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A cubic hypersurface X is defined by one polynomial equation of
degree 3 in n variables with coefficients in a field K, such as
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n = 0.

One is interested in the set X(K) of solutions (x1, . . . , xn) of this equa-
tion in Kn. Depending on the field K (which may be for example C,
R, Q, or Fq) one may ask various questions: is X(K) nonempty? How
large is it? What is the topology of X(K)? What is its geometry? Can
one parametrize X(K) by means of rational functions?

This is a very classical subject: elliptic curves (which are cubics in
the plane) and cubic surfaces have fascinated mathematicians from the
19th century to the present day. Plaster models of the Clebsch cubic
surface still decorate many mathematics libraries (or cafeterias, as in
Düsseldorf) around the world. However, simple questions about cubics
still remain unanswered, although actively researched.

I will explain some classical facts about cubic hypersurfaces and give
some answers to the questions asked above.

The Clebsch cubic with its 27 real lines


