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Ultrafilter, non-principal

I : an infinite set, ℘(I ): the power set of I
An ultrafilter on I is a collection F of infinite elements of ℘(I ) such that

~ I ∈ F
~ A,B ∈ F ⇒ A ∩ B ∈ F
~ For any A ∈ ℘(I ), either A ∈ F or Ac ∈ F . In particular,

~ ∅ /∈ F
~ A ∈ F and A ⊆ B ⊆ I ⇒ B ∈ F

Remark (Literature-wise)

Any proper collection of elements of ℘(I ) is a filter on I if it is closed
under intersection and supersets. In particular, any ultrafilter is a filter
which is maximal (wrt inclusion). The above ultrafilters are called
non-principal.
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Interlude on Pablo’s talk

The language of rings:

LRing = {+,−, ·, 0, 1}

~ two binary function symbols LRing = {+,−, ·, 0, 1}
~ a unary function symbol LRing = {+,−, ·, 0, 1}
~ two constant symbols LRing = {+,−, ·, 0, 1}

Definition (quite informal)

A language L is a set of function, relation and constant symbols.

An L-structure can be defined as a triple (M,L, I ) consisting of a
non-empty domain M, language L and an interpretation function I .
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Ultraproduct Construction via Ultrafilters

Setting

I : an infinite index set with an
ultrafilter F on it

(Mi )i∈I : a family of L-structures

L = LRing = {+,−, ·, 0, 1}
 (Mi )i∈I :family of rings

L = Lag = {+,−, 0}
 (Mi )i∈I :family of abelian gps

Definition

Consider the Cartesian product
∏

Mi as the set of choice functions

{g : I → ∪Mi : ∀i ∈ I , g(i) ∈ Mi}

Define ∼F on
∏

Mi by

g ∼F h⇔ {i ∈ I : g(i) = h(i)} ∈ F
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Ultraproduct Construction via Ultrafilters

Definition

With
∏

Mi , F and ∼F as above,

The ultraproductM =
∏
Mi/ ∼F , an L-structure, is defined as follows

~ The domain L =
∏

Mi/ ∼F is the set of equivalence classes of ∼F
in

∏
Mi , denote the eq. cl. by [g ] or [g(i) : i ∈ I ]

~ ∀ function symbol f ∈ L, define fM by

fM([g1], . . . , [gn]) = [fMi (g1(i), . . . , gn(i)) : i ∈ I ]

~ ∀ relation symbol R ∈ L, define RM by

([g1], . . . , [gn]) ∈ RM

m
{i ∈ I : ([g1(i)], . . . , [gn(i)]) ∈ RMi} ∈ F

~ ∀ constant symbol c ∈ L, define cM by cM = [cMi : i ∈ I ]
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An Immediate Example - Ultraproduct of Ordered Fields

The language of ordered fields is Lor = {+,−, ·, 0, 1, <} = LRing ∪ {<}

Setting:

{R : i ∈ N}: a countable collection of copies of R, as Lor -structure

F : an ultrafilter on N

 R =
∏

i∈N R/ ∼F

= {[g ] : g(i) ∈ RN}

function symbols

[g(i) : i ∈ I ] + [h(i) : i ∈ I ] = [g(i) + h(i) : i ∈ I ]
[g(i) : i ∈ I ].[h(i) : i ∈ I ] = [g(i).h(i) : i ∈ I ]

relation symbol

[g ] < [h]⇔ {i ∈ N : g(i) < h(i)} ∈ F

constant symbols

zero [{0, 0, 0, . . .}]
unity [{1, 1, 1, . . .}]
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 Loś’ theorem - Fundamental Theorem of Ultraproducts

Setting:

(Mi )i∈I : a family of L-structures

F : an ultrafilter F on I

ϕ(x̄) : first order formula in the free
variables x̄

ϕ true in
∏
Mi/ ∼F

iff

(Mi )i∈I

ϕ true on a ”large” subfamily

Theorem (Jerzy  Loś, ’55)

For a tuple ([g1], . . . , [gn]) of elements from
∏
Mi/ ∼F ,∏

Mi/ ∼F |= ϕ([g1], . . . , [gn])

iff

{i ∈ I :Mi |= ϕ(g1(i), . . . , gn(i))} ∈ F
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For a tuple ([g1], . . . , [gn]) of elements from
∏
Mi/ ∼F ,∏

Mi/ ∼F |= ϕ([g1], . . . , [gn])

iff

{i ∈ I :Mi |= ϕ(g1(i), . . . , gn(i))} ∈ F



 Loś’ theorem - Applications

Previously on this talk...
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 L = LRing

M =
∏
Mi/ ∼F ; an LRing -structure

Is M a ring?
Answer: YES
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 Loś’ theorem - Applications

Corollary

The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the Ki are algebraically closed fields, then so is∏
i∈I Ki/ ∼F , for any ultrafilter F .

(∀a0, a1, . . . , an)(∃x)(an = 0 ∨ a0 + a1x + . . . + anx
n = 0)

holds for almost all of Ki

Los
==⇒ holds for

∏
i∈I Ki/ ∼F
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 Loś’ theorem - Applications

Corollary

The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the Ki are algebraically closed fields, then so is∏
i∈I Ki/ ∼F , for any ultrafilter F .

(∀a0, a1, . . . , an)(∃x)(an = 0 ∨ a0 + a1x + . . . + anx
n = 0)

holds for almost all of Ki

Los
==⇒ holds for

∏
i∈I Ki/ ∼F



 Loś’ theorem - Applications

Proposition

{Ki}i∈I : a collection of fields such that for each prime p, only finitely
many Ki have characteristic p.

Then
∏

i∈I Ki/ ∼F , for any ultrafilter F , has characteristic zero.

Consider, for a fixed prime p, (∃a)(pa− 1 = 0)

{i ∈ I : the statement holds in Ki} ∈ F
Los
==⇒ the statement holds over

∏
i∈I Ki/ ∼F
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Field of Complex Numbers - External Point of View

Setting:

P = {p ∈ N : p prime}
{Fp

alg}p∈P, as LRing -structure

Choose an ultrafilter F on P

 F∗ =
∏

p∈P Fp
alg

/ ∼F is a field

Moreover F∗

~ has characteristic 0.

~ is algebraically closed.

~ has the cardinality of
continuum.

F∗ ' C
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Non-standard Reals - Internal Point of View

Setting:

{R : i ∈ N}: a collection
of copies of R, as an
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F : an ultrafilter on N

Consider R =
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i∈N R/ ∼F

Observations:
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contains infinitesimal
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Consider the eq. cl. ε = [{1, 1
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1
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as {n ∈ N : 0 < 1

n} = N ∈ F

Moreover R |= ε < [{r , r , r , . . .}], where
r ∈ R>0

as {n ∈ N : 1
n < r} ∈ F
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Consider (∃x)(∀y)y < x

It does not hold in R,
so must be false in R.
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