WS 2015/2016 20.11.2015 Blatt 5

PD. Dr. Axel Grünrock

ÜBUNGEN ZUR ANALYSIS II

17. Für $n \in \mathbb{N}$ sei

$$f_n: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto f_n(x) := \frac{x^{2n}}{1 + x^{2n}}.$$

Zeigen Sie, dass die Funktionenfolge f_n auf \mathbb{R} punktweise konvergiert und bestimmen Sie die Grenzfunktion f. Untersuchen Sie ferner, ob auf den Intervallen I = [0, 2] bzw. $J = [2, \infty)$ die Konvergenz gleichmäßig ist.

18. In der Vorlesung zur Analysis I wurde in Abschnitt 3.4, Satz 2, bewiesen, dass für alle $z\in\mathbb{C}$ gilt

(1)
$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = \exp(z).$$

Zeigen Sie:

- (a) Auf jedem Kreis $\overline{B_R(0)} = \{z \in \mathbb{C} : |z| \leq R\}$ ist die Konvergenz in (1) gleichmäßig,
- (b) auf $\mathbb C$ hingegen ist die Konvergenz nicht gleichmäßig.
- 19. Zeigen Sie, dass für die Matrix $A=\left(\begin{array}{cc}a&b\\b&a\end{array}\right)$ mit $a,b\in\mathbb{R}$ gilt

$$\exp(A) = \exp(a) \begin{pmatrix} \cosh(b) & \sinh(b) \\ \sinh(b) & \cosh(b) \end{pmatrix}$$

Hinweis: Es gilt $A = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, und die Potenzen $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^n$ können direkt durch Matrix-Multiplikation berechnet werden.

20. (Poisson-Kern für den Kreis) Für $x \in \mathbb{R}$ und $q \in (-1,1)$ sei

$$P(q,x) := \sum_{k \in \mathbb{Z}} q^{|k|} e^{ikx}.$$

Zeigen Sie, dass für jedes $r \in [0,1)$ diese Reihe auf $\{(q,x) \in \mathbb{R}^2 : |q| \leq r\}$ absolut und gleichmäßig konvergiert, und verifizieren Sie die Identität

$$P(q,x) = \frac{1 - q^2}{1 - 2q\cos x + q^2}.$$

Abgabe: Fr., 27.11.2015, bis 10:25 Uhr

Besprechung: Mi., 02.12.2015 und Do., 03.12.2015