Prof. Dr. W. Singhof

Übungen zu Analysis II

- (a) Bestimmen Sie alle Lösungen der Differentialgleichung $y' = e^y \sin x$ und skizzieren Sie ihren Verlauf.
 - (b) Finden Sie eine Lösung der Differentialgleichung $y' = -\frac{x}{y}$ mit der Anfangsbedingung y(1) = 1.
 - (c) Finden Sie Lösungen der Differentialgleichung $y' = -\frac{x^2}{y^3}$ mit den Anfangsbedingungen y(0) = 1 und y(0) = -1.
- 31. Finden Sie alle Lösungen der Differentialgleichungen
 - (a) $y' + 2xy = xe^{-x^2}$,
 - (b) $y' + y \cos x = \frac{1}{2} \sin 2x$,
 - (c) $y' + y \cos x = e^{-\sin x}$
- 32. Bestimmen Sie alle Lösungen der folgenden Systeme von Differentialgleichungen:

 - (a) $y'_1 = y_2$ $y'_2 = y_1 + x$. (b) $y'_1 = y_1 \cos x$ $y'_2 = y_1 e^{-\sin x}$
- 33. Ist $\| \cdot \|$ eine Norm auf \mathbb{R}^n und $A = (a_{jk})$ eine relle $n \times n$ -Matrix, so definieren wir wie in $\S 10$:

$$||A|| := \max\{||Ax|| \mid x \in \mathbb{R}^n \text{ und } ||x|| = 1\}.$$

(a) Geht man von der Norm $\parallel.\parallel_{\infty}$ auf \mathbb{R}^n aus, so ist

$$||A|| = \max_{j=1,\dots,n} \sum_{k=1}^{n} |a_{jk}|.$$

(Zeilensummennorm)

(b) Geht man von der Norm $\parallel.\parallel_1$ auf \mathbb{R}^n aus, so ist

$$||A|| = \max_{k=1,\dots,n} \sum_{j=1}^{n} |a_{jk}|.$$

(Spaltensummennorm)

(c) Warum gibt es für n > 1 keine Norm auf \mathbb{R}^n , so dass $||A|| = \left(\sum_{j=k-1}^n a_{jk}^2\right)^{1/2}$ für alle $n \times n$ -Matrizen A gilt?

Abgabe: Freitag, den 02. Juni 2006, 11.15 Uhr