Lecture 3: A Result on $\mathbb{F}_{q}((t))$

GRK 2240 Workshop: C_{i}-FIELDS

November 12th, 2020

Speaker: Jakob Bergqvist

The Goal

Theorem (Special case of Greenberg)
Let k be a finite field. Then $k((t))$ is C_{2}.

The Goal

Theorem (Special case of Greenberg)

Let k be a finite field. Then $k((t))$ is C_{2}.
Tactic:

1. Reduce the problem to considering $k[[t]]$;
2. Appeal to a result about discrete valuation rings to reduce to $k(t)$.

Definition

Let k be a field and let $(\Gamma,+, \geq)$ be a totally ordered abelian group. A valuation on k is a function $v: k^{\times} \rightarrow \Gamma$ such that
(i) $v(x y)=v(x)+v(y)$
(ii) $v(x+y) \geq \min \{v(x), v(y)\}$.

Definition

Let k be a field and let $(\Gamma,+, \geq)$ be a totally ordered abelian group. A valuation on k is a function $v: k^{\times} \rightarrow \Gamma$ such that
(i) $v(x y)=v(x)+v(y)$
(ii) $v(x+y) \geq \min \{v(x), v(y)\}$.

The image $v\left(k^{\times}\right)$is called the value group, the pair (k, v) is called a valued field, and the set $R=\left\{x \in k^{\times} \mid v(x) \geq 0\right\} \cup\{0\}$ is a ring called the valuation ring of v.

Definition

Let k be a field and let $(\Gamma,+, \geq)$ be a totally ordered abelian group. A valuation on k is a function $v: k^{\times} \rightarrow \Gamma$ such that
(i) $v(x y)=v(x)+v(y)$
(ii) $v(x+y) \geq \min \{v(x), v(y)\}$.

The image $v\left(k^{\times}\right)$is called the value group, the pair (k, v) is called a valued field, and the set $R=\left\{x \in k^{\times} \mid v(x) \geq 0\right\} \cup\{0\}$ is a ring called the valuation ring of v.
v is sometimes extended to $0 \in k$ by adjoining an element ∞ to Γ.

General facts:

- The ring R is local (i.e. has unique maximal ideal) integral domain, with $\mathfrak{m}=\{x \in R \mid v(x)>0\}$. Every element not in \mathfrak{m} is a unit in R (general fact of local rings). The field R / \mathfrak{m} is called the residue field of v, R and/or (k, v).

General facts:

- The ring R is local (i.e. has unique maximal ideal) integral domain, with $\mathfrak{m}=\{x \in R \mid v(x)>0\}$. Every element not in \mathfrak{m} is a unit in R (general fact of local rings). The field R / \mathfrak{m} is called the residue field of v, R and/or (k, v).
- The ambient field may be recovered as $k=\operatorname{Frac}(R)$.

General facts:

- The ring R is local (i.e. has unique maximal ideal) integral domain, with $\mathfrak{m}=\{x \in R \mid v(x)>0\}$. Every element not in \mathfrak{m} is a unit in R (general fact of local rings). The field R / \mathfrak{m} is called the residue field of v, R and/or (k, v).
- The ambient field may be recovered as $k=\operatorname{Frac}(R)$.
- For any $x \in k$ we have $x \in R$ or $x^{-1} \in R$ (equivalent way of defining valuation rings).

General facts:

- The ring R is local (i.e. has unique maximal ideal) integral domain, with $\mathfrak{m}=\{x \in R \mid v(x)>0\}$. Every element not in \mathfrak{m} is a unit in R (general fact of local rings). The field R / \mathfrak{m} is called the residue field of v, R and/or (k, v).
- The ambient field may be recovered as $k=\operatorname{Frac}(R)$.
- For any $x \in k$ we have $x \in R$ or $x^{-1} \in R$ (equivalent way of defining valuation rings).
- For $x, y \in R$ we have $(x)=(y)$ if and only if $v(x)=v(y)$.

Definition

A discrete valuation is a valuation with value group isomorphic to $(\mathbb{Z},+)$. A discrete valuation ring (DVR) is an integral domain R such that there is a discrete valuation on $\operatorname{Frac}(R)$ for which R is the valuation ring.

Definition

A discrete valuation is a valuation with value group isomorphic to $(\mathbb{Z},+)$. A discrete valuation ring (DVR) is an integral domain R such that there is a discrete valuation on $\operatorname{Frac}(R)$ for which R is the valuation ring.

Keep in mind the following intrinsic definition, which does not require an ambient field:

Definition

A discrete valuation ring (DVR) is an integral domain R, together with a surjective function $v: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ such that
(i) $v(x y)=v(x)+v(y)$;
(ii) $v(x+y) \geq \min \{v(x), v(y)\}$;
(iii) $v(x)=0$ if and only if x is a unit in R, i.e. x has an inverse $x^{-1} \in R$.

Examples of DVRs

- $v_{p}: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ the p-adic valuation $v_{p}(x)=a$, where $x=p^{a} \frac{\alpha}{\beta}$ with α, β relatively prime to p. The valuation ring is $\mathbb{Z}_{(p)}$.

Examples of DVRs

- $v_{p}: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ the p-adic valuation $v_{p}(x)=a$, where $x=p^{a} \frac{\alpha}{\beta}$ with α, β relatively prime to p. The valuation ring is $\mathbb{Z}_{(p)}$.
- Fix irreducible $f \in k[t]$. Define $v_{f}: k(t)^{\times} \rightarrow \mathbb{Z}$ by $v_{f}(g)=a$ where $g=f^{a} \frac{\alpha}{\beta}$ with α and β not divisible by f. The valuation ring is $k[t]_{(f)}$.

Examples of DVRs

- $v_{p}: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ the p-adic valuation $v_{p}(x)=a$, where $x=p^{a} \frac{\alpha}{\beta}$ with α, β relatively prime to p. The valuation ring is $\mathbb{Z}_{(p)}$.
- Fix irreducible $f \in k[t]$. Define $v_{f}: k(t)^{\times} \rightarrow \mathbb{Z}$ by $v_{f}(g)=a$ where $g=f^{a} \frac{\alpha}{\beta}$ with α and β not divisible by f. The valuation ring is $k[t]_{(f)}$.
- The p-adic integers \mathbb{Z}_{p} with valuation $v_{p}: \mathbb{Z}_{p} \backslash\{0\} \rightarrow \mathbb{Z}$ mapping $a \in \mathbb{Z}_{p}$ to the index of the first non-zero coefficient in the p-adic expansion of a. The fraction field is \mathbb{Q}_{p}.

Examples of DVRs

- $v_{p}: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ the p-adic valuation $v_{p}(x)=a$, where $x=p^{a} \frac{\alpha}{\beta}$ with α, β relatively prime to p. The valuation ring is $\mathbb{Z}_{(p)}$.
- Fix irreducible $f \in k[t]$. Define $v_{f}: k(t)^{\times} \rightarrow \mathbb{Z}$ by $v_{f}(g)=a$ where $g=f^{a} \frac{\alpha}{\beta}$ with α and β not divisible by f. The valuation ring is $k[t]_{(f)}$.
- The p-adic integers \mathbb{Z}_{p} with valuation $v_{p}: \mathbb{Z}_{p} \backslash\{0\} \rightarrow \mathbb{Z}$ mapping $a \in \mathbb{Z}_{p}$ to the index of the first non-zero coefficient in the p-adic expansion of a. The fraction field is \mathbb{Q}_{p}.
- The field $k((t))$ of formal Laurent series, $\sum_{i=n}^{\infty} a_{i} t^{i}, n \in \mathbb{Z}$, equipped with valuation $v: k((t))^{\times} \rightarrow \mathbb{Z}$ given by $v\left(\sum_{i=n}^{\infty} a_{i} t^{i}\right)=m$ where m is minimal such that $a_{m} \neq 0$. The valuation ring is $k[[t]]$.

Equivalent definitions of DVR (there are many more):
(a) R is a local PID which is not a field.
(b) R is a local Dedekind domain which is not a field.
(c) R is regular, local integral domain of dimension 1 .
(d) R is a UFD with a unique irreducible element (up to multiplication by units).
(e) R is a Noetherian, local integral domain and not a field, with principal maximal ideal.

Equivalent definitions of DVR (there are many more):
(a) R is a local PID which is not a field.
(b) R is a local Dedekind domain which is not a field.
(c) R is regular, local integral domain of dimension 1 .
(d) R is a UFD with a unique irreducible element (up to multiplication by units).
(e) R is a Noetherian, local integral domain and not a field, with principal maximal ideal.

Figure: A DVR geometrically. It has a closed point \mathfrak{m} and a 'fuzzy' open, dense point (0).

The unique maximal ideal \mathfrak{m} of a DVR R is principal:

The unique maximal ideal \mathfrak{m} of a DVR R is principal: By surjectivity of v there is an element $\pi \in R$ with $v(\pi)=1$. Then $v\left(\pi^{n}\right)=n$. As $(x)=(y)$ iff $v(x)=v(y)$, the ideal (π) contains all element of valuation >0. But these are all the non-units of R, i.e. $(\pi)=\mathfrak{m}$.

The unique maximal ideal \mathfrak{m} of a DVR R is principal: By surjectivity of v there is an element $\pi \in R$ with $v(\pi)=1$. Then $v\left(\pi^{n}\right)=n$. As $(x)=(y)$ iff $v(x)=v(y)$, the ideal (π) contains all element of valuation >0. But these are all the non-units of R, i.e. $(\pi)=\mathfrak{m}$.

A generator of the maximal ideal of R is called a uniformizing parameter.

The unique maximal ideal \mathfrak{m} of a DVR R is principal: By surjectivity of v there is an element $\pi \in R$ with $v(\pi)=1$. Then $v\left(\pi^{n}\right)=n$. As $(x)=(y)$ iff $v(x)=v(y)$, the ideal (π) contains all element of valuation >0. But these are all the non-units of R, i.e. $(\pi)=\mathfrak{m}$.

A generator of the maximal ideal of R is called a uniformizing parameter.
As anything not in (π) is a unit, any element of R may be expressed uniquely as $u \pi^{n}$ with $u \in R^{\times}$.

The unique maximal ideal \mathfrak{m} of a DVR R is principal: By surjectivity of v there is an element $\pi \in R$ with $v(\pi)=1$. Then $v\left(\pi^{n}\right)=n$. As $(x)=(y)$ iff $v(x)=v(y)$, the ideal (π) contains all element of valuation >0. But these are all the non-units of R, i.e. $(\pi)=\mathfrak{m}$.

A generator of the maximal ideal of R is called a uniformizing parameter.
As anything not in (π) is a unit, any element of R may be expressed uniquely as $u \pi^{n}$ with $u \in R^{\times}$. The valuation may then be recovered as $v\left(u \pi^{n}\right)=n$.

The unique maximal ideal \mathfrak{m} of a DVR R is principal: By surjectivity of v there is an element $\pi \in R$ with $v(\pi)=1$. Then $v\left(\pi^{n}\right)=n$. As $(x)=(y)$ iff $v(x)=v(y)$, the ideal (π) contains all element of valuation >0. But these are all the non-units of R, i.e. $(\pi)=\mathfrak{m}$.

A generator of the maximal ideal of R is called a uniformizing parameter.
As anything not in (π) is a unit, any element of R may be expressed uniquely as $u \pi^{n}$ with $u \in R^{\times}$. The valuation may then be recovered as $v\left(u \pi^{n}\right)=n$.

From now on R will always denote a DVR, and π will be its uniformizing parameter.

Definition

Let $R_{n}=R /\left(\pi^{n+1}\right)$ and let $\varphi_{n}: R_{n} \rightarrow R_{n-1}$ be the quotient.

Definition

Let $R_{n}=R /\left(\pi^{n+1}\right)$ and let $\varphi_{n}: R_{n} \rightarrow R_{n-1}$ be the quotient. A sequence $\left(\xi_{0}, \xi_{1}, \ldots\right) \in \prod_{i=0}^{\infty} R_{i}$ is said to be compatible if $\varphi_{n}\left(\xi_{n}\right)=\xi_{n-1}$ for all n.

Definition

Let $R_{n}=R /\left(\pi^{n+1}\right)$ and let $\varphi_{n}: R_{n} \rightarrow R_{n-1}$ be the quotient. A sequence $\left(\xi_{0}, \xi_{1}, \ldots\right) \in \prod_{i=0}^{\infty} R_{i}$ is said to be compatible if $\varphi_{n}\left(\xi_{n}\right)=\xi_{n-1}$ for all n. The completion of R, denoted \widehat{R}, is the subring of $\prod_{i=0}^{\infty} R_{i}$ consisting of all compatible sequences.

Definition

Let $R_{n}=R /\left(\pi^{n+1}\right)$ and let $\varphi_{n}: R_{n} \rightarrow R_{n-1}$ be the quotient. A sequence $\left(\xi_{0}, \xi_{1}, \ldots\right) \in \prod_{i=0}^{\infty} R_{i}$ is said to be compatible if $\varphi_{n}\left(\xi_{n}\right)=\xi_{n-1}$ for all n. The completion of R, denoted \widehat{R}, is the subring of $\prod_{i=0}^{\infty} R_{i}$ consisting of all compatible sequences.
Equivalently, the completion of R is the inverse limit

$$
\widehat{R}:={\underset{\lim _{n}}{ } R_{n} ~}_{\text {. }}
$$

Definition

Let $R_{n}=R /\left(\pi^{n+1}\right)$ and let $\varphi_{n}: R_{n} \rightarrow R_{n-1}$ be the quotient. A sequence $\left(\xi_{0}, \xi_{1}, \ldots\right) \in \prod_{i=0}^{\infty} R_{i}$ is said to be compatible if $\varphi_{n}\left(\xi_{n}\right)=\xi_{n-1}$ for all n. The completion of R, denoted \widehat{R}, is the subring of $\prod_{i=0}^{\infty} R_{i}$ consisting of all compatible sequences.
Equivalently, the completion of R is the inverse limit

$$
\widehat{R}:={\underset{\sim}{\lim }}^{\lim _{n}} .
$$

Either definition gives embedding $R \hookrightarrow \widehat{R}$ mapping $x \in R$ to the element represented by the sequence $\left([x]_{\pi},[x]_{\pi^{2}}, \ldots\right)$. If $R \cong \widehat{R}$ via this embedding, R is said to be complete.

The completion \widehat{R} of a DVR is in fact a complete DVR:

The completion \widehat{R} of a DVR is in fact a complete DVR: The valuation on \widehat{R} maps a compatible sequence $\left(\xi_{0}, \xi_{1}, \ldots\right)$ to the least index n such that $\xi_{n} \neq 0$. To see that \widehat{R} is complete, it is enough to note that by construction π becomes a unformizing parameter of \widehat{R} and $\widehat{R} /\left(\pi^{n}\right) \cong R /\left(\pi^{n}\right)$.

Examples of complete DVRs

- The DVR \mathbb{Z}_{p} is complete. It is the completion of $\mathbb{Z}_{(p)}$.

Examples of complete DVRs

- The DVR \mathbb{Z}_{p} is complete. It is the completion of $\mathbb{Z}_{(p)}$. To prove this, note that $\mathbb{Z}_{(p)} / p^{n} \mathbb{Z}_{(p)}=\mathbb{Z} / p^{n} \mathbb{Z}$, and that mapping a powerseries in $p, a_{0}+a_{1} p \cdots+a_{n} p^{n}+\ldots$ with $0 \leq a_{i}<p$ to the compatible series $\left(a_{0}, a_{0}+a_{1} p, \ldots\right)$ is an isomorphism, so $\mathbb{Z}_{p} \cong \widehat{\mathbb{Z}_{(p)}}$.

Examples of complete DVRs

- The $\operatorname{DVR} \mathbb{Z}_{p}$ is complete. It is the completion of $\mathbb{Z}_{(p)}$. To prove this, note that $\mathbb{Z}_{(p)} / p^{n} \mathbb{Z}_{(p)}=\mathbb{Z} / p^{n} \mathbb{Z}$, and that mapping a powerseries in $p, a_{0}+a_{1} p \cdots+a_{n} p^{n}+\ldots$ with $0 \leq a_{i}<p$ to the compatible series $\left(a_{0}, a_{0}+a_{1} p, \ldots\right)$ is an isomorphism, so $\mathbb{Z}_{p} \cong \widehat{\mathbb{Z}_{(p)}}$.
- The DVR $k[[t]]$ is complete. It is the completion of $k[t]_{(t)}$. The argument is symmetric to the one above

Let $k=R / \pi, R_{n}=R /\left(\pi^{n+1}\right)$ and fix for each $\alpha \in k$ a representative $a \in R$. Then $b \in R_{n}$ may be uniquely expressed as a polynomial

$$
b=a_{0}+a_{1} \pi+\cdots+a_{n} \pi^{n},
$$

where $a_{i} \in R$ represents $\alpha_{i} \in k$.

Let $k=R / \pi, R_{n}=R /\left(\pi^{n+1}\right)$ and fix for each $\alpha \in k$ a representative $a \in R$. Then $b \in R_{n}$ may be uniquely expressed as a polynomial

$$
b=a_{0}+a_{1} \pi+\cdots+a_{n} \pi^{n},
$$

where $a_{i} \in R$ represents $\alpha_{i} \in k$.
Algorithm: Set $\alpha_{0}=[b]_{\pi}$. Then $b-a_{0}=b_{1} \pi$ for some $b_{1} \in R$. Then replace b by b_{1}, i.e. set $\alpha_{1}=\left[b_{1}\right]_{\pi}$, and find $b_{1}-a_{1}=b_{2} \pi$ etc.

Let $k=R / \pi, R_{n}=R /\left(\pi^{n+1}\right)$ and fix for each $\alpha \in k$ a
representative $a \in R$. Then $b \in R_{n}$ may be uniquely expressed as a polynomial

$$
b=a_{0}+a_{1} \pi+\cdots+a_{n} \pi^{n},
$$

where $a_{i} \in R$ represents $\alpha_{i} \in k$.
Algorithm: Set $\alpha_{0}=[b]_{\pi}$. Then $b-a_{0}=b_{1} \pi$ for some $b_{1} \in R$. Then replace b by b_{1}, i.e. set $\alpha_{1}=\left[b_{1}\right]_{\pi}$, and find $b_{1}-a_{1}=b_{2} \pi$ etc.

With this expression, the quotient $R_{n} \rightarrow R_{n-1}$ is simply

$$
a_{0}+\cdots+a_{n} \pi^{n} \mapsto a_{0}+\cdots+a_{n-1} \pi^{n-1}
$$

If the DVR R is complete, the previous may be extended to R, in the sense that each element $\xi \in R$ may be expressed uniquely as a power series in π, with coefficients in R / π.

If the DVR R is complete, the previous may be extended to R, in the sense that each element $\xi \in R$ may be expressed uniquely as a power series in π, with coefficients in R / π.

Argument: Indeed, if ξ is represented by the compatible sequence $\left(\xi_{0}, \xi_{1} \ldots\right)$, then each ξ_{n} may be expressed a polynomial in π with coefficients in k.

If the DVR R is complete, the previous may be extended to R, in the sense that each element $\xi \in R$ may be expressed uniquely as a power series in π, with coefficients in R / π.

Argument: Indeed, if ξ is represented by the compatible sequence $\left(\xi_{0}, \xi_{1} \ldots\right)$, then each ξ_{n} may be expressed a polynomial in π with coefficients in k. The fact that the sequence is compatible implies that if $\xi_{n}=a_{0}+\cdots+a_{n} \pi^{n}$ then $\xi_{n-1}=a_{0}+\cdots+a_{n-1} \pi^{n-1}$.

If the DVR R is complete, the previous may be extended to R, in the sense that each element $\xi \in R$ may be expressed uniquely as a power series in π, with coefficients in R / π.

Argument: Indeed, if ξ is represented by the compatible sequence $\left(\xi_{0}, \xi_{1} \ldots\right)$, then each ξ_{n} may be expressed a polynomial in π with coefficients in k. The fact that the sequence is compatible implies that if $\xi_{n}=a_{0}+\cdots+a_{n} \pi^{n}$ then $\xi_{n-1}=a_{0}+\cdots+a_{n-1} \pi^{n-1}$.

Then we express ξ as a power series where the π^{n} coefficient is the π^{n} coefficient of $\xi_{n}, \xi_{n+1}, \ldots$.

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.
\Rightarrow : Suppose $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in R$ with $\xi_{0} \neq 0$.

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.
\Rightarrow : Suppose $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in R$ with $\xi_{0} \neq 0$. Each ξ_{n} is a polynomial in π over R / \mathfrak{m}, and as the sequence is compatible, with $\xi_{0} \neq 0$, this polynomial expression has a non-zero constant term.

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.
\Rightarrow : Suppose $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in R$ with $\xi_{0} \neq 0$. Each ξ_{n} is a polynomial in π over R / \mathfrak{m}, and as the sequence is compatible, with $\xi_{0} \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_{n} \notin \pi R_{n}$, hence ξ_{n} is a unit.

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.
\Rightarrow : Suppose $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in R$ with $\xi_{0} \neq 0$. Each ξ_{n} is a polynomial in π over R / \mathfrak{m}, and as the sequence is compatible, with $\xi_{0} \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_{n} \notin \pi R_{n}$, hence ξ_{n} is a unit.
\Leftarrow : Fun exercise.

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.
\Rightarrow : Suppose $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in R$ with $\xi_{0} \neq 0$. Each ξ_{n} is a polynomial in π over R / \mathfrak{m}, and as the sequence is compatible, with $\xi_{0} \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_{n} \notin \pi R_{n}$, hence ξ_{n} is a unit.
\Leftarrow : Fun exercise.
Slogan: A complete DVR looks like a power series ring, but it need not be!

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.
\Rightarrow : Suppose $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in R$ with $\xi_{0} \neq 0$. Each ξ_{n} is a polynomial in π over R / \mathfrak{m}, and as the sequence is compatible, with $\xi_{0} \neq 0$, this polynomial expression has a non-zero constant term. Thus $\xi_{n} \notin \pi R_{n}$, hence ξ_{n} is a unit.
\Leftarrow : Fun exercise.
Slogan: A complete DVR looks like a power series ring, but it need not be!
Example: In general, if $R=k[[t]]$, then k is the residue field of R.

Suppose R is complete. Then $x \in R$ is a unit if and only if the constant term of x is non-zero.
\Rightarrow : Suppose $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in R$ with $\xi_{0} \neq 0$. Each ξ_{n} is a polynomial in π over R / \mathfrak{m}, and as the sequence is compatible, with $\xi_{0} \neq 0$, this polynomial expression has a non-zero constant term.
Thus $\xi_{n} \notin \pi R_{n}$, hence ξ_{n} is a unit.
\Leftarrow : Fun exercise.
Slogan: A complete DVR looks like a power series ring, but it need not be!
Example: In general, if $R=k[[t]]$, then k is the residue field of R. Now, the residue field of \mathbb{Z}_{p} is \mathbb{F}_{p}, which has characteristic p. But $\mathbb{Z} \hookrightarrow \mathbb{Z}_{p}$, hence \mathbb{Z}_{p} has characteristic 0 . Thus $\mathbb{Z}_{p} \neq \mathbb{F}_{p}[[t]]$.

Suppose $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ is a common solution to homogeneous polynomials $f_{1}, \ldots, f_{r} \in R\left[t_{1}, \ldots, t_{n}\right]$. If atleast one x_{i} is a unit, i.e. $x_{i} \notin(\pi)$, we say x is primitive.

Suppose $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ is a common solution to homogeneous polynomials $f_{1}, \ldots, f_{r} \in R\left[t_{1}, \ldots, t_{n}\right]$. If atleast one x_{i} is a unit, i.e. $x_{i} \notin(\pi)$, we say x is primitive. Assume x is a not necessarily primitive solution.

Suppose $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ is a common solution to homogeneous polynomials $f_{1}, \ldots, f_{r} \in R\left[t_{1}, \ldots, t_{n}\right]$. If atleast one x_{i} is a unit, i.e. $x_{i} \notin(\pi)$, we say x is primitive.
Assume x is a not necessarily primitive solution. Then

$$
f_{j}\left(\pi^{-\min \left\{v\left(x_{i}\right)\right\}} x\right)=\pi^{-\min \left\{v\left(x_{i}\right)\right\}} f_{j}(x)=0,
$$

and at least one coordinate of $\pi^{-\min \left\{v\left(x_{i}\right)\right\}_{X}}$ is a unit, i.e. $\pi^{-\min \left\{v\left(x_{i}\right)\right\}_{X}}$ is primitive

Suppose $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ is a common solution to homogeneous polynomials $f_{1}, \ldots, f_{r} \in R\left[t_{1}, \ldots, t_{n}\right]$. If atleast one x_{i} is a unit, i.e. $x_{i} \notin(\pi)$, we say x is primitive.
Assume x is a not necessarily primitive solution. Then

$$
f_{j}\left(\pi^{-\min \left\{v\left(x_{i}\right)\right\}} x\right)=\pi^{-\min \left\{v\left(x_{i}\right)\right\}} f_{j}(x)=0,
$$

and at least one coordinate of $\pi^{-\min \left\{v\left(x_{i}\right)\right\}_{X}}$ is a unit, i.e. $\pi^{-\min \left\{v\left(x_{i}\right)\right\}_{X}}$ is primitive
Conclusion: We need only consider primitive solutions.

Theorem (I)

Let R be a complete DVR with uniformizing parameter π and $R_{m}=R / \pi^{m+1}$ all finite. Let $f_{1}, \ldots, f_{r} \in R\left[t_{1}, \ldots, t_{n}\right]$ be homogenous.

Theorem (I)

Let R be a complete DVR with uniformizing parameter π and $R_{m}=R / \pi^{m+1}$ all finite. Let $f_{1}, \ldots, f_{r} \in R\left[t_{1}, \ldots, t_{n}\right]$ be homogenous. Then the f_{1}, \ldots, f_{r} have a common primitive solution in R if and only if the system of congruences

$$
f_{i}(x) \equiv 0 \quad\left(\bmod \pi^{m+1}\right), \quad i=1, \ldots, r
$$

has a primitive solution in R_{m} for all $m=0,1 \ldots$.

Proof: Suppose there is a primitive congruence solution for each m. Let $S_{m} \subset\left(R_{m}\right)^{n}$ be the set of primitive solutions, and let φ_{m} denote the quotient $R_{m} \rightarrow R_{m-1}$ as well as the induced map $\left(R_{m}\right)^{n} \rightarrow\left(R_{m-1}\right)^{n}$.
Note that φ_{m} maps primitive solutions to primitive solutions.

Proof: Suppose there is a primitive congruence solution for each m. Let $S_{m} \subset\left(R_{m}\right)^{n}$ be the set of primitive solutions, and let φ_{m} denote the quotient $R_{m} \rightarrow R_{m-1}$ as well as the induced map $\left(R_{m}\right)^{n} \rightarrow\left(R_{m-1}\right)^{n}$.
Note that φ_{m} maps primitive solutions to primitive solutions. Indeed, a solution $\bmod \pi^{m+1}$ is also a solution $\bmod \pi^{m}$.

Proof: Suppose there is a primitive congruence solution for each m. Let $S_{m} \subset\left(R_{m}\right)^{n}$ be the set of primitive solutions, and let φ_{m} denote the quotient $R_{m} \rightarrow R_{m-1}$ as well as the induced map $\left(R_{m}\right)^{n} \rightarrow\left(R_{m-1}\right)^{n}$.
Note that φ_{m} maps primitive solutions to primitive solutions. Indeed, a solution $\bmod \pi^{m+1}$ is also a solution $\bmod \pi^{m}$.
Furthermore, if $u \notin \pi R_{m}$, then $\varphi_{m}(u) \notin \pi R_{m-1}$.

Proof: Suppose there is a primitive congruence solution for each m. Let $S_{m} \subset\left(R_{m}\right)^{n}$ be the set of primitive solutions, and let φ_{m} denote the quotient $R_{m} \rightarrow R_{m-1}$ as well as the induced map $\left(R_{m}\right)^{n} \rightarrow\left(R_{m-1}\right)^{n}$.
Note that φ_{m} maps primitive solutions to primitive solutions. Indeed, a solution $\bmod \pi^{m+1}$ is also a solution $\bmod \pi^{m}$.
Furthermore, if $u \notin \pi R_{m}$, then $\varphi_{m}(u) \notin \pi R_{m-1}$.
Now, let $S_{j, m}=\varphi_{m} \circ \cdots \circ \varphi_{j}\left(S_{j}\right) \subset S_{m}$ for $j>m$. Then

$$
S_{m} \supseteq S_{m+1, m} \supseteq \cdots \supseteq S_{j, m} \supseteq \cdots
$$

As R_{m} is finite, all $S_{j, m}$ are finite (and by assumption non-empty).

Proof: Suppose there is a primitive congruence solution for each m. Let $S_{m} \subset\left(R_{m}\right)^{n}$ be the set of primitive solutions, and let φ_{m} denote the quotient $R_{m} \rightarrow R_{m-1}$ as well as the induced map $\left(R_{m}\right)^{n} \rightarrow\left(R_{m-1}\right)^{n}$.
Note that φ_{m} maps primitive solutions to primitive solutions. Indeed, a solution $\bmod \pi^{m+1}$ is also a solution $\bmod \pi^{m}$.
Furthermore, if $u \notin \pi R_{m}$, then $\varphi_{m}(u) \notin \pi R_{m-1}$.
Now, let $S_{j, m}=\varphi_{m} \circ \cdots \circ \varphi_{j}\left(S_{j}\right) \subset S_{m}$ for $j>m$. Then

$$
S_{m} \supseteq S_{m+1, m} \supseteq \cdots \supseteq S_{j, m} \supseteq \cdots
$$

As R_{m} is finite, all $S_{j, m}$ are finite (and by assumption non-empty). Thus the intersection T_{m} is non-empty.

Proof: Suppose there is a primitive congruence solution for each m. Let $S_{m} \subset\left(R_{m}\right)^{n}$ be the set of primitive solutions, and let φ_{m} denote the quotient $R_{m} \rightarrow R_{m-1}$ as well as the induced map $\left(R_{m}\right)^{n} \rightarrow\left(R_{m-1}\right)^{n}$.
Note that φ_{m} maps primitive solutions to primitive solutions. Indeed, a solution $\bmod \pi^{m+1}$ is also a solution $\bmod \pi^{m}$.
Furthermore, if $u \notin \pi R_{m}$, then $\varphi_{m}(u) \notin \pi R_{m-1}$.
Now, let $S_{j, m}=\varphi_{m} \circ \cdots \circ \varphi_{j}\left(S_{j}\right) \subset S_{m}$ for $j>m$. Then

$$
S_{m} \supseteq S_{m+1, m} \supseteq \cdots \supseteq S_{j, m} \supseteq \cdots
$$

As R_{m} is finite, all $S_{j, m}$ are finite (and by assumption non-empty). Thus the intersection T_{m} is non-empty. In general $\varphi_{m}\left(T_{m}\right)=T_{m-1}$ and by construction, T_{m} consists of solutions $\bmod \pi^{m+1}$ which lift to solutions $\bmod \pi^{j+1}$ for all $j>m$.

Proof: Suppose there is a primitive congruence solution for each m. Let $S_{m} \subset\left(R_{m}\right)^{n}$ be the set of primitive solutions, and let φ_{m} denote the quotient $R_{m} \rightarrow R_{m-1}$ as well as the induced map $\left(R_{m}\right)^{n} \rightarrow\left(R_{m-1}\right)^{n}$.
Note that φ_{m} maps primitive solutions to primitive solutions. Indeed, a solution $\bmod \pi^{m+1}$ is also a solution $\bmod \pi^{m}$.
Furthermore, if $u \notin \pi R_{m}$, then $\varphi_{m}(u) \notin \pi R_{m-1}$.
Now, let $S_{j, m}=\varphi_{m} \circ \cdots \circ \varphi_{j}\left(S_{j}\right) \subset S_{m}$ for $j>m$. Then

$$
S_{m} \supseteq S_{m+1, m} \supseteq \cdots \supseteq S_{j, m} \supseteq \cdots
$$

As R_{m} is finite, all $S_{j, m}$ are finite (and by assumption non-empty). Thus the intersection T_{m} is non-empty. In general $\varphi_{m}\left(T_{m}\right)=T_{m-1}$ and by construction, T_{m} consists of solutions $\bmod \pi^{m+1}$ which lift to solutions $\bmod \pi^{j+1}$ for all $j>m$. So pick $\xi_{0} \in T_{0}$, lift to $\xi_{1} \in T_{1}$, and so forth. This then defines a compatible sequence i.e defines $\xi \in R^{n}$. As ξ_{0} is primitive, so is ξ.

Why is ξ primitive?: As notation, set $\xi_{i}=\left(x_{i, 1}, x_{i, 2}, \ldots, x_{i, n}\right)$. The j 'th coordinate of ξ is then the compatible sequence $\left(x_{0, j}, x_{1, j}, \ldots\right)$. Suppose, without loss of generality, that $x_{i, 1}$ is the unit coordinate of ξ_{i}. Then $x_{0,1}$ is a unit in R_{0}, so in particular $\left(x_{0,1}, x_{1,1}, \ldots\right)$ is a unit in R (since any element in a complete DVR is a unit if and only if the constant term is non-zero i.e. a unit in $\left.R_{0}=R / \pi\right)$.

Recall:

Theorem (3, Chevalley-Warning)

Let f be a polynomial in n variables with coefficients in a finite field k and let d be its degree. If $n>d$, then the number of solutions of f in k is congruent to 0 modulo p. In particular, finite fields are C_{1}.

Theorem (5, Tsen/Lang-Nagata)

Let k be a C_{i}-field. If K is an extension of k of transcendence degree n, then K is C_{i+n}.

Recall:

Theorem (3, Chevalley-Warning)

Let f be a polynomial in n variables with coefficients in a finite field k and let d be its degree. If $n>d$, then the number of solutions of f in k is congruent to 0 modulo p. In particular, finite fields are C_{1}.

Theorem (5, Tsen/Lang-Nagata)

Let k be a C_{i}-field. If K is an extension of k of transcendence degree n, then K is C_{i+n}.

Corollary

Let k be a finite field. Then $k(t)$ is C_{2}.

Theorem (Special case of Greenberg)
 Let k be a finite field. Then $k((t))$ is C_{2}.

Proof: Let f be a homogeneous polynomial of degree d in $n>d^{2}$ variables with coefficients in $k((t))$.

Theorem (Special case of Greenberg)

Let k be a finite field. Then $k((t))$ is C_{2}.
Proof: Let f be a homogeneous polynomial of degree d in $n>d^{2}$ variables with coefficients in $k((t))$. Clearing denominators, we may assume the coefficients of f lie in $k[[t]]$. Our goal is then to find a primitive solution in $k[[t]]$.

Theorem (Special case of Greenberg)

Let k be a finite field. Then $k((t))$ is C_{2}.
Proof: Let f be a homogeneous polynomial of degree d in $n>d^{2}$ variables with coefficients in $k((t))$. Clearing denominators, we may assume the coefficients of f lie in $k[[t]]$. Our goal is then to find a primitive solution in $k[[t]]$. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each $m \geq 0$.

Theorem (Special case of Greenberg)

Let k be a finite field. Then $k((t))$ is C_{2}.
Proof: Let f be a homogeneous polynomial of degree d in $n>d^{2}$ variables with coefficients in $k((t))$. Clearing denominators, we may assume the coefficients of f lie in $k[[t]]$. Our goal is then to find a primitive solution in $k[[t]]$. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each $m \geq 0$. Reducing f modulo t^{m+1} each power series coefficient becomes a polynomial in t of degree at most m.

Theorem (Special case of Greenberg)

Let k be a finite field. Then $k((t))$ is C_{2}.
Proof: Let f be a homogeneous polynomial of degree d in $n>d^{2}$ variables with coefficients in $k((t))$. Clearing denominators, we may assume the coefficients of f lie in $k[[t]]$. Our goal is then to find a primitive solution in $k[[t]]$. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each $m \geq 0$. Reducing f modulo t^{m+1} each power series coefficient becomes a polynomial in t of degree at most m. So we have homogeneous polynomial equations of degree d in $n>d^{2}$ variables, with coefficients in $k[t]$.

Theorem (Special case of Greenberg)

Let k be a finite field. Then $k((t))$ is C_{2}.
Proof: Let f be a homogeneous polynomial of degree d in $n>d^{2}$ variables with coefficients in $k((t))$. Clearing denominators, we may assume the coefficients of f lie in $k[[t]]$. Our goal is then to find a primitive solution in $k[[t]]$. Theorem (I) implies, that it is enough to find a primitive solution modulo t^{m+1} for each $m \geq 0$. Reducing f modulo t^{m+1} each power series coefficient becomes a polynomial in t of degree at most m. So we have homogeneous polynomial equations of degree d in $n>d^{2}$ variables, with coefficients in $k[t]$. But $k(t)$ is C_{2}, so there is a non-trivial solution in $k(t)$. As the equation is homogeneous, we may clear denominators of such a non-trivial solution, to obtain a non-trivial primitive solution in $k[t]$.

Thank you for listening.

