SoSe 2014 23.05.2014 Blatt 6

PD. Dr. Axel Grünrock

ÜBUNGEN ZUR ANALYSIS I

21. Für festes $k \in \mathbb{N}$ zeige man, dass $\lim_{n \to \infty} a_n = 0$, wobei

(a)
$$a_n = \frac{k^n}{n!}$$
 (b) $a_n = \frac{1}{2^n} \binom{n}{k}$.

Verwenden Sie das "Sandwich-Theorem".

22. Die Folge (x_n) sei rekursiv definiert durch

$$x_1 = 1,$$
 $x_{n+1} = \frac{1}{1+x_n}, \ n \ge 1.$

Zeigen Sie, dass (x_n) eine Cauchy-Folge ist, und berechnen Sie den Grenzwert. Ist (x_n) monoton (fallend oder wachsend)?

Hinweis: Zum Nachweis, dass (x_n) eine Cauchy-Folge ist, können Sie Satz 2 aus Abschnitt 2.4 der Vorlesung und die anschliessende Bemerkung benutzen.

23. Es seien $p \ge 2$ eine natürliche und a > 0 sowie $x_1 > 0$ reelle Zahlen. Für $n \ge 2$ sei x_n rekursiv definiert durch

$$x_n := \frac{1}{p} \left((p-1)x_{n-1} + \frac{a}{x_{n-1}^{p-1}} \right).$$

Zeigen Sie für $n \ge 2$, dass $x_n > 0$ gilt, sowie

(a)
$$x_n = x_{n-1} \left(1 + \frac{1}{p} \left(\frac{a}{x_{n-1}^p} - 1 \right) \right),$$

(b) $x_n^p \ge a$,

(c)
$$(x_{n+1} - x_n)x_n^{p-1} \le 0$$
.

Folgern Sie, dass (x_n) gegen die eindeutig bestimmte positive Lösung der Gleichung $x^p = a$ konvergiert.

Hinweis zu (b): Bernoullische Ungleichung.

Bitte wenden!

24. Für $n \in \mathbb{N}$ sei $e_n^* = (1 + \frac{1}{n})^{n+1}$. Zeigen Sie mit Hilfe der Bernoullischen Ungleichung, dass die Folge (e_n^*) streng monoton fallend ist.

Abgabe: Fr., 30.05.2014, 10.25 Uhr

Besprechung: Mi., 04.06.2014 und Do., 05.06.2014