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Examples of arithmetic groups

B SL,(Z)
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B The unit group A~
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Examples of arithmetic groups

B SL.(Z) CSL.(R)

B SL.(Z[v-5
1 = =z

A H;3(Z) (0 1 y) | z,y,2 € Z} C H3(R)
0 0 1

B Up,q)(Z)={g € |9 Ipqg = Ipq}

B The unit group A* € GLy(R)
where A is the ring

A=Z&iZ®jZ&ijZ with 2=2, j2=

CU(p,q)



A first definition
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Definition: Ao S
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Let G C GL,(C) be a Zariski closed subgroup defined over Q. CLA&
An arithmetic subgroup of G is a subgroup

FQG(\G\LV\(Q) Ag(\
which is commensurable to G N GL,,(Z). ((S,z.@ NaLLx

commensurable: A\% < \f-\ Comhee Swoéle
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Group schemes

R: commutative unital ring

%R: Category of commutative R-algebras

Definition: An affine group scheme (of finite type over R) is a
covariant functor

G:Alg,+ G A GA)



Group schemes

R: commutative unital ring

%R: Category of commutative R-algebras

Definition: An affine group scheme (of finite type over R) is a
covariant functor
G: %R — Grp

which is representable by a finitely generated R-algebra Og,

i.e., there is a natural equivalence G — HomAlgR(Og, ).
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Examples

(1) The additive group G, (over R):
Ga: A= (A, +)

Representable?

e@ = RCTX

How\ (REY, N) =LA
e L e L)



Examples

(2) The multiplicative group G, (over R):
Gm: A— (A%))

Representable?

6@h =(KCT(TJ3

H@V\A%('RET?TF\B(A) —MAK
R ol



Examples

(3) The special linear group SL,, (over R):
SLy,: A+ SL,(A)

Representable?

. - LT L e{Am»y
((OIQH(\’;\'\))— A B

‘HO h%gg&& ( A ) — SLL._( A )
oL = (U
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Homomorphisms of group schemes

G, H affine group schemes over R.

Definition: A homomorphism ¢: G — H is a natural
transformation of functors.
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Example

@: Gm — SL2

oa: A = SLo(A)  with  ars (g agl)

On coordinate rings?
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Coordinates

G an affine group scheme.

Definition:
A set of coordinates is an ordered tuple ¢ = (t1,...,t,) of
elements of Og such that t1,...,t, generate Og.

R[Ty,...,T,)/I. — O¢
’rc — ":42,
Coordinate map:

Yea: G(A) = Hompy (Og, A) — Va(le) C A"
oL Co(u,d (04(‘&)\



Q¢ is a Hopf algebra

Comultiplication:
A: O — Oa®r Oa

Coinversion:
1: O0q — O¢g

Counit:
e:0O—= R

Satisfy axioms dual to the group axioms, e.g.,

(v, i) Lgoal)
G(A) —— G(A) x G(A) Og +— Og ®r O¢

R N R

{1} —— G(4) R—— Og



The counit of a group scheme

The counit of G is the homomorphism ¢: Og — R corresponding
to the unit 1 € G(R) via

G(R) — Homplg (Og, R).
A — s

Every R-algebra A is equipped with the structure morphism
t:R— A

Usually ¢ o ¢ is also called counit and denoted by €.

AGry S gy 4
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Extension of scalars
G a group scheme over R.
7 c ke

R C S a ring extension.

Observation:

The functor

Es/R(G)l %S — @
Es/r(G)(A) = G(A|r)

is an affine group scheme over S.

= Se’x
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Linear algebraic groups

K a field.

Definition:
A linear algebraic group over K is an affine group scheme over K
such that Og has no nilpotent elements.

Remark: char(K) =0 = the ring Og is reduced.



Integral forms & arithmetic groups

Let GG be a linear algebraic group over Q.

Definition:

An integral form of G is a group scheme G over Z with an
isomorphism

Eg/z(Go) = G.

Definition:

A subgroup T' C G(Q) is arithmetic if it is commensurable to
Go(Z) for some integral form Gy of G.



An example

Quaternion algebra:

D=(2,5Q =Q2Qi®Qj®Qij

with i? = 2, j2 =5, ij = —ji.

'gKLrOBL"
Linear algebraic group over Q: mw\'
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G(A) = (A®g D)* i ne O
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An example

Quaternion algebra:
D=(2,5Q =Q2Qi®Qj®Qij
with i? = 2, j2 =5, ij = —ji.
Linear algebraic group over Q:
G(A) = (A®g D)*
Integral form: ae A =)\
N=7Z®IZ® jZ®ijZ Z
Go(A) = (A®z A~ "
GLZ) =N i ac onblehe Subgg £ D



Relati firet definition?

Fact:

Let G be a linear algebraic group over K. There is a “closed

embedding” G — GL,,. (‘Q: & — Gla /o\é"b

¢ (oseok Qt‘!«(}u&\.& CQ ; Sc;b,_ RN %

Proposition:

Let G be a linear algebraic group over Q and ¢: G — GL,, a
closed embedding. Then there is an integral form G of GG such
that

¢~ (GLa(2)) = Go(Z).

G KIGL\‘_(%,)



Two results

Let GG be a linear algebraic group over Q.

Theorem 1:

If Go, G are integral forms of G, then Go(Z) and G1(Z) are
commensurable as subgroups of G(Q).



Two results

Let G be a linear algebraic group over Q.

Theorem 1:

If Go, G are integral forms of G, then Go(Z) and G1(Z) are
commensurable as subgroups of G(Q).

Lemma 2:

Arithmetic groups are residually finite.
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Principal congruence subgroups

G a group scheme over Z, m € N
Tm: Z — Z/mZ g
G(mm): G(Z) = G(Z/mZ) / halg
Observation: G(Z/mZ) is finite. > W

S 2 7 = Z
?Coor vales GC%‘»Z) — \/u.’kCIC)Q h%)

Principal congruence subgroup:

G(Z,m) = ker(G(mpm)) <ti G(Z).



Proof of Lemma 2

Lemma 2: Arithmetic groups are residually finite.
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Proof of Theorem 1

Theorem 1: If Gy, G1 are integral forms of G, then G(Z) and
G1(Z) are commensurable as subgroups of G(Q).
~ ~
c = q@) =46
Aim: e\ = 4o BY
Go(Z) N G1(Z) 2 Go(Z,b)  for some b € N G/\(’)c\

Sins ledy 26, (2b)



Proof of Theorem 1

Theorem 1: If Gy, G1 are integral forms of G, then G(Z) and
G1(Z) are commensurable as subgroups of G(Q).

Aim:
Go(Z) N G1(Z) O Go(Z,b)  for some b € N
We know Q ®z Og, = Og = Q ®z Og, -
N Ty
For simplicity we assume  Og,, Og, € Og. &c, o a,ol%éov\

Obseralinn: [ €&, (2) ,4,(2) € G@)
z: (9@, — &
£(8z,) ¢ 2
€(G) &2




Proof of Theorem 1

Choose coordinates

fl,...,kaOGO Withé‘(f):()
g1,..-,9¢ € Og, with e(g;) =0
Since f1,..., fr generate Og as Q-algebra, there are polynomials

P1y---,De € Q[Xl,... ,Xk] s.t.
pi(fi,. o fr)=g; forallje{l,... .6}

Obser: fy o Cowshad e O

O = £ly) =2l L)) = P ledoe )
=5 (Or A )




Proof of Theorem 1

b € N : a common denominator of all coefficients of pq, ..., Dy

Claim:
Go(Z,b) C Go(Z) N G1(Z)

VEGr) 0 —a q@)c2
/&/CX) = &(x) (P'»\GO{b gorx“ xe%e
/\__Oitwl' ’UC@G,\)QZ (zhfeé;t(%))
e qlydez fealy

T8 =9 (e d ) = il g <2

= Omogls



