ring is $k[t]_{(f)}$.
- The *p*-adic integers Z_p with valuation v_p: Z_p \ {0} → Z mapping a ∈ Z_p to the index of the first non-zero coefficient in the *p*-adic expansion of a. The fraction field is Q_p.
- The field k((t)) of formal Laurent series, $\sum_{i=n}^{\infty} a_i t^i$, $n \in \mathbb{Z}$, equipped with valuation $v: k((t))^{\times} \to \mathbb{Z}$ given by $v(\sum_{i=n}^{\infty} a_i t^i) = m$ where m is minimal such that $a_m \neq 0$. The valuation ring is k[[t]].

Facts about DVRs

Equivalent definitions of DVR (there are many more):

- (a) R is a local PID which is not a field.
- (b) R is a local Dedekind domain which is not a field.
- (c) R is regular, local integral domain of dimension 1.
- (d) *R* is a UFD with a unique irreducible element (up to multiplication by units).
- (e) *R* is a Noetherian, local integral domain and not a field, with principal maximal ideal.

Facts about DVRs

Equivalent definitions of DVR (there are many more):

- (a) R is a local PID which is not a field.
- (b) R is a local Dedekind domain which is not a field.
- (c) R is regular, local integral domain of dimension 1.
- (d) *R* is a UFD with a unique irreducible element (up to multiplication by units).
- (e) *R* is a Noetherian, local integral domain and not a field, with principal maximal ideal.

Figure: A DVR geometrically. It has a closed point $\mathfrak m$ and a 'fuzzy' open, dense point (0).

	Valued Fields and Valuation Rings ○○○○○●	
Facts about DVR	's	

The unique maximal ideal \mathfrak{m} of a DVR R is principal:

	Valued Fields and Valuation Rings	
Facts about DVRs		

	Valued Fields and Valuation Rings ○○○○○●	
Facts about DVR	S	

A generator of the maximal ideal of R is called a **uniformizing parameter**.

	Valued Fields and Valuation Rings ○○○○○●	
Facts about [OVRs	

A generator of the maximal ideal of R is called a **uniformizing parameter**.

As anything not in (π) is a unit, any element of R may be expressed uniquely as $u\pi^n$ with $u \in R^{\times}$.

	Valued Fields and Valuation Rings ○○○○○●	
Facts about DVR	S	

A generator of the maximal ideal of R is called a **uniformizing parameter**.

As anything not in (π) is a unit, any element of R may be expressed uniquely as $u\pi^n$ with $u \in R^{\times}$. The valuation may then be recovered as $v(u\pi^n) = n$.

	Valued Fields and Valuation Rings ○○○○○●	
Facts about DVR	S	

A generator of the maximal ideal of R is called a **uniformizing parameter**.

As anything not in (π) is a unit, any element of R may be expressed uniquely as $u\pi^n$ with $u \in R^{\times}$. The valuation may then be recovered as $v(u\pi^n) = n$.

From now on R will always denote a DVR, and π will be its uniformizing parameter.

	Complete Discrete Valuation Rings	
Definition		

Let $R_n = R/(\pi^{n+1})$ and let $\varphi_n \colon R_n \to R_{n-1}$ be the quotient.

	Complete Discrete Valuation Rings	
Definition		

Let $R_n = R/(\pi^{n+1})$ and let $\varphi_n \colon R_n \to R_{n-1}$ be the quotient. A sequence $(\xi_0, \xi_1, \dots) \in \prod_{i=0}^{\infty} R_i$ is said to be **compatible** if $\varphi_n(\xi_n) = \xi_{n-1}$ for all n.

	Complete Discrete Valuation Rings	
Definition		

Let $R_n = R/(\pi^{n+1})$ and let $\varphi_n \colon R_n \to R_{n-1}$ be the quotient. A sequence $(\xi_0, \xi_1, \dots) \in \prod_{i=0}^{\infty} R_i$ is said to be **compatible** if $\varphi_n(\xi_n) = \xi_{n-1}$ for all *n*. The **completion** of *R*, denoted \widehat{R} , is the subring of $\prod_{i=0}^{\infty} R_i$ consisting of all compatible sequences.

	Complete Discrete Valuation Rings	
Definition		

Let $R_n = R/(\pi^{n+1})$ and let $\varphi_n \colon R_n \to R_{n-1}$ be the quotient. A sequence $(\xi_0, \xi_1, \dots) \in \prod_{i=0}^{\infty} R_i$ is said to be **compatible** if $\varphi_n(\xi_n) = \xi_{n-1}$ for all *n*. The **completion** of *R*, denoted \widehat{R} , is the subring of $\prod_{i=0}^{\infty} R_i$ consisting of all compatible sequences. Equivalently, the completion of *R* is the inverse limit

$$\widehat{R} := \varprojlim_n R_n.$$

	Complete Discrete Valuation Rings	
Definition		

Let $R_n = R/(\pi^{n+1})$ and let $\varphi_n \colon R_n \to R_{n-1}$ be the quotient. A sequence $(\xi_0, \xi_1, \dots) \in \prod_{i=0}^{\infty} R_i$ is said to be **compatible** if $\varphi_n(\xi_n) = \xi_{n-1}$ for all *n*. The **completion** of *R*, denoted \widehat{R} , is the subring of $\prod_{i=0}^{\infty} R_i$ consisting of all compatible sequences. Equivalently, the completion of *R* is the inverse limit

$$\widehat{R} := \varprojlim_n R_n.$$

Either definition gives embedding $R \hookrightarrow \widehat{R}$ mapping $x \in R$ to the element represented by the sequence $([x]_{\pi}, [x]_{\pi^2}, ...)$. If $R \cong \widehat{R}$ via this embedding, R is said to be **complete**.

	Complete Discrete Valuation Rings	
Definition		

The completion \hat{R} of a DVR is in fact a complete DVR:

	Complete Discrete Valuation Rings	
Definition		

The completion \widehat{R} of a DVR is in fact a complete DVR: The valuation on \widehat{R} maps a compatible sequence $(\xi_0, \xi_1, ...)$ to the least index *n* such that $\xi_n \neq 0$. To see that \widehat{R} is complete, it is enough to note that by construction π becomes a unformizing parameter of \widehat{R} and $\widehat{R}/(\pi^n) \cong R/(\pi^n)$.

The Result on $\mathbb{F}_q((t))$

Examples

Examples of complete DVRs

- The DVR \mathbb{Z}_p is complete. It is the completion of $\mathbb{Z}_{(p)}$.

Examples

Examples of complete DVRs

- The DVR \mathbb{Z}_p is complete. It is the completion of $\mathbb{Z}_{(p)}$. To prove this, note that $\mathbb{Z}_{(p)}/p^n\mathbb{Z}_{(p)} = \mathbb{Z}/p^n\mathbb{Z}$, and that mapping a powerseries in p, $a_0 + a_1p \cdots + a_np^n + \ldots$ with $0 \le a_i < p$ to the compatible series $(a_0, a_0 + a_1p, \ldots)$ is an isomorphism, so $\mathbb{Z}_p \cong \widehat{\mathbb{Z}_{(p)}}$.

Examples

Examples of complete DVRs

- The DVR \mathbb{Z}_p is complete. It is the completion of $\mathbb{Z}_{(p)}$. To prove this, note that $\mathbb{Z}_{(p)}/p^n\mathbb{Z}_{(p)} = \mathbb{Z}/p^n\mathbb{Z}$, and that mapping a powerseries in p, $a_0 + a_1p \cdots + a_np^n + \ldots$ with $0 \le a_i < p$ to the compatible series $(a_0, a_0 + a_1p, \ldots)$ is an isomorphism, so $\mathbb{Z}_p \cong \widehat{\mathbb{Z}_{(p)}}$.
- The DVR k[[t]] is complete. It is the completion of k[t]_(t).
 The argument is symmetric to the one above

	Complete Discrete Valuation Rings	
General Facts		

Let
$$k = R/\pi$$
, $R_n = R/(\pi^{n+1})$ and fix for each $\alpha \in k$ a
representative $a \in R$. Then $b \in R_n$ may be uniquely expressed as a
polynomial

$$b=a_0+a_1\pi+\cdots+a_n\pi^n,$$

where $a_i \in R$ represents $\alpha_i \in k$.

	Complete Discrete Valuation Rings	
General Facts		

Let
$$k = R/\pi$$
, $R_n = R/(\pi^{n+1})$ and fix for each $\alpha \in k$ a
representative $a \in R$. Then $b \in R_n$ may be uniquely expressed as a
polynomial

$$b=a_0+a_1\pi+\cdots+a_n\pi^n,$$

where $a_i \in R$ represents $\alpha_i \in k$. Algorithm: Set $\alpha_0 = [b]_{\pi}$. Then $b - a_0 = b_1 \pi$ for some $b_1 \in R$. Then replace b by b_1 , i.e. set $\alpha_1 = [b_1]_{\pi}$, and find $b_1 - a_1 = b_2 \pi$ etc.
	Complete Discrete Valuation Rings	
General Facts		

Let
$$k = R/\pi$$
, $R_n = R/(\pi^{n+1})$ and fix for each $\alpha \in k$ a
representative $a \in R$. Then $b \in R_n$ may be uniquely expressed as a
polynomial

$$b=a_0+a_1\pi+\cdots+a_n\pi^n,$$

where $a_i \in R$ represents $\alpha_i \in k$. Algorithm: Set $\alpha_0 = [b]_{\pi}$. Then $b - a_0 = b_1 \pi$ for some $b_1 \in R$. Then replace b by b_1 , i.e. set $\alpha_1 = [b_1]_{\pi}$, and find $b_1 - a_1 = b_2 \pi$ etc.

With this expression, the quotient $R_n \rightarrow R_{n-1}$ is simply

$$a_0 + \cdots + a_n \pi^n \mapsto a_0 + \cdots + a_{n-1} \pi^{n-1}$$

	Complete Discrete Valuation Rings	
General Facts		

	Complete Discrete Valuation Rings	
General Facts		

Argument: Indeed, if ξ is represented by the compatible sequence $(\xi_0, \xi_1...)$, then each ξ_n may be expressed a polynomial in π with coefficients in k.

	Complete Discrete Valuation Rings	
General Facts		

Argument: Indeed, if ξ is represented by the compatible sequence $(\xi_0, \xi_1...)$, then each ξ_n may be expressed a polynomial in π with coefficients in k. The fact that the sequence is compatible implies that if $\xi_n = a_0 + \cdots + a_n \pi^n$ then $\xi_{n-1} = a_0 + \cdots + a_{n-1} \pi^{n-1}$.

	Complete Discrete Valuation Rings	
General Facts		

Argument: Indeed, if ξ is represented by the compatible sequence $(\xi_0, \xi_1...)$, then each ξ_n may be expressed a polynomial in π with coefficients in k. The fact that the sequence is compatible implies that if $\xi_n = a_0 + \cdots + a_n \pi^n$ then $\xi_{n-1} = a_0 + \cdots + a_{n-1} \pi^{n-1}$.

Then we express ξ as a power series where the π^n coefficient is the π^n coefficient of ξ_n, ξ_{n+1}, \ldots

	Complete Discrete Valuation Rings	
General Facts		

	Complete Discrete Valuation Rings	
General Facts		

 \Rightarrow : Suppose $\xi = (\xi_0, \xi_1, \dots) \in R$ with $\xi_0 \neq 0$.

	Complete Discrete Valuation Rings	
General Facts		

⇒: Suppose $\xi = (\xi_0, \xi_1, ...) \in R$ with $\xi_0 \neq 0$. Each ξ_n is a polynomial in π over R/\mathfrak{m} , and as the sequence is compatible, with $\xi_0 \neq 0$, this polynomial expression has a non-zero constant term.

	Complete Discrete Valuation Rings	
General Facts		

⇒: Suppose $\xi = (\xi_0, \xi_1, ...) \in R$ with $\xi_0 \neq 0$. Each ξ_n is a polynomial in π over R/\mathfrak{m} , and as the sequence is compatible, with $\xi_0 \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_n \notin \pi R_n$, hence ξ_n is a unit.

	Complete Discrete Valuation Rings	
General Facts		

⇒: Suppose $\xi = (\xi_0, \xi_1, ...) \in R$ with $\xi_0 \neq 0$. Each ξ_n is a polynomial in π over R/\mathfrak{m} , and as the sequence is compatible, with $\xi_0 \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_n \notin \pi R_n$, hence ξ_n is a unit. ⇐: Fun exercise.

	Complete Discrete Valuation Rings	
General Facts		

⇒: Suppose $\xi = (\xi_0, \xi_1, ...) \in R$ with $\xi_0 \neq 0$. Each ξ_n is a polynomial in π over R/\mathfrak{m} , and as the sequence is compatible, with $\xi_0 \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_n \notin \pi R_n$, hence ξ_n is a unit. ⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need not be!

	Complete Discrete Valuation Rings	
General Facts		

⇒: Suppose $\xi = (\xi_0, \xi_1, ...) \in R$ with $\xi_0 \neq 0$. Each ξ_n is a polynomial in π over R/\mathfrak{m} , and as the sequence is compatible, with $\xi_0 \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_n \notin \pi R_n$, hence ξ_n is a unit. ⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need not be!

Example: In general, if R = k[[t]], then k is the residue field of R.

	Complete Discrete Valuation Rings	
General Facts		

⇒: Suppose $\xi = (\xi_0, \xi_1, ...) \in R$ with $\xi_0 \neq 0$. Each ξ_n is a polynomial in π over R/\mathfrak{m} , and as the sequence is compatible, with $\xi_0 \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_n \notin \pi R_n$, hence ξ_n is a unit. ⇐: Fun exercise.

Slogan: A complete DVR looks like a power series ring, but it need not be!

Example: In general, if R = k[[t]], then k is the residue field of R. Now, the residue field of \mathbb{Z}_p is \mathbb{F}_p , which has characteristic p. But $\mathbb{Z} \hookrightarrow \mathbb{Z}_p$, hence \mathbb{Z}_p has characteristic 0. Thus $\mathbb{Z}_p \not\cong \mathbb{F}_p[[t]]$.

		Complete Discrete Valuation Rings	
Primitive Solution	15		

Suppose $x = (x_1, ..., x_n) \in \mathbb{R}^n$ is a common solution to homogeneous polynomials $f_1, ..., f_r \in \mathbb{R}[t_1, ..., t_n]$. If atleast one x_i is a unit, i.e. $x_i \notin (\pi)$, we say x is **primitive**.

		Complete Discrete Valuation Rings	
Primitive Solution	15		

Suppose $x = (x_1, ..., x_n) \in \mathbb{R}^n$ is a common solution to homogeneous polynomials $f_1, ..., f_r \in \mathbb{R}[t_1, ..., t_n]$. If atleast one x_i is a unit, i.e. $x_i \notin (\pi)$, we say x is **primitive**. Assume x is a not necessarily primitive solution.

		Complete Discrete Valuation Rings	
Primitive Solution	15		

Suppose $x = (x_1, ..., x_n) \in \mathbb{R}^n$ is a common solution to homogeneous polynomials $f_1, ..., f_r \in \mathbb{R}[t_1, ..., t_n]$. If atleast one x_i is a unit, i.e. $x_i \notin (\pi)$, we say x is **primitive**. Assume x is a not necessarily primitive solution. Then

$$f_j(\pi^{-\min\{v(x_i)\}}x) = \pi^{-\min\{v(x_i)\}}f_j(x) = 0,$$

and at least one coordinate of $\pi^{-\min\{v(x_i)\}}x$ is a unit, i.e. $\pi^{-\min\{v(x_i)\}}x$ is primitive

		Complete Discrete Valuation Rings	
Primitive Solution	15		

Suppose $x = (x_1, ..., x_n) \in \mathbb{R}^n$ is a common solution to homogeneous polynomials $f_1, ..., f_r \in \mathbb{R}[t_1, ..., t_n]$. If atleast one x_i is a unit, i.e. $x_i \notin (\pi)$, we say x is **primitive**. Assume x is a not necessarily primitive solution. Then

$$f_j(\pi^{-\min\{v(x_i)\}}x) = \pi^{-\min\{v(x_i)\}}f_j(x) = 0,$$

and at least one coordinate of $\pi^{-\min\{v(x_i)\}}x$ is a unit, i.e. $\pi^{-\min\{v(x_i)\}}x$ is primitive

Conclusion: We need only consider primitive solutions.

		ds and Valuation Rings Complete Di 0000000●
Prim	itive Solutions	

Theorem (I)

Let R be a complete DVR with uniformizing parameter π and $R_m = R/\pi^{m+1}$ all finite. Let $f_1, \ldots, f_r \in R[t_1, \ldots, t_n]$ be homogenous.

Primitive Solut	ions

Theorem (I)

Let R be a complete DVR with uniformizing parameter π and $R_m = R/\pi^{m+1}$ all finite. Let $f_1, \ldots, f_r \in R[t_1, \ldots, t_n]$ be homogenous. Then the f_1, \ldots, f_r have a common primitive solution in R if and only if the system of congruences

$$f_i(x) \equiv 0 \pmod{\pi^{m+1}}, \quad i = 1, \dots, r$$

has a primitive solution in R_m for all $m = 0, 1 \dots$

Valued Fields and Valuation Rings

Complete Discrete Valuation Rings

The Result on $\mathbb{F}_q((t))$

Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each m. Let $S_m \subset (R_m)^n$ be the set of primitive solutions, and let φ_m denote the quotient $R_m \to R_{m-1}$ as well as the induced map $(R_m)^n \to (R_{m-1})^n$.

Note that φ_m maps primitive solutions to primitive solutions.

Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each m. Let $S_m \subset (R_m)^n$ be the set of primitive solutions, and let φ_m denote the quotient $R_m \to R_{m-1}$ as well as the induced map $(R_m)^n \to (R_{m-1})^n$.

Note that φ_m maps primitive solutions to primitive solutions. Indeed, a solution mod π^{m+1} is also a solution mod π^m .

Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each m. Let $S_m \subset (R_m)^n$ be the set of primitive solutions, and let φ_m denote the quotient $R_m \to R_{m-1}$ as well as the induced map $(R_m)^n \to (R_{m-1})^n$.

Note that φ_m maps primitive solutions to primitive solutions. Indeed, a solution mod π^{m+1} is also a solution mod π^m . Furthermore, if $u \notin \pi R_m$, then $\varphi_m(u) \notin \pi R_{m-1}$.

Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each m. Let $S_m \subset (R_m)^n$ be the set of primitive solutions, and let φ_m denote the quotient $R_m \to R_{m-1}$ as well as the induced map $(R_m)^n \to (R_{m-1})^n$.

Note that φ_m maps primitive solutions to primitive solutions. Indeed, a solution mod π^{m+1} is also a solution mod π^m . Furthermore, if $u \notin \pi R_m$, then $\varphi_m(u) \notin \pi R_{m-1}$. Now, let $S_{j,m} = \varphi_m \circ \cdots \circ \varphi_j(S_j) \subset S_m$ for j > m. Then

$$S_m \supseteq S_{m+1,m} \supseteq \cdots \supseteq S_{j,m} \supseteq \cdots$$

As R_m is finite, all $S_{i,m}$ are finite (and by assumption non-empty).

Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each m. Let $S_m \subset (R_m)^n$ be the set of primitive solutions, and let φ_m denote the quotient $R_m \to R_{m-1}$ as well as the induced map $(R_m)^n \to (R_{m-1})^n$.

Note that φ_m maps primitive solutions to primitive solutions. Indeed, a solution mod π^{m+1} is also a solution mod π^m . Furthermore, if $u \notin \pi R_m$, then $\varphi_m(u) \notin \pi R_{m-1}$. Now, let $S_{j,m} = \varphi_m \circ \cdots \circ \varphi_j(S_j) \subset S_m$ for j > m. Then

$$S_m \supseteq S_{m+1,m} \supseteq \cdots \supseteq S_{j,m} \supseteq \cdots$$

As R_m is finite, all $S_{j,m}$ are finite (and by assumption non-empty). Thus the intersection T_m is non-empty.

Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each m. Let $S_m \subset (R_m)^n$ be the set of primitive solutions, and let φ_m denote the quotient $R_m \to R_{m-1}$ as well as the induced map $(R_m)^n \to (R_{m-1})^n$.

Note that φ_m maps primitive solutions to primitive solutions. Indeed, a solution mod π^{m+1} is also a solution mod π^m . Furthermore, if $u \notin \pi R_m$, then $\varphi_m(u) \notin \pi R_{m-1}$. Now, let $S_{j,m} = \varphi_m \circ \cdots \circ \varphi_j(S_j) \subset S_m$ for j > m. Then

$$S_m \supseteq S_{m+1,m} \supseteq \cdots \supseteq S_{j,m} \supseteq \cdots$$

As R_m is finite, all $S_{j,m}$ are finite (and by assumption non-empty). Thus the intersection T_m is non-empty. In general $\varphi_m(T_m) = T_{m-1}$ and by construction, T_m consists of solutions mod π^{m+1} which lift to solutions mod π^{j+1} for all j > m.

Primitive Solutions

Proof: Suppose there is a primitive congruence solution for each m. Let $S_m \subset (R_m)^n$ be the set of primitive solutions, and let φ_m denote the quotient $R_m \to R_{m-1}$ as well as the induced map $(R_m)^n \to (R_{m-1})^n$.

Note that φ_m maps primitive solutions to primitive solutions. Indeed, a solution mod π^{m+1} is also a solution mod π^m . Furthermore, if $u \notin \pi R_m$, then $\varphi_m(u) \notin \pi R_{m-1}$. Now, let $S_{j,m} = \varphi_m \circ \cdots \circ \varphi_j(S_j) \subset S_m$ for j > m. Then

$$S_m \supseteq S_{m+1,m} \supseteq \cdots \supseteq S_{j,m} \supseteq \cdots$$

As R_m is finite, all $S_{j,m}$ are finite (and by assumption non-empty). Thus the intersection T_m is non-empty. In general $\varphi_m(T_m) = T_{m-1}$ and by construction, T_m consists of solutions mod π^{m+1} which lift to solutions mod π^{j+1} for all j > m. So pick $\xi_0 \in T_0$, lift to $\xi_1 \in T_1$, and so forth. This then defines a compatible sequence i.e defines $\xi \in R^n$. As ξ_0 is primitive, so is ξ .

		Complete Discrete Valuation Rings	
Primitive Solu	utions		

Why is ξ primitive?: As notation, set $\xi_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,n})$. The *j*'th coordinate of ξ is then the compatible sequence $(x_{0,j}, x_{1,j}, \ldots)$. Suppose, without loss of generality, that $x_{i,1}$ is the unit coordinate of ξ_i . Then $x_{0,1}$ is a unit in R_0 , so in particular $(x_{0,1}, x_{1,1}, \ldots)$ is a unit in R (since any element in a complete DVR is a unit if and only if the constant term is non-zero i.e. a unit in $R_0 = R/\pi$).

Recall:

Theorem (3, Chevalley-Warning)

Let f be a polynomial in n variables with coefficients in a finite field k and let d be its degree. If n > d, then the number of solutions of f in k is congruent to 0 modulo p. In particular, finite fields are C_1 .

Theorem (5, Tsen/Lang-Nagata)

Let k be a C_i -field. If K is an extension of k of transcendence degree n, then K is C_{i+n} .

Recall:

Theorem (3, Chevalley-Warning)

Let f be a polynomial in n variables with coefficients in a finite field k and let d be its degree. If n > d, then the number of solutions of f in k is congruent to 0 modulo p. In particular, finite fields are C_1 .

Theorem (5, Tsen/Lang-Nagata)

Let k be a C_i -field. If K is an extension of k of transcendence degree n, then K is C_{i+n} .

Corollary

Let k be a finite field. Then k(t) is C_2 .

Let k be a finite field. Then k((t)) is C_2 .

Proof: Let f be a homogeneous polynomial of degree d in $n > d^2$ variables with coefficients in k((t)).

Let k be a finite field. Then k((t)) is C_2 .

Proof: Let f be a homogeneous polynomial of degree d in $n > d^2$ variables with coefficients in k((t)). Clearing denominators, we may assume the coefficients of f lie in k[[t]]. Our goal is then to find a primitive solution in k[[t]].

Complete Discrete Valuation Rings

The Result on $\mathbb{F}_q((t))$ $\circ \bullet \circ$

Theorem (Special case of Greenberg)

Let k be a finite field. Then k((t)) is C_2 .

Proof: Let f be a homogeneous polynomial of degree d in $n > d^2$ variables with coefficients in k((t)). Clearing denominators, we may assume the coefficients of f lie in k[[t]]. Our goal is then to find a primitive solution in k[[t]]. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each $m \ge 0$.

Let k be a finite field. Then k((t)) is C_2 .

Proof: Let f be a homogeneous polynomial of degree d in $n > d^2$ variables with coefficients in k((t)). Clearing denominators, we may assume the coefficients of f lie in k[[t]]. Our goal is then to find a primitive solution in k[[t]]. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each $m \ge 0$. Reducing f modulo t^{m+1} each power series coefficient becomes a polynomial in t of degree at most m.

Let k be a finite field. Then k((t)) is C_2 .

Proof: Let f be a homogeneous polynomial of degree d in $n > d^2$ variables with coefficients in k((t)). Clearing denominators, we may assume the coefficients of f lie in k[[t]]. Our goal is then to find a primitive solution in k[[t]]. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each $m \ge 0$. Reducing f modulo t^{m+1} each power series coefficient becomes a polynomial in t of degree at most m. So we have homogeneous polynomial equations of degree d in $n > d^2$ variables, with coefficients in k[t].

Let k be a finite field. Then k((t)) is C_2 .

Proof: Let f be a homogeneous polynomial of degree d in $n > d^2$ variables with coefficients in k((t)). Clearing denominators, we may assume the coefficients of f lie in k[[t]]. Our goal is then to find a primitive solution in k[[t]]. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each m > 0. Reducing f modulo t^{m+1} each power series coefficient becomes a polynomial in t of degree at most m. So we have homogeneous polynomial equations of degree d in $n > d^2$ variables, with coefficients in k[t]. But k(t) is C_2 , so there is a non-trivial solution in k(t). As the equation is homogeneous, we may clear denominators of such a non-trivial solution, to obtain a non-trivial primitive solution in k[t].

Thank you for listening.