Exercise 1. Let \mathcal{M}, \mathcal{N} be \mathcal{L} -structures and $h: \mathcal{M} \to \mathcal{N}$ be an \mathcal{L} -embedding. Let x = (x_1,\ldots,x_n) and t(x) be an \mathcal{L} -term. Show that for every $a \in M^n$

$$h(t^{\mathcal{M}}(a)) = t^{\mathcal{N}}(h(a)).$$

In particular, $t^{\mathcal{M}}(a) = t^{\mathcal{N}}(a)$ when $\mathcal{M} \subseteq \mathcal{N}$. (Use induction on terms.)

Exercise 2. Let \mathcal{M}, \mathcal{N} be \mathcal{L} -structures and $\sigma \colon \mathcal{M} \to \mathcal{N}$ be an \mathcal{L} -isomorphism. Show that σ preserves all \mathcal{L} -formulas, that is, if $x = (x_1, \ldots, x_n)$ is a tuple of variable and $\varphi(x)$ is an \mathcal{L} -formula, then for all $a \in M^n$

$$\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{N} \models \varphi(\sigma(a)).$$

Exercise 3. Let \mathcal{M}, \mathcal{N} be \mathcal{L} -structures. Show that if $\mathcal{M} \cong \mathcal{N}$ then $\mathcal{M} \equiv \mathcal{N}$. In words, show that if two \mathcal{L} -structures are isomorphic then they are elementary equivalent.

Exercise 4. Suppose \mathcal{L} is a finite language and let \mathcal{M}, \mathcal{N} be two finite \mathcal{L} -structures. Sketch an argument to show that if $\mathcal{M} \equiv \mathcal{N}$ then $\mathcal{M} \cong \mathcal{N}$.

Exercise 5. Consider the language $\mathcal{L} = \{s\}$ where s is a function symbol of arity 1, and consider the \mathcal{L} -structures:

- $\mathcal{N} := (\mathbb{N}, s^{\mathcal{N}})$ where $s^{\mathcal{N}} : \mathbb{N} \to \mathbb{N}$ defined by $x \mapsto x + 1$ (the successor function); $\mathcal{M} := (\mathbb{Z}, s^{\mathcal{M}})$ where $s^{\mathcal{M}} : \mathbb{Z} \to \mathbb{Z}$ defined by $x \mapsto x + 1$.
- (a) Find an \mathcal{L} -sentence φ which is true in \mathcal{M} but false in \mathcal{N} .

Exercise 6. * Consider the language $\mathcal{L}_+ := \{+\}$ where + is a binary function symbol. Consider the structures:

- $\mathcal{G} \coloneqq (\mathbb{Z}, +^{\mathcal{G}})$ where $+^{\mathcal{G}} \colon \mathbb{Z}^2 \to \mathbb{Z}$ is integer addition;
- $\mathcal{H} := (\mathbb{Z} \times \mathbb{Z}, +^{\mathcal{H}})$ where $+^{\mathcal{H}} : (\mathbb{Z} \times \mathbb{Z})^2 \to \mathbb{Z} \times \mathbb{Z}$ is the coordinate-wise integer addition, that is,

$$(a,b)+\mathcal{H}(n,m) \coloneqq (a+n,b+m).$$

Prove or disprove that $\mathcal{G} \equiv \mathcal{H}$.

Exercise 7. ** Suppose \mathcal{L} is a finite language. In Exercise 4 you were asked to show that if $\mathcal{M} \equiv \mathcal{N}$ then $\mathcal{M} \cong \mathcal{N}$ whenever \mathcal{M} and \mathcal{N} where finite structures. Does this implication also hold for infinite structures?

Exercise 8. ** What happens if we replace \mathbb{Z} by \mathbb{Q} in Exercise 6? Or by \mathbb{R} ?

Let \mathcal{M} be an \mathcal{L} -structure. A subset $X \subseteq M^n$ is called \mathcal{L} -definable if there is an \mathcal{L} -formula $\varphi(x)$ with $x = (x_1, \ldots, x_n)$ such that

$$X = \varphi(M) \coloneqq \{a \in M^n : \mathcal{M} \models \varphi(a)\}.$$

For $A \subseteq M$, the set X is $\mathcal{L}(A)$ -definable if there is \mathcal{L} -formula $\psi(x, y)$ and $b \in A^{|y|}$ such that $X = \psi(M, b) := \{a \in M^n : \mathcal{M} \models \psi(a, b)\}.$

When \mathcal{L} is clear from the context one also says A-definable for $\mathcal{L}(A)$ -definable, \emptyset -definable for $\mathcal{L}(M)$ -definable.

Exercise 1. Let the language $\mathcal{L} = \{s\}$ where s is a function symbol of arity 1, and consider the \mathcal{L} -structure:

$$\mathcal{M} \coloneqq (\mathbb{Z}, s^{\mathcal{M}})$$
 where $s^{\mathcal{M}} \colon \mathbb{Z} \to \mathbb{Z}$ defined by $x \mapsto x+1$.

Show that if $X \subseteq \mathbb{Z}$ is an \mathcal{L} -definable subset, then either $X = \emptyset$ or $X = \mathbb{Z}$.

Exercise 2. Let \mathcal{M} be an \mathcal{L} -structure and $A \subseteq M$. Show that if $X \subseteq M^n$ is A-definable, then every $\sigma \in \operatorname{Aut}_{\mathcal{L}}(\mathcal{M})$ which fixes A pointwise fixes X setwise (that is, if σ is such that $\sigma(a) = a$ for all $a \in A$, then $\sigma(X) = X$).

Exercise 3. * Consider the structure $(\mathbb{C}, \cdot, +, -, 0, 1)$, that is the complex field in the language of rings. Prove or disprove: the set of real numbers $\mathbb{R} \subseteq \mathbb{C}$ is definable in $(\mathbb{C}, \cdot, +, -, 0, 1)$.

Exercise 4. Let $\mathcal{L}_{rings} = \{\cdot, +, -, 0, 1\}$ be the language of rings. Suppose that

$$\mathcal{K} = (K, \cdot, +, -, 0, 1) \preceq \mathcal{C} = (\mathbb{C}, \cdot, +, -, 0, 1),$$

(where the interpretation of the \mathcal{L}_{rings} -symbols in \mathcal{C} is the natural one). Show that K is an algebraically closed field.

Exercise 5. Let $\mathcal{L}_{\text{group}} = \{\cdot, ^{-1}, 1\}$ be the language of groups (written multiplicatively). Let G, H be two groups viewed as $\mathcal{L}_{\text{group}}$ -structures and suppose that $G \preceq H$. Show that if H is simple then G is simple.

Exercise 6. Let \mathcal{M}, \mathcal{N} be two \mathcal{L} -structures such that $\mathcal{M} \subseteq \mathcal{N}$. Suppose that for every finite set $X \subseteq \mathcal{M}$ and every $b \in \mathbb{N} \setminus \mathcal{M}$ there is $\sigma \in \operatorname{Aut}(\mathcal{N})$ such that $\sigma(a) = a$ for all $a \in X$ and $\sigma(b) \in \mathcal{M}$. Show that $\mathcal{M} \preceq \mathcal{N}$.

Exercise 7. Let $\mathcal{L}_{<} = \{<\}$ where < is a binary relation symbol. Consider the $\mathcal{L}_{<}$ -structures $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ with their usual order. Prove or disprove:

$$(\mathbb{Q}, <) \preceq (\mathbb{R}, <).$$

Exercise 1. Let \mathcal{M} be an \mathcal{L} -structure. Show that $\operatorname{Th}(\mathcal{M})$ is closed under logical consequence.

Exercise 2. Let G_1, G_2 be two non-trivial torsion-free divisible abelian groups. Show that G_1 and G_2 are \mathcal{L}_q -isomorphic if and only if they are isomorphic as \mathbb{Q} -vector spaces.

Exercise 3. Let \mathcal{M} be an \mathcal{L} -structure and let \mathcal{M}_M be the canonical expansion of \mathcal{M} to $\mathcal{L}(M)$ (i.e., we added a new constant symbols for each element of M). Suppose that $\mathcal{N} \models \text{Th}(\mathcal{M}_M)$ show that there is an elementary \mathcal{L} -embedding from M to N.

Exercise 4. Show the equivalence between the two versions of the Compactness theorem.

Exercise 5. Show whether the following classes are elementary or not in the corresponding language.

- (i) For $\mathcal{L}_E := \{E\}$ with a(E) = 2, the class of \mathcal{L} -structures in which E is interpreted as an equivalence relation having an equivalence class of cardinality n for each finite cardinal n.
- (ii) For \mathcal{L}_E as above, the class of \mathcal{L} -structures in which E is interpreted as an equivalence relation only having equivalence classes of finite cardinality.
- (iii) The class of finitely generated groups in the language of groups $\mathcal{L}_{g} = \{\cdot, ^{-1}, e\}$.

Exercise 6. For \mathcal{L}_E be as in Exercise ??. Let \mathcal{C} be the class of \mathcal{L} -structures in which E is interpreted as an equivalence relation having infinitely many equivalence classes each of which has infinite cardinality. Give axioms for $T := \text{Th}(\mathcal{C})$. Is T a complete theory?

Definition (Direct product). Let $\{\mathcal{M}_i \mid i \in I\}$ be a set of \mathcal{L} -structures. Let $M := \prod_{i \in I} M_i$. We express elements of M as functions $a \colon I \to \bigcup_{i \in I} M_i$ such that $a(i) \in M_i$. We define an \mathcal{L} -structure $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i$ with universe M, called the direct product of $\{\mathcal{M}_i \mid i \in I\}$ as follows:

• for $R \in \mathcal{L}^{\mathfrak{r}}$ with a(R) = n, and $a = (a_1, \ldots, a_n) \in M^n$

 $(a_1,\ldots,a_n) \in \mathbb{R}^{\mathcal{M}}$ if and only if $(a_1(i),\ldots,a_n(i)) \in \mathbb{R}^{\mathcal{M}_i}$ for all $i \in I$.

• for $f \in \mathcal{L}^{\mathfrak{f}}$ with a(f) = n, and $a = (a_1, \ldots, a_n) \in M^n$ the coordinate-wise function

$$f^{\mathcal{M}}(a_1,\ldots,a_n)(i) = f^{\mathcal{M}_i}(a_1(i),\ldots,a_n(i))$$

• for $c \in \mathcal{L}^{\mathfrak{c}}$

$$c^{\mathcal{M}}(i) = c^{\mathcal{M}_i}.$$

Exercise 7. Provide examples of

- an \mathcal{L} -theory T having two models $\mathcal{M}_1, \mathcal{M}_2$ such that their direct product $\mathcal{M}_1 \times \mathcal{M}_2$ is *not* a model of T.
- an \mathcal{L} -theory T which is closed under direct products, that is, if $\{\mathcal{M}_i \mid i \in I\}$ are all models of T, then $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i$ is also a model of T.

Exercise 1.

- (1) Show that if X is finite then every filter on X is generated.
- (2) Show that every principal filter is an ultrafilter.
- (3) Show that if \mathcal{F} is an non-principal ultrafilter, then it contains Fréchet's filter.

Exercise 2. Let $\mathcal{L}_{or} = \{<, \cdot, +, -, 0, 1\}$ be the language of ordered rings and consider \mathbb{Q} and \mathbb{R} as \mathcal{L}_{or} -structures. Consider the formula $\varphi(x)$ given by $\exists y(y^2 = x)$.

- (i) Give an explicit quantifier \mathcal{L}_{or} -free formula which is equivalent to $\varphi(x)$ in \mathbb{R} .
- (*ii*) Let $X \subseteq \mathbb{Q}$ be a \mathcal{L}_{or} -definable set defined by a quantifier free \mathcal{L}_{or} -formula. Show that X is a finite union of convex sets.
- (*iii*) Show that $\varphi(x)$ is not equivalent to a quantifier free \mathcal{L}_{or} -formula in \mathbb{Q} .

Exercise 3. Consider the \mathcal{L}_{ring} -formula $\varphi(x_0, x_1, x_2)$

$$\exists y(x_2y^2 + x_1y + x_0 = 0).$$

Show an explicit quantifier free \mathcal{L}_{ring} -formula which is equivalent to φ in \mathbb{C} . Same exercise for \mathbb{R} in \mathcal{L}_{or} . Is φ equivalent to a quantifier free \mathcal{L}_{ring} -formula in \mathbb{Q} ? And to a quantifier \mathcal{L}_{or} -formula?

Exercise 4. * Show that the theory of non-trivial torsion free divisible abelian groups has quantifier elimination in the language \mathcal{L}_g .

Exercise 5. * Show that the theory of (non-trivial) ordered divisible abelian groups has quantifier elimination in the language of ordered groups \mathcal{L}_{og} .