Nachklausur zu Analysis II

1.	Entscheiden Sie	, ob die folgeno	len Aussagen	richtig oder falsch sine	d. Hier sind nur die	
	Antworten "richtig", "falsch" oder Enthaltungen möglich. Bitte auf dem Aufgabenbla					
ankreuzen! - In den Aufgabenteilen c) und e) sei vorausgesetzt, dass \mathbb{R}^n mit der euklin Norm versehen ist. a) Das Anfangswertproblem $y'(x) = y(x) ^{\frac{1}{2}}$, $y(0) = 0$, besitzt genau eine lokale L					n mit der euklidischen	
					u eine lokale Lösung.	
	Antwort:	richtig 🔘	falsch \bigcirc	Enthaltung \bigcirc	(2/1/0 P.)	
		b) Ist durch $f_n:[a,b]\to\mathbb{R}, x\mapsto f_n(x)$ eine Folge stetiger Funktionen gegeben, die				
	gleichmässi	g gegen Null ko	nvergiert, so gil	It $\lim_{n\to\infty} \int_a^b f_n(x) dx =$	tung \bigcirc (2/1/0 P.) e stetiger Funktionen gegeben, die $\sum_a \int_a^b f_n(x) dx = 0$. tung \bigcirc (2/1/0 P.) kompakt. tung \bigcirc (2/1/0 P.) stieren auch alle Richtungsableituntung \bigcirc (2/1/0 P.)	
	Antwort:	richtig 🔘	falsch \bigcirc	Enthaltung \bigcirc	(2/1/0 P.)	
	c) Ist $A \subset \mathbb{R}^n$	beschränkt und abgeschlossen, so ist A kompakt.				
	Antwort:	richtig 🔘	falsch (Enthaltung \bigcirc	(2/1/0 P.)	
d) Ist $f: \mathbb{R}^n \to \mathbb{R}$ stetig partiell differenzierbar, so existieren auch alle					lle Richtungsableitun-	
	gen von f ,	und diese sind s	tetig.			
	Antwort:	richtig (falsch \bigcirc	Enthaltung \bigcirc	(2/1/0 P.)	
e) Ist $M \subset \mathbb{R}^n$ so wohl offen als auch abgeschlossen, so ist $M = \emptyset$ oder $M = \mathbb{R}^n$.					$der M = \mathbb{R}^n.$	
	Antwort:	richtig (falsch \bigcirc	Enthaltung \bigcirc	(2/1/0 P.)	
2.					(4 + 6 P.)	

- a) Formulieren Sie die Kettenregel für Funktionen mehrerer Veränderlicher genau!
- b) Es seien $g: \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto g(x_1, x_2) = (x_1 + x_2, x_1 x_2)^{\top}$ und $f: \mathbb{R}^2 \to \mathbb{R}$, $(y_1, y_2) \mapsto f(y_1, y_2) = y_1 y_2$. Berechnen Sie $D(f \circ g)(x_1, x_2)$ mit Hilfe der Kettenregel!

3. (4 + 11 + 2 P.)

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei definiert durch $f(x,y) = x(2x^2 + 3x - 12) + (y^2 + 2y - 7) \exp y$.

- a) Bestimmen Sie alle kritischen Stellen von f .
- b) Untersuchen Sie, ob an diesen Stellen lokale Extrema vorliegen, und entscheiden Sie ggf., ob es sich dabei um Maxima oder Minima handelt.
- c) Besitzt f globale Extrema? Begründen Sie Ihre Antwort!
- 4. Gegeben sei die Funktion

$$(6 + 6 P.)$$

$$f:(0,\infty)\times\mathbb{R}\to\mathbb{R}^2\setminus\{0\}, \qquad (x,y)\mapsto f(x,y)=x^2(\cos y,\sin y)^\top.$$

- a) Berechnen Sie die Jacobi-Matrix von f und deren Determinante.
- b) Untersuchen Sie, ob f injektiv, surjektiv bzw. überall lokal invertierbar ist.
- 5. Gegeben sei das inhomogene lineare Differenzialgleichungssystem y' = Py + q, wobei (8 + 8 + 3 P.)

$$P(x) = \begin{pmatrix} x & 1 \\ 1 & x \end{pmatrix}$$
 und $q(x) = x \begin{pmatrix} \cosh x \\ \sinh x \end{pmatrix}$

- a) Berechnen Sie ein Lösungsfundamentalsystem Φ des homogenen Systems, für das $\Phi(0)=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ gilt.
- b) Bestimmen Sie die Lösung y_p des inhomogenen Systems, die der Anfangsbedingung $y_p(0) = (0,0)^{\top}$ genügt.
- c) Lösen Sie das Anfangswertproblem y' = Py + q, $y(0) = (-1, 1)^{\top}$.

Die Klausur gilt mit 34 (bzw. mit 27) von 68 erreichbaren Punkten als bestanden. Viel Erfolg!