Introduction to model theory
 Tutorial exercises set 1

Exercise 1. Let \mathcal{M}, \mathcal{N} be \mathcal{L}-structures and $h: \mathcal{M} \rightarrow \mathcal{N}$ be an \mathcal{L}-embedding. Let $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $t(x)$ be an \mathcal{L}-term. Show that for every $a \in M^{n}$

$$
h\left(t^{\mathcal{M}}(a)\right)=t^{\mathcal{N}}(h(a)) .
$$

In particular, $t^{\mathcal{M}}(a)=t^{\mathcal{N}}(a)$ when $\mathcal{M} \subseteq \mathcal{N}$. (Use induction on terms.)
Exercise 2. Let \mathcal{M}, \mathcal{N} be \mathcal{L}-structures and $\sigma: \mathcal{M} \rightarrow \mathcal{N}$ be an \mathcal{L}-isomorphism. Show that σ preserves all \mathcal{L}-formulas, that is, if $x=\left(x_{1}, \ldots, x_{n}\right)$ is a tuple of variable and $\varphi(x)$ is an \mathcal{L}-formula, then for all $a \in M^{n}$

$$
\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{N} \models \varphi(\sigma(a)) .
$$

Exercise 3. Let \mathcal{M}, \mathcal{N} be \mathcal{L}-structures. Show that if $\mathcal{M} \cong \mathcal{N}$ then $\mathcal{M} \equiv \mathcal{N}$. In words, show that if two \mathcal{L}-structures are isomorphic then they are elementary equivalent.
Exercise 4. Suppose \mathcal{L} is a finite language and let \mathcal{M}, \mathcal{N} be two finite \mathcal{L}-structures. Sketch an argument to show that if $\mathcal{M} \equiv \mathcal{N}$ then $\mathcal{M} \cong \mathcal{N}$.

Exercise 5. Consider the language $\mathcal{L}=\{s\}$ where s is a function symbol of arity 1, and consider the \mathcal{L}-structures:

- $\mathcal{N}:=\left(\mathbb{N}, s^{\mathcal{N}}\right)$ where $s^{\mathcal{N}}: \mathbb{N} \rightarrow \mathbb{N}$ defined by $x \mapsto x+1$ (the successor function);
- $\mathcal{M}:=\left(\mathbb{Z}, s^{\mathcal{M}}\right)$ where $s^{\mathcal{M}}: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $x \mapsto x+1$.
(a) Find an \mathcal{L}-sentence φ which is true in \mathcal{M} but false in \mathcal{N}.

Exercise 6. * Consider the language $\mathcal{L}_{+}:=\{+\}$where + is a binary function symbol. Consider the structures:

- $\mathcal{G}:=\left(\mathbb{Z},+{ }^{\mathcal{G}}\right)$ where $+^{\mathcal{G}}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ is integer addition;
- $\mathcal{H}:=\left(\mathbb{Z} \times \mathbb{Z},+^{\mathcal{H}}\right)$ where $+^{\mathcal{H}}:(\mathbb{Z} \times \mathbb{Z})^{2} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is the coordinate-wise integer addition, that is,

$$
(a, b)+{ }^{\mathcal{H}}(n, m):=(a+n, b+m) .
$$

Prove or disprove that $\mathcal{G} \equiv \mathcal{H}$.
Exercise 7. ${ }^{* *}$ Suppose \mathcal{L} is a finite language. In Exercise 4 you were asked to show that if $\mathcal{M} \equiv \mathcal{N}$ then $\mathcal{M} \cong \mathcal{N}$ whenever \mathcal{M} and \mathcal{N} where finite structures. Does this implication also hold for infinite structures?

Exercise 8. ** What happens if we replace \mathbb{Z} by \mathbb{Q} in Exercise 6? Or by \mathbb{R} ?

Introduction to model theory

Tutorial exercises set 2

Let \mathcal{M} be an \mathcal{L}-structure. A subset $X \subseteq M^{n}$ is called \mathcal{L}-definable if there is an \mathcal{L}-formula $\varphi(x)$ with $x=\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
X=\varphi(M):=\left\{a \in M^{n}: \mathcal{M} \models \varphi(a)\right\} .
$$

For $A \subseteq M$, the set X is $\mathcal{L}(A)$-definable if there is \mathcal{L}-formula $\psi(x, y)$ and $b \in A^{|y|}$ such that

$$
X=\psi(M, b):=\left\{a \in M^{n}: \mathcal{M} \models \psi(a, b)\right\} .
$$

When \mathcal{L} is clear from the context one also says A-definable for $\mathcal{L}(A)$-definable, \emptyset-definable for \mathcal{L}-definable and definable for $\mathcal{L}(M)$-definable.

Exercise 1. Let the language $\mathcal{L}=\{s\}$ where s is a function symbol of arity 1 , and consider the \mathcal{L}-structure:

$$
\mathcal{M}:=\left(\mathbb{Z}, s^{\mathcal{M}}\right) \text { where } s^{\mathcal{M}}: \mathbb{Z} \rightarrow \mathbb{Z} \text { defined by } x \mapsto x+1
$$

Show that if $X \subseteq \mathbb{Z}$ is an \mathcal{L}-definable subset, then either $X=\emptyset$ or $X=\mathbb{Z}$.
Exercise 2. Let \mathcal{M} be an \mathcal{L}-structure and $A \subseteq M$. Show that if $X \subseteq M^{n}$ is A-definable, then every $\sigma \in \operatorname{Aut}_{\mathcal{L}}(\mathcal{M})$ which fixes A pointwise fixes X setwise (that is, if σ is such that $\sigma(a)=a$ for all $a \in A$, then $\sigma(X)=X)$.
Exercise 3. * Consider the structure ($\mathbb{C}, \cdot,+,-, 0,1$), that is the complex field in the language of rings. Prove or disprove: the set of real numbers $\mathbb{R} \subseteq \mathbb{C}$ is definable in $(\mathbb{C}, \cdot,+,-, 0,1)$.

Exercise 4. Let $\mathcal{L}_{\text {rings }}=\{\cdot,+,-, 0,1\}$ be the language of rings. Suppose that

$$
\mathcal{K}=(K, \cdot \cdot+,-, 0,1) \preceq \mathcal{C}=(\mathbb{C}, \cdot \cdot+,-, 0,1),
$$

(where the interpretation of the $\mathcal{L}_{\text {rings }}$-symbols in \mathcal{C} is the natural one). Show that K is an algebraically closed field.
Exercise 5. Let $\mathcal{L}_{\text {group }}=\left\{\cdot,{ }^{-1}, 1\right\}$ be the language of groups (written multiplicatively). Let G, H be two groups viewed as $\mathcal{L}_{\text {group }}$-structures and suppose that $G \preceq H$. Show that if H is simple then G is simple.

Exercise 6. Let \mathcal{M}, \mathcal{N} be two \mathcal{L}-structures such that $\mathcal{M} \subseteq \mathcal{N}$. Suppose that for every finite set $X \subseteq M$ and every $b \in N \backslash M$ there is $\sigma \in \operatorname{Aut}(\mathcal{N})$ such that $\sigma(a)=a$ for all $a \in X$ and $\sigma(b) \in M$. Show that $\mathcal{M} \preceq \mathcal{N}$.

Exercise 7. Let $\mathcal{L}_{<}=\{<\}$where $<$is a binary relation symbol. Consider the $\mathcal{L}_{<}$-structures $(\mathbb{Q},<)$ and $(\mathbb{R},<)$ with their usual order. Prove or disprove:

$$
(\mathbb{Q},<) \preceq(\mathbb{R},<) .
$$

Introduction to model theory
 Tutorial exercises set 3

Exercise 1. Let \mathcal{M} be an \mathcal{L}-structure. Show that $\operatorname{Th}(\mathcal{M})$ is closed under logical consequence.
Exercise 2. Let G_{1}, G_{2} be two non-trivial torsion-free divisible abelian groups. Show that G_{1} and G_{2} are \mathcal{L}_{g}-isomorphic if and only if they are isomorphic as \mathbb{Q}-vector spaces.
Exercise 3. Let \mathcal{M} be an \mathcal{L}-structure and let \mathcal{M}_{M} be the canonical expansion of \mathcal{M} to $\mathcal{L}(M)$ (i.e., we added a new constant symbols for each element of M). Suppose that $\mathcal{N} \models \operatorname{Th}\left(\mathcal{M}_{M}\right)$ show that there is an elementary \mathcal{L}-embedding from M to N.
Exercise 4. Show the equivalence between the two versions of the Compactness theorem.
Exercise 5. Show whether the following classes are elementary or not in the corresponding language.
(i) For $\mathcal{L}_{E}:=\{E\}$ with $a(E)=2$, the class of \mathcal{L}-structures in which E is interpreted as an equivalence relation having an equivalence class of cardinality n for each finite cardinal n.
(ii) For \mathcal{L}_{E} as above, the class of \mathcal{L}-structures in which E is interpreted as an equivalence relation only having equivalence classes of finite cardinality.
(iii) The class of finitely generated groups in the language of groups $\mathcal{L}_{\mathrm{g}}=\left\{\cdot,^{-1}, e\right\}$.

Exercise 6. For \mathcal{L}_{E} be as in Exercise ??. Let \mathcal{C} be the class of \mathcal{L}-structures in which E is interpreted as an equivalence relation having infinitely many equivalence classes each of which has infinite cardinality. Give axioms for $T:=\mathrm{Th}(\mathcal{C})$. Is T a complete theory?
Definition (Direct product). Let $\left\{\mathcal{M}_{i} \mid i \in I\right\}$ be a set of \mathcal{L}-structures. Let $M:=\prod_{i \in I} M_{i}$. We express elements of M as functions $a: I \rightarrow \bigcup_{i \in I} M_{i}$ such that $a(i) \in M_{i}$. We define an \mathcal{L}-structure $\mathcal{M}=\prod_{i \in I} \mathcal{M}_{i}$ with universe M, called the direct product of $\left\{\mathcal{M}_{i} \mid i \in I\right\}$ as follows:

- for $R \in \mathcal{L}^{\mathfrak{r}}$ with $a(R)=n$, and $a=\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$
$\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{M}}$ if and only if $\left(a_{1}(i), \ldots, a_{n}(i)\right) \in R^{\mathcal{M}_{i}}$ for all $i \in I$.
- for $f \in \mathcal{L}^{\mathfrak{f}}$ with $a(f)=n$, and $a=\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$ the coordinate-wise function

$$
f^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)(i)=f^{\mathcal{M}_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right) ;
$$

- for $c \in \mathcal{L}^{c}$

$$
c^{\mathcal{M}}(i)=c^{\mathcal{M}_{i}}
$$

Exercise 7. Provide examples of

- an \mathcal{L}-theory T having two models $\mathcal{M}_{1}, \mathcal{M}_{2}$ such that their direct product $\mathcal{M}_{1} \times \mathcal{M}_{2}$ is not a model of T.
- an \mathcal{L}-theory T which is closed under direct products, that is, if $\left\{\mathcal{M}_{i} \mid i \in I\right\}$ are all models of T, then $\mathcal{M}=\prod_{i \in I} \mathcal{M}_{i}$ is also a model of T.

Introduction to model theory
 Tutorial exercises set 4

Exercise 1.

(1) Show that if X is finite then every filter on X is generated.
(2) Show that every principal filter is an ultrafilter.
(3) Show that if \mathcal{F} is an non-principal ultrafilter, then it contains Fréchet's filter.

Exercise 2. Let $\mathcal{L}_{\text {or }}=\{<, \cdot,+,-, 0,1\}$ be the language of ordered rings and consider \mathbb{Q} and \mathbb{R} as $\mathcal{L}_{\text {or }}$-structures. Consider the formula $\varphi(x)$ given by $\exists y\left(y^{2}=x\right)$.
(i) Give an explicit quantifier $\mathcal{L}_{\text {or }}$-free formula which is equivalent to $\varphi(x)$ in \mathbb{R}.
(ii) Let $X \subseteq \mathbb{Q}$ be a $\mathcal{L}_{\text {or }}$-definable set defined by a quantifier free $\mathcal{L}_{\text {or }}$-formula. Show that X is a finite union of convex sets.
(iii) Show that $\varphi(x)$ is not equivalent to a quantifier free $\mathcal{L}_{\text {or }}$-formula in \mathbb{Q}.

Exercise 3. Consider the $\mathcal{L}_{\text {ring }}$-formula $\varphi\left(x_{0}, x_{1}, x_{2}\right)$

$$
\exists y\left(x_{2} y^{2}+x_{1} y+x_{0}=0\right)
$$

Show an explicit quantifier free $\mathcal{L}_{\text {ring }}$-formula which is equivalent to φ in \mathbb{C}. Same exercise for \mathbb{R} in $\mathcal{L}_{\text {or }}$. Is φ equivalent to a quantifier free $\mathcal{L}_{\text {ring }}$-formula in \mathbb{Q} ? And to a quantifier $\mathcal{L}_{\text {or }}$-formula?
Exercise 4. * Show that the theory of non-trivial torsion free divisible abelian groups has quantifier elimination in the language \mathcal{L}_{g}.
Exercise 5. * Show that the theory of (non-trivial) ordered divisible abelian groups has quantifier elimination in the language of ordered groups $\mathcal{L}_{\mathrm{og}}$.

