Klausur zu Analysis II

1.	Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind. Hier sind nur die					
	Ant	worten "richt	tig", "falsch" o	der Enthaltun	gen möglich. Bitte au	f dem Aufgabenblatt
	ank	reuzen!				
	a) Jede kompakte Teilmenge eines metrischen Raumes ist beschränkt und abgeschlosse					
			_	_	_	
		Antwort:	richtig ()	falsch ()	Enthaltung ()	(2/1/0 P.)
	- \					ilm .
	b) Ist $\sum_{k\in\mathbb{Z}} a_k$ konvergent, so konvergiert die trigonometrische Reihe $\sum_{k\in\mathbb{Z}} a_k e^{ikx}$ und gleichmässig gegen eine stetige Funktion.					$e \sum_{k \in \mathbb{Z}} a_k e^{i\kappa x}$ absolut
		_				
		Antwort:	richtig ()	falsch (Enthaltung ()	(2/1/0 P.)
	c) Jede total differenzierbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist stetig und partiell dif					rtiell differenzierbar.
	0)	Antwort:	richtig ()	falsch	Enthaltung ()	(2/1/0 P.)
		Antwort.	Tiening (iaiscii 🔾	Enthartung	(2/1/01.)
	d) Jede total differenzierbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist stetig partiell differenzierbar.					
		Antwort:	richtig 🔘	falsch (Enthaltung \bigcirc	(2/1/0 P.)
	e)				e uneigentlich über $\mathbb R$ in	
		nen gegeben			konvergiert, so gilt \lim_{n}	
		Antwort:	richtig ()	falsch ()	Enthaltung ()	(2/1/0 P.)
2.						(4 + 3 P.)
۷.						(4 + 31.)
	a)	a) Geben Sie die Definition einer Metrik genau an.				
) Wird durch $d(x,y)= x-y ^3$ eine Metrik auf $[0,1]$ definiert? Begründen Sie Ihre				
	,	Antwort!	(, 3 , 1	- 1		

$$3.$$
 (3 + 3 P.)

- a) Bestimmen Sie eine differenzierbare Funktion $\phi : \mathbb{R}^2 \to \mathbb{R}$ derart, dass $\operatorname{grad} \phi(x,y) = (2x+y,x+4y)$.
- b) Für die Funktion ϕ aus Teil (a) berechne man die Richtungsableitung $\frac{\partial \phi}{\partial \xi}(x_0, y_0)$ nach $\xi = \frac{1}{\sqrt{5}}(2, -1)$ im Punkt $(x_0, y_0) = (2, 3)$.

4.
$$(4 + 11 + 5 P.)$$

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei definiert durch $f(x,y) = x \exp\left(\frac{-x^2}{2}\right) + y^2 \exp y$.

- a) Bestimmen Sie alle kritischen Stellen von f .
- b) Untersuchen Sie, ob an diesen Stellen lokale Extrema vorliegen, und entscheiden Sie ggf., ob es sich dabei um Maxima oder Minima handelt.
- c) Besitzt f globale Extrema? Begründen Sie Ihre Antwort!

Bestimmen Sie mit Hilfe eines Lagrange-Multiplikators das Minimum der Funktion $f(x,y)=x^2+2y^2$ auf der Geraden

$$G = \{(x, y) \in \mathbb{R}^2 : x + y = 15\}.$$

Hinweis: Es ist nicht erforderlich, die Existenz des Minimums zu zeigen!

6. Lösen Sie die folgenden Anfangswerteprobleme durch Separation: (4 + 6 P.)

a)
$$y'(x) = \cos(x) \exp(-y(x)),$$
 $y(0) = 1,$

b)
$$y'(x) = (y(x) + x)^2 - 1,$$
 $y(0) = 1.$

Bestimmen Sie ein Lösungsfundamentalsystem für y' = Py, wobei

$$P(x) = \begin{pmatrix} 1 & 1 - x \\ 0 & x \end{pmatrix}.$$

Die Klausur gilt mit 34 (bzw. mit 27) von 68 erreichbaren Punkten als bestanden. Viel Erfolg!