Übungen zu Analysis III

48. (a) (3P) Seien
$$M_i = \sum_{j=1}^n \alpha_{ij} \ dx_j \in \Lambda^1 \mathbb{R}^n$$
 für $i = 1, ..., p$ und

$$A = (\alpha_{ij})_{\substack{i=1,\dots,p\\j=1,\dots,n}}$$

Zeigen Sie
$$M_1 \wedge ... \wedge M_p = \sum_{[i]} \operatorname{Det}(A^T)_i dx_i$$
 (mit *p*-Multiindices *i*). (Hinweis: Orientieren Sie sich am Beweis zu § 1, Beisp.

(Hinweis: Orientieren Sie sich am Beweis zu § 1, Beisp. 3).

(b) (1P) Sei $\varphi: U \to V$ stetig differenzierbar mit $U \subset \mathbb{R}^m$ offen, $V \subset \mathbb{R}^n$ offen, $\omega \in \Omega^k(V)$. Zeigen Sie für $k \geq 1$:

$$\varphi^*\omega = \sum_{[i],[j]} (\omega_i \circ \varphi) \frac{\partial \varphi_i}{\partial u_j} du_j \text{ (mit } k\text{-Multiindices } i, j).$$

- 49. (2P) Sei φ die durch $x = r \cos \alpha \cos \beta$, $y = r \cos \alpha \sin \beta$, $z = r \sin \alpha$ definierte Koordinatentransformation (mit festem r > 0). Berechnen Sie $\varphi^* dx$, $\varphi^* dy$, $\varphi^* dz$, $\varphi^*dx \wedge dy$, $\varphi^*dx \wedge dz$, $\varphi^*dy \wedge dz$ und $\varphi^*dx \wedge dy \wedge dz$.
- 50. (2P) Berechnen Sie das Integral $\int_S \omega$ für die 3-Form $z^2 dx \wedge dy \wedge dz$ und den im Halbraum y > 0 liegenden Teil der Einheitskugel.
- 51. Ist S^1 die Einheitskreislinie in \mathbb{R}^2 , heißt $T=S^1\times S^1\subset \mathbb{R}^2\times \mathbb{R}^2$ flacher Torus. Sei ferner $w(x)=x_2x_4dx_1\wedge dx_3+x_2x_3dx_4\wedge dx_1+x_1x_4dx_3\wedge dx_2+x_1x_3dx_2\wedge dx_4$. Berechnen Sie
 - (a) (2P) $\int_{T} w$,
 - (b) (2P) den 2-dimensionalen Flächeninhalt von T.

Abgabe: 26.01.2005, 9.30 Uhr