GRK Workshop, *Ci*-Fields Ultraproducts and transfer principles I

Zeynep Kısakürek

January 21, 2021

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

I: an infinite set, $\wp(I)$: the power set of *I* An **ultrafilter** on *I* is a collection \mathcal{F} of infinite elements of $\wp(I)$ such that

 $* I \in \mathcal{F}$

- \circledast For any $A\in\wp(I)$, either $A\in\mathcal{F}$ or $A^c\in\mathcal{F}.$ In particular,

 $\circledast \emptyset \notin \mathcal{F}$

 $\circledast \ A \in \mathcal{F} \text{ and } A \subseteq B \subseteq I \Rightarrow B \in \mathcal{F}$

Remark (Literature-wise)

Any proper collection of elements of $\wp(1)$ is a <u>filter</u> on I if it is closed under intersection and supersets. In particular, any <u>ultrafilter</u> is a filter which is maximal (wrt inclusion). The above ultrafilters are called non-principal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

I: an infinite set, $\wp(I)$: the power set of *I* An **ultrafilter** on *I* is a collection \mathcal{F} of infinite elements of $\wp(I)$ such that

 $\circledast \ I \in \mathcal{F}$

- $\circledast A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- \circledast For any $A \in \wp(I)$, either $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$. In particular,

 $\circledast \emptyset \notin \mathcal{F}$

 $\circledast \ A \in \mathcal{F} \text{ and } A \subseteq B \subseteq I \Rightarrow B \in \mathcal{F}$

Remark (Literature-wise)

Any proper collection of elements of $\wp(1)$ is a <u>filter</u> on I if it is closed under intersection and supersets. In particular, any <u>ultrafilter</u> is a filter which is maximal (wrt inclusion). The above ultrafilters are called non-principal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

I: an infinite set, $\wp(I)$: the power set of *I* An **ultrafilter** on *I* is a collection \mathcal{F} of infinite elements of $\wp(I)$ such that

- $\circledast \ I \in \mathcal{F}$
- $\circledast A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- \circledast For any $A \in \wp(I)$, either $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$. In particular,

 $\circledast \emptyset \notin \mathcal{F}$

 $\circledast \ A \in \mathcal{F} \text{ and } A \subseteq B \subseteq I \Rightarrow B \in \mathcal{F}$

Remark (Literature-wise)

Any proper collection of elements of $\wp(1)$ is a <u>filter</u> on I if it is closed under intersection and supersets. In particular, any <u>ultrafilter</u> is a filter which is maximal (wrt inclusion). The above ultrafilters are called non-principal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

I: an infinite set, $\wp(I)$: the power set of *I* An **ultrafilter** on *I* is a collection \mathcal{F} of infinite elements of $\wp(I)$ such that

 $\circledast \ I \in \mathcal{F}$

- $\circledast \ A,B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- Solution For any A ∈ ℘(I), either A ∈ F or $A^c ∈ F$. In particular,

Remark (Literature-wise)

Any proper collection of elements of $\wp(I)$ is a <u>filter</u> on I if it is closed under intersection and supersets. In particular, any <u>ultrafilter</u> is a filter which is maximal (wrt inclusion). The above ultrafilters are called non-principal.

I: an infinite set, $\wp(I)$: the power set of *I* An **ultrafilter** on *I* is a collection \mathcal{F} of infinite elements of $\wp(I)$ such that

 \circledast $I \in \mathcal{F}$

$$\circledast A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$$

So For any A ∈ ℘(I), either A ∈ 𝒯 or A^c ∈ 𝒯. In particular,
ℜ ∅ ∉ 𝒯

$$\circledast \ A \in \mathcal{F} \text{ and } A \subseteq B \subseteq I \Rightarrow B \in \mathcal{F}$$

Remark (Literature-wise)

Any proper collection of elements of $\wp(I)$ is a <u>filter</u> on I if it is closed under intersection and supersets. In particular, any <u>ultrafilter</u> is a filter which is maximal (wrt inclusion). The above ultrafilters are called non-principal.

I: an infinite set, $\wp(I)$: the power set of *I* An **ultrafilter** on *I* is a collection \mathcal{F} of infinite elements of $\wp(I)$ such that

- $\circledast \ I \in \mathcal{F}$
- $\circledast \ A,B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- So For any A ∈ ℘(I), either A ∈ 𝒯 or A^c ∈ 𝒯. In particular,
 ℜ ∅ ∉ 𝒯
 - $\circledast \ A \in \mathcal{F} \text{ and } A \subseteq B \subseteq I \Rightarrow B \in \mathcal{F}$

Remark (Literature-wise)

Any proper collection of elements of $\wp(I)$ is a <u>filter</u> on I if it is closed under intersection and supersets. In particular, any <u>ultrafilter</u> is a filter which is maximal (wrt inclusion). The above ultrafilters are called non-principal.

The language of rings:

$$\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$$

- \circledast two binary function symbols $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$
- \circledast a unary function symbol $\mathcal{L}_{\mathit{Ring}} = \{+, -, \cdot, 0, 1\}$
- \circledast two constant symbols $\mathcal{L}_{\mathit{Ring}} = \{+,-,\cdot,0,1\}$

Definition (quite informal)

A **language** \mathcal{L} is a set of function, relation and constant symbols.

(日) (四) (日) (日) (日)

The language of rings:

$$\mathcal{L}_{\textit{Ring}} = \{+,-,\cdot,0,1\}$$

 \circledast two binary function symbols $\mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\}$

 \circledast a unary function symbol $\mathcal{L}_{\mathit{Ring}} = \{+, -, \cdot, 0, 1\}$

 \circledast two constant symbols $\mathcal{L}_{\mathit{Ring}} = \{+,-,\cdot,0,1\}$

Definition (quite informal)

A **language** \mathcal{L} is a set of function, relation and constant symbols.

(日) (四) (日) (日) (日)

The language of rings:

$$\mathcal{L}_{\textit{Ring}} = \{+,-,\cdot,0,1\}$$

- \circledast two binary function symbols $\mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\}$
- \circledast a unary function symbol $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$
- \circledast two constant symbols $\mathcal{L}_{{\it Ring}} = \{+,-,\cdot,0,1\}$

Definition (quite informal)

A **language** \mathcal{L} is a set of function, relation and constant symbols.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The language of rings:

$$\mathcal{L}_{\textit{Ring}} = \{+,-,\cdot,0,1\}$$

- \circledast two binary function symbols $\mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\}$
- \circledast a unary function symbol $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$
- \circledast two constant symbols $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$

Definition (quite informal)

A **language** \mathcal{L} is a set of function, relation and constant symbols.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The language of rings:

$$\mathcal{L}_{\textit{Ring}} = \{+,-,\cdot,0,1\}$$

- \circledast two binary function symbols $\mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\}$
- \circledast a unary function symbol $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$
- \circledast two constant symbols $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$

Definition (quite informal)

A language $\mathcal L$ is a set of function, relation and constant symbols.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The language of rings:

$$\mathcal{L}_{\textit{Ring}} = \{+,-,\cdot,0,1\}$$

- \circledast two binary function symbols $\mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\}$
- \circledast a unary function symbol $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$
- \circledast two constant symbols $\mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\}$

Definition (quite informal)

A language \mathcal{L} is a set of function, relation and constant symbols.

Setting

I: an infinite index set with an ultrafilter ${\mathcal F}$ on it

 $(\mathcal{M}_i)_{i \in I}$: a family of \mathcal{L} -structures

 $\mathcal{L} = \mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\}$ $\rightsquigarrow (\mathcal{M}_i)_{i \in I}$:family of rings

 $\mathcal{L} = \mathcal{L}_{ag} = \{+, -, 0\}$ $\rightsquigarrow (\mathcal{M}_i)_{i \in I}$:family of abelian gps

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

<u>Consider</u> the Cartesian product $\prod M_i$ as the set of choice functions

 $\{g: I \to \cup M_i : \forall i \in I, g(i) \in M_i\}$

<u>Define</u> $\sim_{\mathcal{F}}$ on $\prod M_i$ by

 $g \sim_{\mathcal{F}} h \Leftrightarrow \{i \in I : g(i) = h(i)\} \in \mathcal{F}$

Setting

I: an infinite index set with an ultrafilter ${\mathcal F}$ on it

 $(\mathcal{M}_i)_{i \in I}$: a family of \mathcal{L} -structures

 $\mathcal{L} = \mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\} \\ \rightsquigarrow (\mathcal{M}_i)_{i \in I} : \text{family of rings}$

 $\mathcal{L} = \mathcal{L}_{ag} = \{+, -, 0\}$ $\rightsquigarrow (\mathcal{M}_i)_{i \in I}$:family of abelian gps

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

<u>Consider</u> the Cartesian product $\prod M_i$ as the set of choice functions

 $\{g: I \to \bigcup M_i : \forall i \in I, g(i) \in M_i\}$

<u>Define</u> $\sim_{\mathcal{F}}$ on $\prod M_i$ by

 $g \sim_{\mathcal{F}} h \Leftrightarrow \{i \in I : g(i) = h(i)\} \in \mathcal{F}$

Setting

I: an infinite index set with an ultrafilter ${\mathcal F}$ on it

 $(\mathcal{M}_i)_{i \in I}$: a family of \mathcal{L} -structures

 $\mathcal{L} = \mathcal{L}_{Ring} = \{+, -, \cdot, 0, 1\} \\ \rightsquigarrow (\mathcal{M}_i)_{i \in I} : \text{family of rings}$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{ag} = \{+, -, 0\} \\ &\rightsquigarrow (\mathcal{M}_i)_{i \in I} \text{:family of abelian gps} \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

<u>Consider</u> the Cartesian product $\prod M_i$ as the set of choice functions

 $\{g: I \to \cup M_i : \forall i \in I, g(i) \in M_i\}$

<u>Define</u> $\sim_{\mathcal{F}}$ on $\prod M_i$ by

 $g \sim_{\mathcal{F}} h \Leftrightarrow \{i \in I : g(i) = h(i)\} \in \mathcal{F}$

Setting

I: an infinite index set with an ultrafilter ${\mathcal F}$ on it

 $(\mathcal{M}_i)_{i \in I}$: a family of \mathcal{L} -structures

 $\begin{aligned} \mathcal{L} &= \mathcal{L}_{\textit{Ring}} = \{+, -, \cdot, 0, 1\} \\ & \rightsquigarrow (\mathcal{M}_i)_{i \in I} \text{:family of rings} \end{aligned}$

$$\mathcal{L} = \mathcal{L}_{ag} = \{+, -, 0\}$$

 $\rightsquigarrow (\mathcal{M}_i)_{i \in I}$:family of abelian gps

Definition

<u>Consider</u> the Cartesian product $\prod M_i$ as the set of choice functions

$$\{g: I \to \cup M_i : \forall i \in I, g(i) \in M_i\}$$

<u>Define</u> $\sim_{\mathcal{F}}$ on $\prod M_i$ by

$$g \sim_{\mathcal{F}} h \Leftrightarrow \{i \in I : g(i) = h(i)\} \in \mathcal{F}$$

Definition

With $\prod M_i$, \mathcal{F} and $\sim_{\mathcal{F}}$ as above,

The ${f ultraproduct}\,\,{\cal M}=\prod {\cal M}_i/\sim_{{\cal F}}$, an ${\cal L}$ -structure, is defined as follows

- The domain *L* = ∏ *M_i*/ ∼_{*F*} is the set of equivalence classes of ∼_{*F*} in ∏ *M_i*, denote the eq. cl. by [g] or [g(i) : i ∈ I]
- $\circledast \forall$ function symbol $f \in \mathcal{L}$, define $f^{\mathcal{M}}$ by

$$f^{\mathcal{M}}([g_1],\ldots,[g_n])=[f^{\mathcal{M}_i}(g_1(i),\ldots,g_n(i)):i\in I]$$

 \circledast \forall relation symbol $R \in \mathcal{L}$, define $R^{\mathcal{M}}$ by

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

With $\prod M_i$, \mathcal{F} and $\sim_{\mathcal{F}}$ as above,

The **ultraproduct** $\mathcal{M} = \prod \mathcal{M}_i / \sim_{\mathcal{F}}$, an \mathcal{L} -structure, is defined as follows

- The domain L = ∏ M_i / ~_F is the set of equivalence classes of ~_F in ∏ M_i, denote the eq. cl. by [g] or [g(i) : i ∈ I]
- $\circledast \,\,orall\,$ function symbol $f\in\mathcal{L}$, define $f^\mathcal{M}$ by

$$f^{\mathcal{M}}([g_1],\ldots,[g_n])=[f^{\mathcal{M}_i}(g_1(i),\ldots,g_n(i)):i\in I]$$

 \circledast \forall relation symbol $R \in \mathcal{L}$, define $R^{\mathcal{M}}$ by

Definition

With $\prod M_i$, \mathcal{F} and $\sim_{\mathcal{F}}$ as above,

The **ultraproduct** $\mathcal{M} = \prod \mathcal{M}_i / \sim_{\mathcal{F}}$, an \mathcal{L} -structure, is defined as follows

The domain *L* = ∏ *M_i*/ ∼_{*F*} is the set of equivalence classes of ∼_{*F*} in ∏ *M_i*, denote the eq. cl. by [g] or [g(i) : i ∈ I]

 \circledast \forall function symbol $f \in \mathcal{L}$, define $f^{\mathcal{M}}$ by

$$f^{\mathcal{M}}([g_1],\ldots,[g_n])=[f^{\mathcal{M}_i}(g_1(i),\ldots,g_n(i)):i\in I]$$

 \circledast \forall relation symbol $R \in \mathcal{L}$, define $R^{\mathcal{M}}$ by

Definition

With $\prod M_i$, \mathcal{F} and $\sim_{\mathcal{F}}$ as above,

The **ultraproduct** $\mathcal{M} = \prod \mathcal{M}_i / \sim_{\mathcal{F}}$, an \mathcal{L} -structure, is defined as follows

- The domain *L* = ∏ *M_i*/ ∼_{*F*} is the set of equivalence classes of ∼_{*F*} in ∏ *M_i*, denote the eq. cl. by [g] or [g(i) : i ∈ I]
- \circledast \forall function symbol $f \in \mathcal{L}$, define $f^{\mathcal{M}}$ by

$$f^{\mathcal{M}}([g_1],\ldots,[g_n])=[f^{\mathcal{M}_i}(g_1(i),\ldots,g_n(i)):i\in I]$$

 \circledast \forall relation symbol $R \in \mathcal{L}$, define $R^{\mathcal{M}}$ by

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition

With $\prod M_i$, \mathcal{F} and $\sim_{\mathcal{F}}$ as above,

The **ultraproduct** $\mathcal{M} = \prod \mathcal{M}_i / \sim_{\mathcal{F}}$, an \mathcal{L} -structure, is defined as follows

- The domain *L* = ∏ *M_i*/ ∼_{*F*} is the set of equivalence classes of ∼_{*F*} in ∏ *M_i*, denote the eq. cl. by [g] or [g(i) : i ∈ I]
- \circledast \forall function symbol $f \in \mathcal{L}$, define $f^{\mathcal{M}}$ by

$$f^{\mathcal{M}}([g_1],\ldots,[g_n])=[f^{\mathcal{M}_i}(g_1(i),\ldots,g_n(i)):i\in I]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

With $\prod M_i$, \mathcal{F} and $\sim_{\mathcal{F}}$ as above,

The **ultraproduct** $\mathcal{M} = \prod \mathcal{M}_i / \sim_{\mathcal{F}}$, an \mathcal{L} -structure, is defined as follows

- The domain *L* = ∏ *M_i*/ ∼_{*F*} is the set of equivalence classes of ∼_{*F*} in ∏ *M_i*, denote the eq. cl. by [g] or [g(i) : i ∈ I]
- \circledast \forall function symbol $f \in \mathcal{L}$, define $f^{\mathcal{M}}$ by

$$f^{\mathcal{M}}([g_1],\ldots,[g_n])=[f^{\mathcal{M}_i}(g_1(i),\ldots,g_n(i)):i\in I]$$

The language of ordered fields is $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\} = \mathcal{L}_{Ring} \cup \{<\}$ Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}: \text{ a countable collection of copies of } \mathbb{R}, \text{ as } \mathcal{L}_{or}\text{-structure} \\ \mathcal{F}: \text{ an ultrafilter on } \mathbb{N}$

 $imes \mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$ $= \{ [g] : g(i) \in \mathbb{R}^{\mathbb{N}} \}$

function symbols

 $[g(i): i \in I] + [h(i): i \in I] = [g(i) + h(i): i \in I]$ $[g(i): i \in I].[h(i): i \in I] = [g(i).h(i): i \in I]$

constant symbols

zero $[\{0, 0, 0, \ldots\}]$ unity $[\{1, 1, 1, \ldots\}]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

relation symbol

The language of ordered fields is $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\} = \mathcal{L}_{Ring} \cup \{<\}$ Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}$: a countable collection of copies of \mathbb{R} , as \mathcal{L}_{or} -structure \mathcal{F} : an ultrafilter on \mathbb{N}

$$\stackrel{\sim}{\rightarrow} \mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}} \\ = \{ [g] : g(i) \in \mathbb{R}^{\mathbb{N}} \}$$

function symbols

 $[g(i): i \in I] + [h(i): i \in I] = [g(i) + h(i): i \in I]$ $[g(i): i \in I].[h(i): i \in I] = [g(i).h(i): i \in I]$

constant symbols

zero $[\{0, 0, 0, \ldots\}]$ unity $[\{1, 1, 1, \ldots\}]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

relation symbol

The language of ordered fields is $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\} = \mathcal{L}_{Ring} \cup \{<\}$ Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}$: a countable collection of copies of \mathbb{R} , as \mathcal{L}_{or} -structure \mathcal{F} : an ultrafilter on \mathbb{N}

$$woheadrightarrow \mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$$
$$= \{ [g] : g(i) \in \mathbb{R}^{\mathbb{N}} \}$$

function symbols

 $[g(i): i \in I] + [h(i): i \in I] = [g(i) + h(i): i \in I]$ $[g(i): i \in I].[h(i): i \in I] = [g(i).h(i): i \in I]$

constant symbols

zero $[\{0, 0, 0, \ldots\}]$ unity $[\{1, 1, 1, \ldots\}]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

relation symbol

The language of ordered fields is $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\} = \mathcal{L}_{Ring} \cup \{<\}$ Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}$: a countable collection of copies of \mathbb{R} , as \mathcal{L}_{or} -structure \mathcal{F} : an ultrafilter on \mathbb{N}

$$woheadrightarrow \mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$$
$$= \{ [g] : g(i) \in \mathbb{R}^{\mathbb{N}} \}$$

function symbols

 $[g(i): i \in I] + [h(i): i \in I] = [g(i) + h(i): i \in I]$ $[g(i): i \in I].[h(i): i \in I] = [g(i).h(i): i \in I]$

constant symbols

zero $[\{0, 0, 0, \ldots\}]$ unity $[\{1, 1, 1, \ldots\}]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

relation symbol

The language of ordered fields is $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\} = \mathcal{L}_{Ring} \cup \{<\}$ Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}$: a countable collection of copies of \mathbb{R} , as \mathcal{L}_{or} -structure \mathcal{F} : an ultrafilter on \mathbb{N}

$$\rightsquigarrow \mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$$
$$= \{ [g] : g(i) \in \mathbb{R}^{\mathbb{N}} \}$$

function symbols

 $[g(i): i \in I] + [h(i): i \in I] = [g(i) + h(i): i \in I]$ $[g(i): i \in I].[h(i): i \in I] = [g(i).h(i): i \in I]$

constant symbols

zero [$\{0, 0, 0, \ldots\}$] unity [$\{1, 1, 1, \ldots\}$]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

relation symbol

Łoś' theorem - Fundamental Theorem of Ultraproducts

Setting:

 $(\mathcal{M}_i)_{i \in I}$: a family of \mathcal{L} -structures

 $\mathcal{F}:$ an ultrafilter \mathcal{F} on I

 $\varphi(ar{x})$: first order formula in the free variables $ar{x}$

Theorem (Jerzy Łoś, '55)

For a tuple $([g_1], \ldots, [g_n])$ of elements from $\prod \mathcal{M}_i / \sim_{\mathcal{F}}$,

 $\prod \mathcal{M}_i / \sim_{\mathcal{F}} \models \varphi([g_1], \dots, [g_n])$

iff

 $\{i \in I : \mathcal{M}_i \models \varphi(g_1(i), \ldots, g_n(i))\} \in \mathcal{F}$

Łoś' theorem - Fundamental Theorem of Ultraproducts

Setting:

 $(\mathcal{M}_i)_{i \in I}$: a family of \mathcal{L} -structures

 $\mathcal{F}:$ an ultrafilter \mathcal{F} on I

 $\varphi(\bar{x})$: first order formula in the free variables \bar{x}

Theorem (Jerzy Łoś, '55) For a tuple ([g_1],..., [g_n]) of elements from $\prod \mathcal{M}_i / \sim_{\mathcal{F}}$, $\prod \mathcal{M}_i / \sim_{\mathcal{F}} \models \varphi([g_1], \dots, [g_n])$ iff $\{i \in I : \mathcal{M}_i \models \varphi(g_1(i), \dots, g_n(i))\} \in \mathcal{F}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

 $\begin{aligned} (\mathcal{M}_i)_{i \in I} \text{:family of rings} \\ & \sim \mathcal{L} = \mathcal{L}_{Ring} \\ \mathcal{M} = \prod \mathcal{M}_i / \sim_{\mathcal{F}} \text{; an } \mathcal{L}_{Ring} \text{-structure} \end{aligned}$ Is \mathcal{M} a ring? $\underbrace{\text{Answer: YES}}_{}$

$$(\mathcal{M}_i)_{i\in I}$$
:family of rings $ightarrow \mathcal{L} = \mathcal{L}_{ extsf{Ring}}$

Is \mathcal{M} a ring? Answer: YES

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\mathcal{M} = \prod \mathcal{M}_i / \sim_\mathcal{F}$$
; an $\mathcal{L}_{\textit{Ring}}$ -structure

$$(\mathcal{M}_i)_{i\in I}$$
:family of rings $ightarrow \mathcal{L} = \mathcal{L}_{ extsf{Ring}}$

 $\mathcal{M} = \prod \mathcal{M}_i / \sim_\mathcal{F}$; an $\mathcal{L}_{\textit{Ring}}\text{-structure}$

Is \mathcal{M} a ring? Answer: YES

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$(\mathcal{M}_i)_{i\in I}$$
:family of rings $ightarrow \mathcal{L} = \mathcal{L}_{ extsf{Ring}}$

Is \mathcal{M} a ring? <u>Answer:</u> YES

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\mathcal{M} = \prod \mathcal{M}_i / \sim_\mathcal{F}$$
; an $\mathcal{L}_{\mathit{Ring}}$ -structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Corollary

The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the K_i are algebraically closed fields, then so is $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} .

$$(\forall a_0, a_1, \ldots, a_n)(\exists x)(a_n = 0 \lor a_0 + a_1x + \ldots + a_nx^n = 0)$$

holds for almost all of K_i \xrightarrow{Los} holds for $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$

Corollary

The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the K_i are algebraically closed fields, then so is $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} .

 $(\forall a_0, a_1, \ldots, a_n)(\exists x)(a_n = 0 \lor a_0 + a_1x + \ldots + a_nx^n = 0)$

holds for almost all of K_i \xrightarrow{Los} holds for $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$

Corollary

The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the K_i are algebraically closed fields, then so is $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} .

$$(\forall a_0, a_1, \ldots, a_n)(\exists x)(a_n = 0 \lor a_0 + a_1x + \ldots + a_nx^n = 0)$$

holds for almost all of K_i \xrightarrow{Los} holds for $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$

Corollary

The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the K_i are algebraically closed fields, then so is $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} .

$$(\forall a_0, a_1, \ldots, a_n)(\exists x)(a_n = 0 \lor a_0 + a_1x + \ldots + a_nx^n = 0)$$

holds for almost all of K_i \xrightarrow{Los} holds for $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$

Corollary

The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the K_i are algebraically closed fields, then so is $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} .

$$(\forall a_0, a_1, \ldots, a_n)(\exists x)(a_n = 0 \lor a_0 + a_1x + \ldots + a_nx^n = 0)$$

holds for almost all of K_i \xrightarrow{Los} holds for $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$

Proposition

 $\{K_i\}_{i \in I}$: a collection of fields such that for each prime p, only finitely many K_i have characteristic p.

Then $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} , has characteristic zero.

<u>Consider</u>, for a fixed prime p, $(\exists a)(pa - 1 = 0)$

 $\{i \in I : \text{the statement holds in } K_i\} \in \mathcal{F}$

 $\stackrel{{\scriptscriptstyle Los}}{\Longrightarrow}$ the statement holds over $\prod_{i\in I} {\mathit K}_i/\sim_{{\mathcal F}}$

Proposition

 $\{K_i\}_{i \in I}$: a collection of fields such that for each prime p, only finitely many K_i have characteristic p.

Then $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} , has characteristic zero.

<u>Consider</u>, for a fixed prime p, $(\exists a)(pa - 1 = 0)$

 $\{i \in I : \text{the statement holds in } K_i\} \in \mathcal{F}$ $\xrightarrow{\text{Los}}$ the statement holds over $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition

 $\{K_i\}_{i \in I}$: a collection of fields such that for each prime p, only finitely many K_i have characteristic p.

Then $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} , has characteristic zero.

<u>Consider</u>, for a fixed prime p, $(\exists a)(pa - 1 = 0)$

 $\{i \in I : \text{the statement holds in } K_i\} \in \mathcal{F}$

 $\stackrel{\text{\tiny Los}}{\Longrightarrow}$ the statement holds over $\prod_{i\in I} K_i / \sim_{\mathcal{F}}$

Proposition

 $\{K_i\}_{i \in I}$: a collection of fields such that for each prime p, only finitely many K_i have characteristic p.

Then $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$, for any ultrafilter \mathcal{F} , has characteristic zero.

<u>Consider</u>, for a fixed prime p, $(\exists a)(pa - 1 = 0)$

 $\{i \in I : \text{the statement holds in } K_i\} \in \mathcal{F}$ $\xrightarrow{\text{Los}}$ the statement holds over $\prod_{i \in I} K_i / \sim_{\mathcal{F}}$

Setting:

 $\mathbb{P} = \{ p \in \mathbb{N} : p \text{ prime} \}$ $\{\mathbb{F}_p^{alg}\}_{p \in \mathbb{P}}, \text{ as } \mathcal{L}_{Ring}\text{-structure}$

<u>Choose</u> an ultrafilter \mathcal{F} on \mathbb{P}

$$\rightsquigarrow \mathbb{F}^* = \prod_{p \in \mathbb{P}} \mathbb{F}_p^{alg} / \sim_{\mathcal{F}}$$
 is a field

$\underline{\mathsf{Moreover}}\;\mathbb{F}^*$

- has characteristic 0.
- ❀ is algebraically closed.
- has the cardinality of continuum.

$\mathbb{F}^*\simeq\mathbb{C}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Setting:

 $\mathbb{P} = \{ p \in \mathbb{N} : p \text{ prime} \}$ $\{\mathbb{F}_p^{alg}\}_{p \in \mathbb{P}}, \text{ as } \mathcal{L}_{Ring}\text{-structure}$

<u>Choose</u> an ultrafilter \mathcal{F} on \mathbb{P}

$$\rightsquigarrow \mathbb{F}^* = \prod_{p \in \mathbb{P}} \mathbb{F}_p^{alg} / \sim_{\mathcal{F}}$$
 is a field

$\underline{\mathsf{Moreover}}\;\mathbb{F}^*$

has characteristic 0.

- ❀ is algebraically closed.
- has the cardinality of continuum.

$\mathbb{F}^*\simeq\mathbb{C}$

Setting:

 $\mathbb{P} = \{ p \in \mathbb{N} : p \text{ prime} \}$ $\{\mathbb{F}_p^{alg}\}_{p \in \mathbb{P}}, \text{ as } \mathcal{L}_{Ring}\text{-structure}$

<u>Choose</u> an ultrafilter \mathcal{F} on \mathbb{P}

$$\rightsquigarrow \mathbb{F}^* = \prod_{p \in \mathbb{P}} \mathbb{F}_p^{alg} / \sim_{\mathcal{F}}$$
 is a field

$\underline{\mathsf{Moreover}}\;\mathbb{F}^*$

- has characteristic 0.
- ❀ is algebraically closed.
- has the cardinality of continuum.

$\mathbb{F}^*\simeq\mathbb{C}$

Setting:

 $\mathbb{P} = \{ p \in \mathbb{N} : p \text{ prime} \}$ $\{\mathbb{F}_p^{alg}\}_{p \in \mathbb{P}}, \text{ as } \mathcal{L}_{Ring}\text{-structure}$

<u>Choose</u> an ultrafilter $\mathcal F$ on $\mathbb P$

$$\rightsquigarrow \mathbb{F}^* = \prod_{p \in \mathbb{P}} \mathbb{F}_p^{alg} / \sim_{\mathcal{F}}$$
 is a field

$\underline{\mathsf{Moreover}}\;\mathbb{F}^*$

- has characteristic 0.
- ❀ is algebraically closed.
- has the cardinality of continuum.

$\mathbb{F}^*\simeq\mathbb{C}$

Setting:

 $\mathbb{P} = \{ p \in \mathbb{N} : p \text{ prime} \}$ $\{\mathbb{F}_p^{alg}\}_{p \in \mathbb{P}}, \text{ as } \mathcal{L}_{Ring}\text{-structure}$

<u>Choose</u> an ultrafilter \mathcal{F} on \mathbb{P}

$$\rightsquigarrow \mathbb{F}^* = \prod_{p \in \mathbb{P}} \mathbb{F}_p^{alg} / \sim_{\mathcal{F}}$$
 is a field

$\underline{\mathsf{Moreover}}\;\mathbb{F}^*$

- has characteristic 0.
- ❀ is algebraically closed.
- has the cardinality of continuum.

$$\mathbb{F}^*\simeq\mathbb{C}$$

Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}: \text{ a collection} \\ \text{of copies of } \mathbb{R}, \text{ as an} \\ \mathcal{L}_{or}\text{-structure} \\ \end{cases}$

 \mathcal{F} : an ultrafilter on $\mathbb N$

Consider the eq. cl. $\varepsilon = [\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ $\rightarrow \mathcal{R} \models 0 < \varepsilon$

<u>Consider</u> $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

This structure R contains infinitesimal numbers. $\begin{array}{l} \underline{\mathsf{Moreover}} & \mathcal{R} \models \varepsilon < [\{r, r, r, \ldots\}], \text{ where} \\ r \in \mathbb{R}^{>0} \\ & \text{ as } \{n \in \mathbb{N} : \frac{1}{n} < r\} \in \mathcal{F} \end{array}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}$: a collection of copies of \mathbb{R} , as an \mathcal{L}_{or} -structure

 \mathcal{F} : an ultrafilter on $\mathbb N$

<u>Consider</u> the eq. cl. $\varepsilon = [\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}]$

 $\sim \mathcal{R} \models 0 < \varepsilon$ as $\{n \in \mathbb{N} : 0 < \frac{1}{n}\} = \mathbb{N} \in \mathcal{F}$

<u>Consider</u> $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

This structure R contains infinitesimal numbers. $\begin{array}{l} \underline{\text{Moreover}} & \mathcal{R} \models \varepsilon < [\{r, r, r, \ldots\}], \text{ where} \\ r \in \mathbb{R}^{>0} \\ & \text{ as } \{n \in \mathbb{N} : \frac{1}{n} < r\} \in \mathcal{F} \end{array}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}: \text{ a collection} \\ \text{of copies of } \mathbb{R}, \text{ as an} \\ \mathcal{L}_{or}\text{-structure} \\ \end{cases}$

 \mathcal{F} : an ultrafilter on $\mathbb N$

<u>Consider</u> the eq. cl. $\varepsilon = [\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}]$ $\rightsquigarrow \mathcal{R} \models 0 < \varepsilon$

as $\{n \in \mathbb{N} : 0 < \frac{1}{n}\} = \mathbb{N} \in \mathcal{F}$

<u>Consider</u> $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

This structure R contains infinitesimal numbers. $\begin{array}{l} \underline{\text{Moreover}} & \mathcal{R} \models \varepsilon < [\{r, r, r, \ldots\}], \text{ where} \\ r \in \mathbb{R}^{>0} \\ & \text{ as } \{n \in \mathbb{N} : \frac{1}{n} < r\} \in \mathcal{F} \end{array}$

Setting:

 $\{\mathbb{R}: i \in \mathbb{N}\}: \text{ a collection} \\ \text{of copies of } \mathbb{R}, \text{ as an} \\ \mathcal{L}_{or}\text{-structure} \\ \end{cases}$

 \mathcal{F} : an ultrafilter on $\mathbb N$

<u>Consider</u> the eq. cl. $\varepsilon = [\{1, \frac{1}{2}, \frac{1}{3}, ...\}]$ $\rightsquigarrow \mathcal{R} \models 0 < \varepsilon$

as
$$\{n \in \mathbb{N} : 0 < \frac{1}{n}\} = \mathbb{N} \in \mathcal{F}$$

<u>Consider</u> $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

This structure R contains infinitesimal numbers. $\begin{array}{l} \underline{\mathsf{Moreover}} & \mathcal{R} \models \varepsilon < [\{r, r, r, \ldots\}], \text{ where} \\ r \in \mathbb{R}^{>0} \\ \text{ as } \{n \in \mathbb{N} : \frac{1}{n} < r\} \in \mathcal{F} \end{array}$

The ultraring $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

 R contains elements larger than any real number

Consider the eq. cl.
$$\omega = [\{1, 2, 3, \ldots\}]$$

 $\rightsquigarrow \mathcal{R} \models [\{r, r, r, \ldots\}] < \omega$, for any real number *r*.

as
$$\{n \in \mathbb{N} : r < n\} \in \mathcal{F}$$

R does not contain a largest element

<u>Consider</u> $(\exists x)(\forall y)y < x$

It does not hold in \mathbb{R} , so must be false in \mathcal{R} .

うしん 同一人用 イモットモット 白マ

The ultraring $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

- R contains elements larger than any real number
- <u>Consider</u> the eq. cl. $\omega = [\{1, 2, 3, \ldots\}]$

 $\rightsquigarrow \mathcal{R} \models [\{r, r, r, \ldots\}] < \omega$, for any real number *r*.

as
$$\{n \in \mathbb{N} : r < n\} \in \mathcal{F}$$

 R does not contain a largest element

$$\underline{\text{Consider}} \ (\exists x) (\forall y) y < x$$

It does not hold in \mathbb{R} , so must be false in \mathcal{R} .

The ultraring $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

- R contains elements larger than any real number
- <u>Consider</u> the eq. cl. $\omega = [\{1, 2, 3, \ldots\}]$

 $\rightsquigarrow \mathcal{R} \models [\{r, r, r, \ldots\}] < \omega$, for any real number *r*.

as
$$\{n \in \mathbb{N} : r < n\} \in \mathcal{F}$$

 $\circledast \ \mathcal{R} \ \text{does not contain a} \\ \text{largest element} \\$

$$\underline{\text{Consider}} \ (\exists x) (\forall y) y < x$$

It does not hold in \mathbb{R} , so must be false in \mathcal{R} .

The ultraring $\mathcal{R} = \prod_{i \in \mathbb{N}} \mathbb{R} / \sim_{\mathcal{F}}$

Observations:

- R contains elements larger than any real number
- <u>Consider</u> the eq. cl. $\omega = [\{1, 2, 3, \ldots\}]$

 $\rightsquigarrow \mathcal{R} \models [\{r, r, r, \ldots\}] < \omega$, for any real number *r*.

as
$$\{n \in \mathbb{N} : r < n\} \in \mathcal{F}$$

ℜ R does not contain a largest element

$$\underline{\text{Consider}} \ (\exists x) (\forall y) y < x$$

It does not hold in \mathbb{R} , so must be false in \mathcal{R} .