An introduction to arithmetic groups (via group schemes)

Steffen Kionke

25.06.2020

Content

- First definition of arithmetic groups
- Group schemes
- Definition of arithmetic groups via group schemes

Examples of arithmetic groups

- $\operatorname{SL}_n(\mathbb{Z})$
- $\operatorname{LL}_n(\mathbb{Z}[\sqrt{-5}])$

$$H_3(\mathbb{Z})=\{\begin{pmatrix}1&x&z\\0&1&y\\0&0&1\end{pmatrix}\mid x,y,z\in\mathbb{Z}\}$$

$$d U(p,q)(\mathbb{Z}) = \{ g \in \mathrm{GL}_n(\mathbb{Z}[i]) \mid \overline{g}^T I_{p,q} g = I_{p,q} \}$$

lacksquare The unit group Λ^{\times}

where Λ is the ring

$$\Lambda = \mathbb{Z} \oplus i\mathbb{Z} \oplus j\mathbb{Z} \oplus ij\mathbb{Z}$$
 with $i^2 = 2, j^2 = 5, ij = -ji$.

Examples of arithmetic groups

- $\operatorname{SL}_n(\mathbb{Z}) \subseteq \operatorname{SL}_n(\mathbb{R})$
- **b** $\operatorname{SL}_n(\mathbb{Z}[\sqrt{-5}]) \subseteq \operatorname{SL}_n(\mathbb{C})$

$$H_3(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Z} \right\} \subseteq H_3(\mathbb{R})$$

$$d U(p,q)(\mathbb{Z}) = \{ g \in \mathrm{GL}_n(\mathbb{Z}[i]) \mid \overline{g}^T I_{p,q} g = I_{p,q} \} \subseteq U(p,q)$$

 $\blacksquare \ \, \text{The unit group } \Lambda^\times \quad \subseteq \operatorname{GL}_2(\mathbb{R})$

where Λ is the ring

$$\Lambda = \mathbb{Z} \oplus i\mathbb{Z} \oplus j\mathbb{Z} \oplus ij\mathbb{Z}$$
 with $i^2 = 2, \ j^2 = 5, \ ij = -ji$.

A first definition

Definition: definition: Let $G\subseteq \mathrm{GL}_n(\mathbb{C})$ be a Zariski closed subgroup defined over \mathbb{Q} . An arithmetic subgroup of G is a subgroup

$$\Gamma \subseteq G \cap GL_n(Q)$$

which is *commensurable* to $G \cap GL_n(\mathbb{Z})$.

commensurable: A, B & H Commer swable

if AnB has finite index in A,B

Group schemes

R: commutative unital ring

 $\underline{\mathrm{Alg}}_R$: Category of commutative R-algebras

Definition: An affine group scheme (of finite type over R) is a covariant functor

$$G: \underline{\operatorname{Alg}}_R \to \underline{\operatorname{Grp}} \qquad A \mapsto G(A)$$

Group schemes

R: commutative unital ring

 Alg_R : Category of commutative R-algebras

Definition: An affine group scheme (of finite type over R) is a covariant functor

$$G \colon \underline{\mathrm{Alg}}_R \to \underline{\mathrm{Grp}}$$

which is representable by a finitely generated R-algebra \mathcal{O}_G ,

i.e., there is a natural equivalence $G o \operatorname{Hom}_{\underline{\operatorname{Alg}}_R}(\mathcal{O}_G, \cdot)$.

f. A-B G(B)
$$\longrightarrow$$
 Hom_{Alg}(\bigcirc G, \bigcirc C). Sets

G(B) \longrightarrow Hom_{Alg}(\bigcirc G, \bigcirc C) \bigcirc Co.

Examples

(1) The additive group \mathbb{G}_a (over R):

$$\mathbb{G}_a \colon A \mapsto (A,+)$$

Representable?

Examples

(2) The multiplicative group \mathbb{G}_m (over R):

$$\mathbb{G}_m \colon A \mapsto (A^{\times}, \cdot)$$

Representable?

Examples

(3) The special linear group SL_n (over R):

$$\mathrm{SL}_n\colon A\mapsto \mathrm{SL}_n(A)$$

Representable?

Homomorphisms of group schemes

G,H affine group schemes over R.

Definition: A homomorphism $\varphi\colon G\to H$ is a natural transformation of functors.

$$G(A)$$
 Q_A $H(A)$
 $G(B)$ Q_B $H(B)$
 $G(B)$ Q_B $H(B)$
 $G(B)$ Q_B Q_B

Example

$$\varphi \colon \mathbb{G}_m \to \operatorname{SL}_2$$

$$\varphi_A \colon A^{\times} \to \operatorname{SL}_2(A) \quad \text{ with } \quad a \mapsto \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$$

On coordinate rings?

$$\begin{array}{c} \mathbb{R}\left[\mathsf{T}_{\mathsf{A}\mathsf{Z}},\mathsf{T}_{\mathsf{B}\mathsf{Z}},\mathsf{T}_{\mathsf{B}\mathsf{Z}},\mathsf{T}_{\mathsf{B}\mathsf{Z}},\mathsf{T}_{\mathsf{B}\mathsf{Z}}\right] \\ & \longrightarrow \mathbb{R}\left[\mathsf{T}_{\mathsf{A}\mathsf{Z}},\mathsf{T}_{\mathsf{B}\mathsf{Z}},\mathsf{T}_{\mathsf{B}\mathsf{Z}},\mathsf{T}_{\mathsf{B}\mathsf{Z}}\right] \\ & \mathsf{T}_{\mathsf{A}\mathsf{A}} \;\; \mathsf{L} - \mathsf{T} \\ & \mathsf{T}_{\mathsf{B}\mathsf{Z}} \;\; \mathsf{L} - \mathsf{T} \mathsf{D} \\ & \mathsf{T}_{\mathsf{B}\mathsf{Z}} \;\; \mathsf{L} - \mathsf{D} \mathsf{D} \end{array}$$

Coordinates

G an affine group scheme.

Definition:

A set of coordinates is an ordered tuple $c=(t_1,\ldots,t_n)$ of elements of \mathcal{O}_G such that t_1,\ldots,t_n generate \mathcal{O}_G .

$$R[T_1, \dots, T_n]/I_c \xrightarrow{\cong} \mathcal{O}_G$$
 $T_i \longleftrightarrow t_i$

Coordinate map:

$$\psi_{c,A} \colon G(A) \xrightarrow{\cong} \operatorname{Hom}_{\underline{\operatorname{Alg}}_{R}}(\mathcal{O}_{G}, A) \xrightarrow{\cong} V_{A}(I_{c}) \subseteq A^{n}$$

$$\swarrow \qquad (\text{with} \dots, \text{with})$$

$$\bigvee_{A} (I_{c}) = \left\{ (a_{A} \dots, a_{k}) \in A^{n} \mid f(a_{A} \dots a_{k}) = 0 \right. \text{ for all } f \in I_{c} \right\}$$

\mathcal{O}_G is a Hopf algebra

Comultiplication:

$$\Delta \colon \mathcal{O}_G \to \mathcal{O}_G \otimes_R \mathcal{O}_G$$

Coinversion:

$$I \colon \mathcal{O}_G \to \mathcal{O}_G$$

Counit:

$$\varepsilon \colon \mathcal{O} \to R$$

Satisfy axioms dual to the group axioms, e.g.,

The counit of a group scheme

The counit of G is the homomorphism $\varepsilon \colon \mathcal{O}_G \to R$ corresponding to the unit $1 \in G(R)$ via

$$G(R) \xrightarrow{\cong} \operatorname{Hom}_{\underline{\operatorname{Alg}}_R}(\mathcal{O}_G, R).$$

Every R-algebra A is equipped with the structure morphism

$$\iota \colon R \to A$$

Usually $\iota \circ \varepsilon$ is also called *counit* and denoted by ε .

Extension of scalars

affire

 ${\cal G}$ a group scheme over ${\cal R}.$

 $R\subseteq S$ a ring extension.

Observation:

The functor

$$E_{S/R}(G) : \underline{\operatorname{Alg}}_S \to \underline{\operatorname{Grp}}$$

$$E_{S/R}(G)(A) = G(A|_R)$$

is an affine group scheme over S.

$$\mathcal{O}_{E_{S(p}(G)} = S \otimes \mathcal{O}_{e}$$

constable A algebra

Linear algebraic groups

K a field.

Definition:

A linear algebraic group over K is an affine group scheme over K such that \mathcal{O}_G has no nilpotent elements.

Remark: $\operatorname{char}(K) = 0 \implies \operatorname{the ring} \mathcal{O}_G$ is reduced.

Integral forms & arithmetic groups

Let G be a linear algebraic group over \mathbb{Q} .

Definition:

An integral form of G is a group scheme G_0 over $\mathbb Z$ with an isomorphism

$$E_{\mathbb{Q}/\mathbb{Z}}(G_0) \cong G.$$

Definition:

A subgroup $\Gamma \subseteq G(\mathbb{Q})$ is arithmetic if it is commensurable to $G_0(\mathbb{Z})$ for some integral form G_0 of G.

An example

Quaternion algebra:

$$D = (2, 5| \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q} i \oplus \mathbb{Q} j \oplus \mathbb{Q} ij$$

with
$$i^2 = 2$$
, $j^2 = 5$, $ij = -ji$.

Linear algebraic group over \mathbb{Q} :

$$G(A) = (A \otimes_{\mathbb{Q}} D)^{\times}$$

Exercise: Tack that Elis Da grap Schene.

An example

Quaternion algebra:

$$D = (2, 5| \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q}i \oplus \mathbb{Q}j \oplus \mathbb{Q}ij$$

with
$$i^2 = 2$$
, $j^2 = 5$, $ij = -ji$.

Linear algebraic group over \mathbb{Q} :

$$G(A) = (A \otimes_{\mathbb{Q}} D)^{\times}$$

Integral form:

$$\Lambda = \mathbb{Z} \oplus i\mathbb{Z} \oplus j\mathbb{Z} \oplus ij\mathbb{Z}$$

$$G_0(A) = (A \otimes_{\mathbb{Z}} \Lambda)^{\times}$$

$$G_0(\mathbb{Z}) = \bigwedge^{\times}$$
 is an arithetic Subgroup of \mathbb{D}^{\times}

Relation to first definition?

Fact:

Let G be a linear algebraic group over K. There is a "closed embedding" $G \hookrightarrow \mathrm{GL}_n$.

closed entrolling of: Ogu ->> Og

Proposition:

Let G be a linear algebraic group over \mathbb{Q} and $\varphi \colon G \hookrightarrow \mathrm{GL}_n$ a closed embedding. Then there is an integral form G_0 of G such that

$$\varphi^{-1}(GL_n(\mathbb{Z})) = G_0(\mathbb{Z}).$$
Gala(%)

Two results

Let G be a linear algebraic group over \mathbb{Q} .

Theorem 1:

If G_0, G_1 are integral forms of G, then $G_0(\mathbb{Z})$ and $G_1(\mathbb{Z})$ are commensurable as subgroups of $G(\mathbb{Q})$.

Two results

Let G be a linear algebraic group over \mathbb{Q} .

Theorem 1:

If G_0, G_1 are integral forms of G, then $G_0(\mathbb{Z})$ and $G_1(\mathbb{Z})$ are commensurable as subgroups of $G(\mathbb{Q})$.

Lemma 2:

Arithmetic groups are residually finite.

Observe: Sufficient to prove that G(Z) is residually finite

Principal congruence subgroups

G a group scheme over \mathbb{Z} , $m \in \mathbb{N}$

$$\pi_m: \ \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$

$$G(\pi_m): G(\mathbb{Z}) \to G(\mathbb{Z}/m\mathbb{Z})$$
 Observation: $G(\mathbb{Z}/m\mathbb{Z})$ is finite.
$$G(\mathbb{Z}/m\mathbb{Z}) \xrightarrow{\cong} \bigvee_{\text{here}} (1_{\text{c}}) \subseteq \mathbb{Z}/m\mathbb{Z}$$

Principal congruence subgroup:

$$G(\mathbb{Z}, m) = \ker(G(\pi_m)) \leq_{f.i.} G(\mathbb{Z}).$$

Proof of Lemma 2

Lemma 2: Arithmetic groups are residually finite.

$$\gamma \in G(\mathbb{Z}) \quad \gamma \neq 1$$

$$Considu: \quad \gamma: O_G \longrightarrow \mathbb{Z} \quad , \quad \gamma \neq \varepsilon$$

$$\gamma(x) \neq \varepsilon(x) \quad \text{for some}$$

$$\Rightarrow \quad \gamma(x) \neq \varepsilon(x) \quad \text{mod } n \quad (\text{for } m \gg 1)$$

$$G(T_m)(\gamma) = T_m \quad \text{or} \quad \neq T_m \quad \text{oe} = 1 \in G(T_m \mathbb{Z})$$

Theorem 1: If G_0, G_1 are integral forms of G, then $G_0(\mathbb{Z})$ and $G_1(\mathbb{Z})$ are commensurable as subgroups of $G(\mathbb{Q})$.

Aim:
$$G_0(\mathbb{Z})\cap G_1(\mathbb{Z})\supseteq G_0(\mathbb{Z},b) \quad \text{for some } b\in\mathbb{N} \qquad G_1(\mathcal{X})$$
 Similarly
$$=G_1(\mathbb{Z},b)$$

Theorem 1: If G_0, G_1 are integral forms of G, then $G_0(\mathbb{Z})$ and $G_1(\mathbb{Z})$ are commensurable as subgroups of $G(\mathbb{Q})$.

Aim:

$$G_0(\mathbb{Z}) \cap G_1(\mathbb{Z}) \supseteq G_0(\mathbb{Z}, b)$$
 for some $b \in \mathbb{N}$

We know
$$\mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{O}_{G_0} \cong \mathcal{O}_G \cong \mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{O}_{G_1}$$
.

For simplicity we assume
$$\mathcal{O}_{G_0}, \mathcal{O}_{G_1} \subseteq \mathcal{O}_G$$
.

They gewale OG as Q-algebra

$$\varepsilon: \mathcal{O}_{\mathsf{G}} \longrightarrow \emptyset$$

Choose coordinates

if we replace
$$f_i$$
 by $f_i - \mathcal{E}(f_i)$

$$\varepsilon(f_i) = 0$$

$$f_1, \dots, f_k \in \mathcal{O}_{G_0}$$
 with $\varepsilon(f_i) = 0$
 $g_1, \dots, g_\ell \in \mathcal{O}_{G_1}$ with $\varepsilon(g_j) = 0$

Since f_1, \ldots, f_k generate \mathcal{O}_G as \mathbb{Q} -algebra, there are polynomials $p_1,\ldots,p_\ell\in\mathbb{Q}[X_1,\ldots,X_k]$ s.t.

$$p_j(f_1,\ldots,f_k)=g_j \qquad \text{for all } j\in\{1,\ldots,\ell\}$$

Observe: Pi has constant term O

$$O = \mathcal{E}(9;) = \mathcal{E}(p_0(f_1, ..., f_k)) = p_0(\mathcal{E}(f_k), ..., \mathcal{E}(f_k))$$

$$= p_0(0, ..., 0)$$

 $b \in \mathbb{N}$: a common denominator of all coefficients of p_1, \ldots, p_ℓ .

Claim:

$$\gamma \in G_0(\mathbb{Z}, b) \subseteq G_0(\mathbb{Z}) \cap G_1(\mathbb{Z})$$

$$\gamma \in G_0(\mathbb{Z}, b) \subseteq G_0(\mathbb{Z}) \cap G_1(\mathbb{Z})$$

$$\gamma : O_G \longrightarrow Q \qquad \gamma (O_G) \subseteq \mathbb{Z}$$

$$\gamma(x) \equiv \mathcal{E}(x) \text{ modb} \qquad \text{for all } x \in O_G$$

$$\gamma \in Show: \qquad \gamma (O_{G_1}) \subseteq \mathbb{Z} \qquad (\gamma \in G_1(\mathcal{Z}_1))$$
i.e. $\gamma(g_i) \in \mathbb{Z} \qquad \text{for all } j$

$$\gamma(g_i) = \gamma (p_i(f_{n-f_n})) = p_i(\gamma f_n) \dots (\gamma f_n) \in \mathbb{Z}$$

$$\gamma(g_i) = \gamma (p_i(f_{n-f_n})) \in \mathbb{Z}$$