Mathematisches Institut der Heinrich-Heine Universität

Düsseldorf Dr. Axel Grünrock WS 2012/2013 06.11.2012 Blatt 4

ÜBUNGEN ZUR ANALYSIS II

13. Für $n \in \mathbb{N}$ sei

$$f_n: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto f_n(x) := \frac{x^{2n}}{1 + x^{2n}}.$$

Zeigen Sie, dass die Funktionenfolge f_n auf \mathbb{R} punktweise konvergiert und bestimmen Sie die Grenzfunktion f. Untersuchen Sie ferner, ob auf den Intervallen I = [0, 2] bzw. $J = [2, \infty)$ die Konvergenz gleichmässig ist.

14. Zeigen Sie, dass für die Matrix $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ mit $a, b \in \mathbb{R}$ gilt $\exp(A) = \exp(a) \begin{pmatrix} \cosh(b) & \sinh(b) \\ \sinh(b) & \cosh(b) \end{pmatrix}$

Hinweis: Es gilt $A = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, und die Potenzen $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^n$ können direkt durch Matrix-Multiplikation berechnet werden.

15. (Poisson-Kern für den Kreis) Für $x \in \mathbb{R}$ und $q \in (-1,1)$ sei

$$P(q,x) := \sum_{k \in \mathbb{Z}} q^{|k|} e^{ikx}.$$

Zeigen Sie, dass für jedes $r \in [0,1)$ diese Reihe auf $\{(q,x) \in \mathbb{R}^2 : |q| \le r\}$ absolut und gleichmässig konvergiert, und verifizieren Sie die Identität

$$P(q,x) = \frac{1 - q^2}{1 - 2q\cos x + q^2}.$$

16. Zeigen Sie die Konvergenz des uneigentlichen Riemann-Integrals

$$\int_0^\infty \cos(x^2) dx.$$

Abgabe: Di., 13.11.2012, 10.15 Uhr

Besprechung: Mi., 21.11.2012 und Do., 22.11.2012