Übungen zu Analysis II

27. (2P) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei definiert durch f(0,0) = 0 und $f(x,y) = x^3 / (x^2 + y^2)$ falls $(x,y) \neq (0,0)$ ist.

Zeigen Sie, daß f in (0,0) nicht differenzierbar ist.

Zeigen Sie, daß aber für jede differenzierbare Kurve $\varphi: J \to R^2$, die durch den Punkt (0,0) führt, die Funktion $f \circ \varphi$ differenzierbar ist.

28. (3P) Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, definiert durch

$$f(x,y) = \begin{cases} xy^3/(x^2 + y^2), & \text{wenn } x \neq 0 \\ 0, & \text{sonst} \end{cases},$$

differenzierbar ist, und dass die partiellen Ableitungen D_1D_2f und D_2D_1f existieren, aber an der Stelle (0,0) verschieden sind.

- 29. (3P) Eine Funktion $f \in C^2(U)$ mit $U \subset \mathbb{R}^n$ offen heißt harmonisch, wenn sie $(\nabla \cdot \nabla)f = 0$ erfüllt. Welche der folgenden Funktionen sind harmonisch?
 - (a) C^2 -Funktionen f bzw. g, für die

$$D_1 f = -D_2 q$$
 und $D_2 f = D_1 q$

gilt (n=2)?

- (b) Die Funktion $f: \mathbb{R}^3 \setminus \{0\} \to R$, definiert durch f(x) = 1/|x| hinsichtlich der Euklidischen Norm?
- (c) Die Funktion $f(x,y) = \operatorname{arctg}(y/x)$ für $x > 0, y \in \mathbb{R}$?
- 30. (1) Sei $f: R^3 \to R$ aus der Klasse C^2 und gelte $f(tx) = t^2 f(x)$ für alle $t \in R, x \in R^3$. Man zeige

$$f(x) = \frac{(x \cdot \nabla)^2 f(o)}{2!}$$
 für $x \in \mathbb{R}^3$.

Abgabe: Mittwoch, 23.06.2004, 9.30 Uhr