Blatt 6

Prof. Dr. W. Singhof

Übungen zu Analysis II

19. Definiere $f: \mathbb{R}^2 \to \mathbb{R}$ durch

$$f(x,y) := x^2 + xy + y^2 + x + y + 1.$$

- (a) Bestimmen Sie die kritischen Stellen und die lokalen Extrema von f.
- (b) Bestimmen Sie das Maximum und das Minimum von f auf der Menge

$$Q := \{(x, y) \in \mathbb{R}^2 \mid \|(x, y)\|_{\infty} \le 1\}.$$

- 20. Bestimmen Sie drei positive Zahlen x, y, z, deren Summe gleich 60 ist und deren Produkt maximal ist.
- 21. Definiere $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x, y) := -(y x^2)(y 2x^2)$.
 - (a) Zeigen Sie, dass f die folgenden Eigenschaften hat:
 - (1) (0,0) ist die einzige kritische Stelle von f.
 - (2) Für jedes $v \in \mathbb{R}^2 \setminus \{0\}$ besitzt die Funktion $t \mapsto f(tv)$ von \mathbb{R} in \mathbb{R} ein striktes lokales Maximum in 0.
 - (3) f besitzt kein lokales Maximum in (0,0).
 - (b) Definiere $g: \mathbb{R}^2 \to \mathbb{R}$ durch

$$q(x, y) := \arctan(\exp(f(x, y) - 1)).$$

Zeigen Sie, dass auch g die Eigenschaften (1), (2) und (3) hat.

(Der Maple-Plot von g ist eindrucksvoller als der von f.)

- 22. Sei U offen in \mathbb{R}^n und $f: U \to \mathbb{R}$ von der Klasse C^2 . Sei $x_0 \in U$ eine kritische Stelle von f und es sei $\langle Hf(x_0) \cdot \xi, \xi \rangle \geq 0$ für alle $\xi \in \mathbb{R}^n$. Außerdem sei $Hf(x_0)$ nicht die Null-Matrix. Zeigen Sie, dass f in x_0 kein lokales Maximum besitzt.
- 23. Definiere $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x) := (1 + ||x||_2^2)^{-1}$. Für $a \in \mathbb{R}^2$ sei $f_a: \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f_a(x) := f(x a)$.
 - (a) Welche kritischen Stellen und lokalen Extrema hat die Funktion f?
 - (b) Sind $a, b \in \mathbb{R}^2$, so hat $f_a + f_b$ kein lokales Minimum.
 - (c) Es gibt endlich viele Elemente $a_1, \ldots, a_n \in \mathbb{R}^2$, so dass $f_{a_1} + \ldots + f_{a_n}$ ein lokales Minimum hat.

Abgabe: Freitag, den 19. Mai, 11.15 Uhr