Around Ax-Kochen/Ershov transfer principle

Pablo Cubides Kovacsics
HHU Düsseldorf

GRK Workshop on C_{i}-fields
10.12.2020

Long story short...

Definition

Given integers $i \geqslant 0$ and $d \geqslant 1$, a field K is called

- $C_{i}(d)$ if every homogeneous polynomial of degree d with coefficients in K and $n>d^{i}$ variables has a non-trivial solution in K.
- C_{i} if it is $C_{i}(d)$ for every $d \geqslant 1$.

So far in this workshop we have proved:

- K is algebraically closed if and only if K is C_{0}.
- If K is C_{1}, then K has trivial Brauer group.
- Finite fields are C_{1}.
- If K is C_{i} and $L \mid K$ is a finite extension, then L is C_{i}.
- If K is C_{i}, then $K(t)$ is C_{i+1}.
- If K is C_{i}, then $K((t))$ is C_{i+1}.
- $\mathbb{F}_{p}(t)$ and $\mathbb{F}_{p}((t))$ are C_{2}, and $\mathbb{C}((t))$ is C_{1} (so in particular, it has trivial Brauer group).
- \mathbb{Q}_{p} is $C_{2}(3)$.

Long story short...

Knowing that the fields $\mathbb{F}_{p}((t))$ and \mathbb{Q}_{p} share many properties, and that $\mathbb{F}_{p}((t))$ was C_{2}, Artin conjectured that \mathbb{Q}_{p} was also C_{2}. However, (as for \mathbb{Q} and \mathbb{R}) \mathbb{Q}_{p} is not C_{i} for any i.
However, Ax and Kochen showed that, to a certain extend, Artin had the right intuition.

Theorem (Ax-Kochen)

Fix $d>0$. Then, there is a finite set E_{d} of prime numbers such that for every $p \notin X_{d}, \mathbb{Q}_{p}$ is $C_{2}(d)$.
This is the situation:

- Since \mathbb{Q}_{p} is not C_{i} for every $i \geqslant 0$: for every $i \geqslant 0$ and every prime p, there is $d=d(i, p)$ such that \mathbb{Q}_{p} is not $C_{i}(d)$.
- By the previous theorem, for every $d \geqslant 1$, there is $N=N(d) \geqslant 1$ such that if $p>N$ then \mathbb{Q}_{p} is $C_{2}(d)$ (and hence $C_{i}(d)$ for every $i \geqslant 2$).

How similar are $\mathbb{F}_{p}((t))$ and \mathbb{Q}_{p} ?

Clearly we have that

$$
\mathbb{F}_{p}((t)) \not \equiv \mathbb{Q}_{p}
$$

but what kind of relation could one establish between these two fields?

- both fields are complete (and hence henselian)
- both fields have residue field \mathbb{F}_{p}
- both fields have value group \mathbb{Z}

The key is to forget the previous question and look at the classes $\left(\mathbb{F}_{p}((t))_{p}\right)_{p>0}$ and $\left(\mathbb{Q}_{p}\right)_{p>0}$ asymptotically!

The transfer principle

Theorem (Ax-Kochen/Ershov)

Let φ be a first order sentence in the language of valued fields. Then there is a finite set of prime numbers E_{φ} such that for all $p \notin E_{\varphi}$
φ holds in \mathbb{Q}_{p} if and only if φ holds in $\mathbb{F}_{p}((t))$.

The transfer principle

Theorem (Ax-Kochen/Ershov)

Let φ be a first order sentence in the language of valued fields. Then there is a finite set of prime numbers E_{φ} such that for all $p \notin E_{\varphi}$
φ holds in \mathbb{Q}_{p} if and only if φ holds in $\mathbb{F}_{p}((t))$.

The transfer principle

Theorem (Ax-Kochen/Ershov)

Let φ be a first order sentence in the language of valued fields. Then there is a finite set of prime numbers E_{φ} such that for all $p \notin E_{\varphi}$
φ holds in \mathbb{Q}_{p} if and only if φ holds in $\mathbb{F}_{p}((t))$.

$$
\mathbb{Q}_{p} \models \varphi \Leftrightarrow \mathbb{F}_{p}((t)) \models \varphi
$$

What is a first order formula in the language of... rings?

Informally, a first-order formula in the language of rings $\mathcal{L}_{\text {ring }}$ is a formal expression build up using

- variables x_{1}, x_{2}, x, y, z etc.
- boolean connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- quantifiers \forall, \exists
- the equality symbol =
- the formal symbols of the language of rings $\mathcal{L}_{\text {ring }}=\{+,-, \cdot, 1,0\}$
- and parenthesis symbols (for convenience),
following "natural" rules of construction.
The slogan: "given a finite sequence of symbols φ build up from the symbols above, if after replacing (the free occurrences of) variables by elements in any ring A, we obtain a statement which is true or false in A, then φ is an $\mathcal{L}_{\text {ring }}$-formula".

What is a first order formula in the language of... rings?

What is a first order formula in the language of... rings?

$$
(\forall x)(x \cdot y=y \cdot x)
$$

What is a first order formula in the language of... rings?

What is a first order formula in the language of... rings?

$$
(\exists x)(x \cdot x=-1)
$$

What is a first order formula in the language of... rings?

What is a first order formula in the language of... rings?

$$
(x \cdot y)+z
$$

What is a first order formula in the language of... rings?

What is a first order formula in the language of... rings?

$$
(\forall x)(\exists y)(x \geqslant 0 \rightarrow y \cdot y=x)
$$

Examples
$(\forall x)(x \cdot y=y \cdot x)$
$(\exists x)(x \cdot x=-1)$

$\frac{\text { Non-examples }}{(x \cdot y)+z}$

What is a first order formula in the language of... rings?

What is a first order formula in the language of... rings?

$$
1+1+1+1+1=0
$$

Examples
$(\forall x)(x \cdot y=y \cdot x)$
$(\exists x)(x \cdot x=-1)$

Non-examples

$$
\begin{gathered}
(x \cdot y)+z \\
(\forall x)(\exists y)(x \geqslant 0 \rightarrow y \cdot y=x)
\end{gathered}
$$

What is a first order formula in the language of... rings?

Examples
$(\forall x)(x \cdot y=y \cdot x)$
$(\exists x)(x \cdot x=-1)$
$1+1+1+1+1=0$

Non-examples
$(\forall x)(\exists y)(x \geqslant 0 \rightarrow y)+z$

What is a first order formula in the language of... rings?

$$
(\forall n \in \mathbb{N})(\exists x)(n \cdot x=y)
$$

What is a first order formula in the language of... rings?

Examples

$(\forall x)(x \cdot y=y \cdot x)$
$(\exists x)(x \cdot x=-1)$
$1+1+1+1+1=0$

Non-examples
$(x \cdot y)+z$
$(\forall x)(\exists y)(x \geqslant 0 \rightarrow y \cdot y=x)$
$(\forall n \in \mathbb{N})(\exists x)(n \cdot x=y)$

What is a first order formula in the language of... rings?

$$
\neg(1+1+1=\pi)
$$

Examples

$(\forall x)(x \cdot y=y \cdot x)$
$(\exists x)(x \cdot x=-1)$
$1+1+1+1+1=0$

Non-examples
$(x \cdot y)+z$
$(\forall x)(\exists y)(x \geqslant 0 \rightarrow y \cdot y=x)$
$(\forall n \in \mathbb{N})(\exists x)(n \cdot x=y)$

What is a first order formula in the language of... rings?

Examples

$$
\begin{gathered}
(\forall x)(x \cdot y=y \cdot x) \\
(\exists x)(x \cdot x=-1) \\
1+1+1+1+1=0
\end{gathered}
$$

Non-examples

$$
(x \cdot y)+z
$$

$$
(\forall x)(\exists y)(x \geqslant 0 \rightarrow y \cdot y=x)
$$

$$
(\forall n \in \mathbb{N})(\exists x)(n \cdot x=y)
$$

$$
\neg(1+1+1=\pi)
$$

What is a first order formula in the language of... rings?

We will from now on abuse of notation, and write expressions like

x^{n}	for	$x \cdot \overbrace{\cdots}^{n-\text { times }} \cdot x$
$x y$	for	$x \cdot y$
$x \neq y$	for	$\neg(x=y)$
$x-y$	for	$x+(-y)$
$\bigwedge_{i=1}^{n} \varphi_{i}$	for	$\varphi_{1} \wedge \cdots \wedge \varphi_{n}\left(\right.$ where each φ_{i} is a formula)

For example,

$$
(\forall x)\left(x^{2}+y^{2}=1 \rightarrow x y \neq 0\right)
$$

is an abbreviation for the $\mathcal{L}_{\text {ring }}$-formula

$$
(\forall x)((x \cdot x+y \cdot y=1) \rightarrow \neg(x \cdot y=0))
$$

What is a first order formula in the language of... valued fields?

We basically play the same game as for $\mathcal{L}_{\text {ring }}$ but we add one new formal symbol: a binary relation $\operatorname{VF}(x, y)$ which we interpret in any valued field (K, v) as

$$
\mathrm{VF}(x, y) \Leftrightarrow v(x) \leqslant v(y) .
$$

We denote this language $\mathcal{L}_{\mathrm{VF}}$.
The following are examples of $\mathcal{L}_{\mathrm{VF}}$-formulas

- $\mathrm{VF}(1, x)$
- $\mathrm{VF}\left(x^{2}+1, x y-1\right) \rightarrow x \neq 1$
- $(\forall x)(\forall y)(\mathrm{VF}(1, x) \wedge \mathrm{VF}(1, y) \rightarrow \mathrm{VF}(1, x+y))$
- every $\mathcal{L}_{\text {ring }}$-formula!

Sentences

An \mathcal{L}-sentence (where \mathcal{L} is either $\mathcal{L}_{\text {ring }}$ or $\mathcal{L}_{\mathrm{VF}}$) is an \mathcal{L}-formula which has no free variables.

In particular, if φ is an $\mathcal{L}_{\text {ring }}$-sentence, then for any ring A it either holds in A or not. Similarly, if φ is an $\mathcal{L}_{\mathrm{VF}}$-sentence and (K, v) is a valued field then φ either holds in K or not.

Sentences

Examples:

- $(\exists x)\left(x^{2}=-1\right)$
- $(\forall x)(\forall y)(x y=y x)$
- $\chi_{p}:=1+\overbrace{\cdots}^{p}+1=0$
- $\left(\forall y_{0}\right) \cdots\left(\forall y_{m}\right)(\forall x)(\forall z)\left(\neg\left(\bigwedge_{i=0}^{m} y_{i}=0\right) \rightarrow\left(\sum_{i=0} y_{i} x^{i}=\sum_{i=0} y_{i} x^{i} \rightarrow x=z\right)\right)$.

A trivial instance of the transfer principle (in order to get used to it)

Theorem (Ax-Kochen/Ershov)
Let φ be a $\mathcal{L}_{\mathrm{VF}}$-sentence in the language of valued fields. Then there is a finite set of prime numbers E_{φ} such that for all $p \notin E_{\varphi}$

$$
\mathbb{Q}_{p} \models \varphi \Leftrightarrow \mathbb{F}_{p}((t)) \models \varphi
$$

Given a prime number q, consider the sentence $\chi_{q}:=1+\overbrace{\cdots}^{q}+1=0$.
Clearly, if p is a prime number bigger than q, we have both $\mathbb{F}_{p}((t)) \not \vDash \chi_{q}$ and $\mathbb{Q}_{p} \not \vDash \chi_{q}$ so setting $E_{\chi_{q}}=\left\{q^{\prime} \in \mathbb{P}: q^{\prime} \leqslant q\right\}$ we have that for all $p \notin E_{\chi_{q}}$

$$
\mathbb{Q}_{p} \models \varphi \Leftrightarrow \mathbb{F}_{p}((t)) \models \varphi
$$

A less trivial application

Theorem (Ax-Kochen/Ershov)

Let φ be a $\mathcal{L}_{\mathrm{VF}}$-sentence in the language of valued fields. Then there is a finite set of prime numbers E_{φ} such that for all $p \notin E_{\varphi}$

$$
\mathbb{Q}_{p} \models \varphi \Leftrightarrow \mathbb{F}_{p}((t)) \models \varphi
$$

Proposition

The property"having characteristic 0" is not expressible by a $\mathcal{L}_{\mathrm{VF}}$-sentence.

How to express being $C_{i}(d)$ in the language of rings?

For integers $d>0, i \geqslant 0$ and $n>d^{i}$, say that a field K satisfies the property $C_{i}(d, n)$ if every homogeneous polynomial of degree d in n variables with coefficients in K has a non-trivial root in K.
Clearly, K is $C_{i}(d)$ if it satisfies $C_{i}(d, n)$ for every $n>d^{i}$.

Being $C_{i}(d, n)$ is expressible by an $\mathcal{L}_{\text {ring }}$-sentence!

How to express being $C_{i}(d)$ in the language of rings?

Being $C_{i}(d, n)$ is expressible by an $\mathcal{L}_{\text {ring }}$-sentence! Indeed, set

- $x=\left(x_{1}, \ldots, x_{n}\right)$,
- let $I \subseteq \mathbb{N}^{d}$ be the set of tuples such that the sum of its coordinates is equal to d, so for $i=\left(i_{1}, \ldots, i_{d}\right) \in I$

$$
\sum_{j=1}^{d} i_{j}=d
$$

- for $i \in I$, let $x^{i}=\prod_{j=1}^{n} x_{j}^{i_{j}}$
- let N be the cardinality of I and $s: I \rightarrow\{1, \ldots, N\}$ be a bijection.

Then, let $\varphi(d, i, n)$ be the $\mathcal{L}_{\text {ring }}$-sentence

$$
\left(\forall y_{1}\right) \cdots\left(\forall y_{N}\right)\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\neg \bigwedge_{j=1}^{N} y_{i}=0 \rightarrow\left(\neg \bigwedge_{j=1}^{n} x_{i}=0 \wedge \sum_{i \in I} y_{s(i)} x^{i}=0\right)\right)
$$

Applying the transfer principle

We have that for every (K, v)

$$
(K, v) \models \varphi(d, i, n) \Leftrightarrow(K, v) \text { is } C_{i}(d, n) .
$$

We can apply the transfer principle to the $\mathcal{L}_{\text {ring }}$-sentence $\varphi(d, 2, n)$ and obtain that there is a finite set of primes $E=E(d, 2, n)$ such that for all $p \notin E$

$$
\mathbb{Q}_{p} \text { is } C_{2}(d, n) \Leftrightarrow \mathbb{Q}_{p} \models \varphi(d, 2, n) \Leftrightarrow \mathbb{F}_{p}((t)) \models \varphi(d, 2, n) \Leftrightarrow \mathbb{F}_{p}((t)) \text { is } C_{2}(d, n) .
$$

Since $\mathbb{F}_{p}((t))$ is C_{2}, we have in particular that $\mathbb{F}_{p}((t))$ is $C_{2}(d, n)$, and therefore, $\mathbb{Q}_{p}=C_{2}(d, n)$ for all primes $p \notin E$.

But how to show that \mathbb{Q}_{p} is actually $C_{2}(d)$ for all but finite many primes? Here we use simple trick:

$$
K \text { is } C_{2}(d, n) \text { for all } n>d^{2} \Leftrightarrow K \text { is } C_{2}\left(d, d^{2}+1\right) .
$$

Applying the transfer principle

K is $C_{2}(d, n)$ for all $n>d^{2} \Leftrightarrow K$ is $C_{2}\left(d, d^{2}+1\right)$.

Applying the transfer principle

We apply the transfer principle to the $\mathcal{L}_{\text {ring }}$-sentence $\varphi=\varphi\left(d, 2, d^{2}+1\right)$ and obtain that there is a finite set of primes $E=E(d)$ such that for all $p \notin E$

$$
\mathbb{Q}_{p} \text { is } C_{2}(d) \Leftrightarrow \mathbb{Q}_{p} \models \varphi \Leftrightarrow \mathbb{F}_{p}((t)) \models \varphi \Leftrightarrow \mathbb{F}_{p}((t)) \text { is } C_{2}(d) .
$$

Since $\mathbb{F}_{p}((t))$ is C_{2}, we have in particular that $\mathbb{F}_{p}((t))$ is $C_{2}(d)$, and therefore, $\mathbb{Q}_{p} \models$ $C_{2}(d)$ for all primes $p \notin E$.

Another application

Is there perhaps a similar trick in order to express the property C_{2} (resp. C_{i} for $i \geqslant 2$) as a first order sentence in $\mathcal{L}_{\text {ring }}$ or $\mathcal{L}_{\mathrm{VF}}$?

No. Suppose for a contradiction it was an let ψ be an $\mathcal{L}_{\mathrm{VF}}$-sentence such that for K either \mathbb{Q}_{p} or $\mathbb{F}_{p}((t))$

$$
K \text { is } C_{2} \Leftrightarrow K \models \psi .
$$

Then by the transfer principle where would be a finite set of primes E_{ψ} such that for every $p \notin E_{\psi}$

$$
\mathbb{Q}_{p} \models \psi \Leftrightarrow \mathbb{F}_{p}((t)) \models \psi
$$

But we know that \mathbb{Q}_{p} is not C_{2} (resp. not C_{i} for every $i \geqslant 0$), so $\mathbb{Q}_{p} \not \vDash \psi$. But then this implies that there are primes p for which $\mathbb{F}_{p}((t)) \not \vDash \psi$, and hence $\mathbb{F}_{p}((t))$ is not C_{2}, a contradiction. Hence the property C_{i} is not expressible by an $\mathcal{L}_{\mathrm{VF}}$-sentence. Note: the property C_{i} is of course an infinite conjunction of $\mathcal{L}_{\text {ring }}$-sentences, namely the sentences $C_{i}\left(d, d^{i}+1\right)$.

Many thanks for your attention.

